diff options
author | Matt Johnston <matt@ucc.asn.au> | 2020-10-15 19:55:15 +0800 |
---|---|---|
committer | Matt Johnston <matt@ucc.asn.au> | 2020-10-15 19:55:15 +0800 |
commit | 0e3e8db5bfca0c579be55e7580a46c593c1384be (patch) | |
tree | 2b1a718f633fb95c1f2d689a591cf9e8642697f3 /libtommath/bn_mp_prime_is_prime.c | |
parent | 78e17f6ee9a944430da3e517ee1fe384fd6b275b (diff) | |
parent | 17873e8c922eded2cec86184673a6d110df6403f (diff) |
merge from main
--HG--
branch : fuzz
Diffstat (limited to 'libtommath/bn_mp_prime_is_prime.c')
-rw-r--r-- | libtommath/bn_mp_prime_is_prime.c | 363 |
1 files changed, 297 insertions, 66 deletions
diff --git a/libtommath/bn_mp_prime_is_prime.c b/libtommath/bn_mp_prime_is_prime.c index 3eda4fd..7f9fc0b 100644 --- a/libtommath/bn_mp_prime_is_prime.c +++ b/libtommath/bn_mp_prime_is_prime.c @@ -1,83 +1,314 @@ -#include <tommath_private.h> +#include "tommath_private.h" #ifdef BN_MP_PRIME_IS_PRIME_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * The library is free for all purposes without any express - * guarantee it works. - * - * Tom St Denis, tstdenis82@gmail.com, http://libtom.org - */ - -/* performs a variable number of rounds of Miller-Rabin - * - * Probability of error after t rounds is no more than - - * - * Sets result to 1 if probably prime, 0 otherwise - */ -int mp_prime_is_prime (mp_int * a, int t, int *result) +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ + +/* portable integer log of two with small footprint */ +static unsigned int s_floor_ilog2(int value) { - mp_int b; - int ix, err, res; + unsigned int r = 0; + while ((value >>= 1) != 0) { + r++; + } + return r; +} + - /* default to no */ - *result = MP_NO; +mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result) +{ + mp_int b; + int ix, p_max = 0, size_a, len; + mp_bool res; + mp_err err; + unsigned int fips_rand, mask; - /* valid value of t? */ - if ((t <= 0) || (t > PRIME_SIZE)) { - return MP_VAL; - } + /* default to no */ + *result = MP_NO; - /* is the input equal to one of the primes in the table? */ - for (ix = 0; ix < PRIME_SIZE; ix++) { - if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) { - *result = 1; + /* Some shortcuts */ + /* N > 3 */ + if (a->used == 1) { + if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) { + *result = MP_NO; + return MP_OKAY; + } + if (a->dp[0] == 2u) { + *result = MP_YES; return MP_OKAY; } - } + } - /* first perform trial division */ - if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) { - return err; - } + /* N must be odd */ + if (MP_IS_EVEN(a)) { + return MP_OKAY; + } + /* N is not a perfect square: floor(sqrt(N))^2 != N */ + if ((err = mp_is_square(a, &res)) != MP_OKAY) { + return err; + } + if (res != MP_NO) { + return MP_OKAY; + } - /* return if it was trivially divisible */ - if (res == MP_YES) { - return MP_OKAY; - } + /* is the input equal to one of the primes in the table? */ + for (ix = 0; ix < PRIVATE_MP_PRIME_TAB_SIZE; ix++) { + if (mp_cmp_d(a, s_mp_prime_tab[ix]) == MP_EQ) { + *result = MP_YES; + return MP_OKAY; + } + } +#ifdef MP_8BIT + /* The search in the loop above was exhaustive in this case */ + if ((a->used == 1) && (PRIVATE_MP_PRIME_TAB_SIZE >= 31)) { + return MP_OKAY; + } +#endif - /* now perform the miller-rabin rounds */ - if ((err = mp_init (&b)) != MP_OKAY) { - return err; - } + /* first perform trial division */ + if ((err = s_mp_prime_is_divisible(a, &res)) != MP_OKAY) { + return err; + } - for (ix = 0; ix < t; ix++) { - /* set the prime */ - mp_set (&b, ltm_prime_tab[ix]); + /* return if it was trivially divisible */ + if (res == MP_YES) { + return MP_OKAY; + } - if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) { - goto LBL_B; - } + /* + Run the Miller-Rabin test with base 2 for the BPSW test. + */ + if ((err = mp_init_set(&b, 2uL)) != MP_OKAY) { + return err; + } - if (res == MP_NO) { + if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { + goto LBL_B; + } + if (res == MP_NO) { goto LBL_B; - } - } + } + /* + Rumours have it that Mathematica does a second M-R test with base 3. + Other rumours have it that their strong L-S test is slightly different. + It does not hurt, though, beside a bit of extra runtime. + */ + b.dp[0]++; + if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { + goto LBL_B; + } + if (res == MP_NO) { + goto LBL_B; + } - /* passed the test */ - *result = MP_YES; -LBL_B:mp_clear (&b); - return err; -} + /* + * Both, the Frobenius-Underwood test and the the Lucas-Selfridge test are quite + * slow so if speed is an issue, define LTM_USE_ONLY_MR to use M-R tests with + * bases 2, 3 and t random bases. + */ +#ifndef LTM_USE_ONLY_MR + if (t >= 0) { + /* + * Use a Frobenius-Underwood test instead of the Lucas-Selfridge test for + * MP_8BIT (It is unknown if the Lucas-Selfridge test works with 16-bit + * integers but the necesssary analysis is on the todo-list). + */ +#if defined (MP_8BIT) || defined (LTM_USE_FROBENIUS_TEST) + err = mp_prime_frobenius_underwood(a, &res); + if ((err != MP_OKAY) && (err != MP_ITER)) { + goto LBL_B; + } + if (res == MP_NO) { + goto LBL_B; + } +#else + if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) { + goto LBL_B; + } + if (res == MP_NO) { + goto LBL_B; + } +#endif + } #endif -/* ref: $Format:%D$ */ -/* git commit: $Format:%H$ */ -/* commit time: $Format:%ai$ */ + /* run at least one Miller-Rabin test with a random base */ + if (t == 0) { + t = 1; + } + + /* + Only recommended if the input range is known to be < 3317044064679887385961981 + + It uses the bases necessary for a deterministic M-R test if the input is + smaller than 3317044064679887385961981 + The caller has to check the size. + TODO: can be made a bit finer grained but comparing is not free. + */ + if (t < 0) { + /* + Sorenson, Jonathan; Webster, Jonathan (2015). + "Strong Pseudoprimes to Twelve Prime Bases". + */ + /* 0x437ae92817f9fc85b7e5 = 318665857834031151167461 */ + if ((err = mp_read_radix(&b, "437ae92817f9fc85b7e5", 16)) != MP_OKAY) { + goto LBL_B; + } + + if (mp_cmp(a, &b) == MP_LT) { + p_max = 12; + } else { + /* 0x2be6951adc5b22410a5fd = 3317044064679887385961981 */ + if ((err = mp_read_radix(&b, "2be6951adc5b22410a5fd", 16)) != MP_OKAY) { + goto LBL_B; + } + + if (mp_cmp(a, &b) == MP_LT) { + p_max = 13; + } else { + err = MP_VAL; + goto LBL_B; + } + } + + /* we did bases 2 and 3 already, skip them */ + for (ix = 2; ix < p_max; ix++) { + mp_set(&b, s_mp_prime_tab[ix]); + if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { + goto LBL_B; + } + if (res == MP_NO) { + goto LBL_B; + } + } + } + /* + Do "t" M-R tests with random bases between 3 and "a". + See Fips 186.4 p. 126ff + */ + else if (t > 0) { + /* + * The mp_digit's have a defined bit-size but the size of the + * array a.dp is a simple 'int' and this library can not assume full + * compliance to the current C-standard (ISO/IEC 9899:2011) because + * it gets used for small embeded processors, too. Some of those MCUs + * have compilers that one cannot call standard compliant by any means. + * Hence the ugly type-fiddling in the following code. + */ + size_a = mp_count_bits(a); + mask = (1u << s_floor_ilog2(size_a)) - 1u; + /* + Assuming the General Rieman hypothesis (never thought to write that in a + comment) the upper bound can be lowered to 2*(log a)^2. + E. Bach, "Explicit bounds for primality testing and related problems," + Math. Comp. 55 (1990), 355-380. + + size_a = (size_a/10) * 7; + len = 2 * (size_a * size_a); + + E.g.: a number of size 2^2048 would be reduced to the upper limit + + floor(2048/10)*7 = 1428 + 2 * 1428^2 = 4078368 + + (would have been ~4030331.9962 with floats and natural log instead) + That number is smaller than 2^28, the default bit-size of mp_digit. + */ + + /* + How many tests, you might ask? Dana Jacobsen of Math::Prime::Util fame + does exactly 1. In words: one. Look at the end of _GMP_is_prime() in + Math-Prime-Util-GMP-0.50/primality.c if you do not believe it. + + The function mp_rand() goes to some length to use a cryptographically + good PRNG. That also means that the chance to always get the same base + in the loop is non-zero, although very low. + If the BPSW test and/or the addtional Frobenious test have been + performed instead of just the Miller-Rabin test with the bases 2 and 3, + a single extra test should suffice, so such a very unlikely event + will not do much harm. + + To preemptivly answer the dangling question: no, a witness does not + need to be prime. + */ + for (ix = 0; ix < t; ix++) { + /* mp_rand() guarantees the first digit to be non-zero */ + if ((err = mp_rand(&b, 1)) != MP_OKAY) { + goto LBL_B; + } + /* + * Reduce digit before casting because mp_digit might be bigger than + * an unsigned int and "mask" on the other side is most probably not. + */ + fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask); +#ifdef MP_8BIT + /* + * One 8-bit digit is too small, so concatenate two if the size of + * unsigned int allows for it. + */ + if ((MP_SIZEOF_BITS(unsigned int)/2) >= MP_SIZEOF_BITS(mp_digit)) { + if ((err = mp_rand(&b, 1)) != MP_OKAY) { + goto LBL_B; + } + fips_rand <<= MP_SIZEOF_BITS(mp_digit); + fips_rand |= (unsigned int) b.dp[0]; + fips_rand &= mask; + } +#endif + if (fips_rand > (unsigned int)(INT_MAX - MP_DIGIT_BIT)) { + len = INT_MAX / MP_DIGIT_BIT; + } else { + len = (((int)fips_rand + MP_DIGIT_BIT) / MP_DIGIT_BIT); + } + /* Unlikely. */ + if (len < 0) { + ix--; + continue; + } + /* + * As mentioned above, one 8-bit digit is too small and + * although it can only happen in the unlikely case that + * an "unsigned int" is smaller than 16 bit a simple test + * is cheap and the correction even cheaper. + */ +#ifdef MP_8BIT + /* All "a" < 2^8 have been caught before */ + if (len == 1) { + len++; + } +#endif + if ((err = mp_rand(&b, len)) != MP_OKAY) { + goto LBL_B; + } + /* + * That number might got too big and the witness has to be + * smaller than "a" + */ + len = mp_count_bits(&b); + if (len >= size_a) { + len = (len - size_a) + 1; + if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) { + goto LBL_B; + } + } + /* Although the chance for b <= 3 is miniscule, try again. */ + if (mp_cmp_d(&b, 3uL) != MP_GT) { + ix--; + continue; + } + if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { + goto LBL_B; + } + if (res == MP_NO) { + goto LBL_B; + } + } + } + + /* passed the test */ + *result = MP_YES; +LBL_B: + mp_clear(&b); + return err; +} + +#endif |