summaryrefslogtreecommitdiffhomepage
path: root/libtommath/bn_mp_invmod_slow.c
diff options
context:
space:
mode:
authorMatt Johnston <matt@ucc.asn.au>2007-01-11 03:14:55 +0000
committerMatt Johnston <matt@ucc.asn.au>2007-01-11 03:14:55 +0000
commit9d5ed350a749368c84254c11e7616ce3c891193a (patch)
tree6dacbff2e9f5c60a1568382db55c72dd6d2ce925 /libtommath/bn_mp_invmod_slow.c
parentca52f070aecf91e75f6ae6c87d4ae1a2189ccb14 (diff)
parent5ea605d8de5b4438deb4fa86c5231710dd09f934 (diff)
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 2af95f00ebd5bb7a28b3817db1218442c935388e)
to branch 'au.asn.ucc.matt.dropbear' (head ecd779509ef23a8cdf64888904fc9b31d78aa933) --HG-- extra : convert_revision : d26d5eb2837f46b56a33fb0e7573aa0201abd4d5
Diffstat (limited to 'libtommath/bn_mp_invmod_slow.c')
-rw-r--r--libtommath/bn_mp_invmod_slow.c175
1 files changed, 175 insertions, 0 deletions
diff --git a/libtommath/bn_mp_invmod_slow.c b/libtommath/bn_mp_invmod_slow.c
new file mode 100644
index 0000000..a4e4fbc
--- /dev/null
+++ b/libtommath/bn_mp_invmod_slow.c
@@ -0,0 +1,175 @@
+#include <tommath.h>
+#ifdef BN_MP_INVMOD_SLOW_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
+ */
+
+/* hac 14.61, pp608 */
+int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, A, B, C, D;
+ int res;
+
+ /* b cannot be negative */
+ if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+ return MP_VAL;
+ }
+
+ /* init temps */
+ if ((res = mp_init_multi(&x, &y, &u, &v,
+ &A, &B, &C, &D, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* x = a, y = b */
+ if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (b, &y)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* 2. [modified] if x,y are both even then return an error! */
+ if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ mp_set (&A, 1);
+ mp_set (&D, 1);
+
+top:
+ /* 4. while u is even do */
+ while (mp_iseven (&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 4.2 if A or B is odd then */
+ if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
+ /* A = (A+y)/2, B = (B-x)/2 */
+ if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* A = A/2, B = B/2 */
+ if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 5. while v is even do */
+ while (mp_iseven (&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 5.2 if C or D is odd then */
+ if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
+ /* C = (C+y)/2, D = (D-x)/2 */
+ if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* C = C/2, D = D/2 */
+ if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (mp_cmp (&u, &v) != MP_LT) {
+ /* u = u - v, A = A - C, B = B - D */
+ if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ } else {
+ /* v - v - u, C = C - A, D = D - B */
+ if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (mp_iszero (&u) == 0)
+ goto top;
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (mp_cmp_d (&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* if its too low */
+ while (mp_cmp_d(&C, 0) == MP_LT) {
+ if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* too big */
+ while (mp_cmp_mag(&C, b) != MP_LT) {
+ if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* C is now the inverse */
+ mp_exch (&C, c);
+ res = MP_OKAY;
+LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
+ return res;
+}
+#endif
+
+/* $Source: /cvs/libtom/libtommath/bn_mp_invmod_slow.c,v $ */
+/* $Revision: 1.3 $ */
+/* $Date: 2006/03/31 14:18:44 $ */