diff options
author | Matt Johnston <matt@ucc.asn.au> | 2020-10-15 19:55:15 +0800 |
---|---|---|
committer | Matt Johnston <matt@ucc.asn.au> | 2020-10-15 19:55:15 +0800 |
commit | 0e3e8db5bfca0c579be55e7580a46c593c1384be (patch) | |
tree | 2b1a718f633fb95c1f2d689a591cf9e8642697f3 /libtommath/bn_mp_gcd.c | |
parent | 78e17f6ee9a944430da3e517ee1fe384fd6b275b (diff) | |
parent | 17873e8c922eded2cec86184673a6d110df6403f (diff) |
merge from main
--HG--
branch : fuzz
Diffstat (limited to 'libtommath/bn_mp_gcd.c')
-rw-r--r-- | libtommath/bn_mp_gcd.c | 163 |
1 files changed, 75 insertions, 88 deletions
diff --git a/libtommath/bn_mp_gcd.c b/libtommath/bn_mp_gcd.c index b0be8fb..53029ba 100644 --- a/libtommath/bn_mp_gcd.c +++ b/libtommath/bn_mp_gcd.c @@ -1,105 +1,92 @@ -#include <tommath_private.h> +#include "tommath_private.h" #ifdef BN_MP_GCD_C -/* LibTomMath, multiple-precision integer library -- Tom St Denis - * - * LibTomMath is a library that provides multiple-precision - * integer arithmetic as well as number theoretic functionality. - * - * The library was designed directly after the MPI library by - * Michael Fromberger but has been written from scratch with - * additional optimizations in place. - * - * The library is free for all purposes without any express - * guarantee it works. - * - * Tom St Denis, tstdenis82@gmail.com, http://libtom.org - */ +/* LibTomMath, multiple-precision integer library -- Tom St Denis */ +/* SPDX-License-Identifier: Unlicense */ /* Greatest Common Divisor using the binary method */ -int mp_gcd (mp_int * a, mp_int * b, mp_int * c) +mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c) { - mp_int u, v; - int k, u_lsb, v_lsb, res; + mp_int u, v; + int k, u_lsb, v_lsb; + mp_err err; - /* either zero than gcd is the largest */ - if (mp_iszero (a) == MP_YES) { - return mp_abs (b, c); - } - if (mp_iszero (b) == MP_YES) { - return mp_abs (a, c); - } + /* either zero than gcd is the largest */ + if (MP_IS_ZERO(a)) { + return mp_abs(b, c); + } + if (MP_IS_ZERO(b)) { + return mp_abs(a, c); + } - /* get copies of a and b we can modify */ - if ((res = mp_init_copy (&u, a)) != MP_OKAY) { - return res; - } + /* get copies of a and b we can modify */ + if ((err = mp_init_copy(&u, a)) != MP_OKAY) { + return err; + } - if ((res = mp_init_copy (&v, b)) != MP_OKAY) { - goto LBL_U; - } + if ((err = mp_init_copy(&v, b)) != MP_OKAY) { + goto LBL_U; + } - /* must be positive for the remainder of the algorithm */ - u.sign = v.sign = MP_ZPOS; + /* must be positive for the remainder of the algorithm */ + u.sign = v.sign = MP_ZPOS; - /* B1. Find the common power of two for u and v */ - u_lsb = mp_cnt_lsb(&u); - v_lsb = mp_cnt_lsb(&v); - k = MIN(u_lsb, v_lsb); + /* B1. Find the common power of two for u and v */ + u_lsb = mp_cnt_lsb(&u); + v_lsb = mp_cnt_lsb(&v); + k = MP_MIN(u_lsb, v_lsb); - if (k > 0) { - /* divide the power of two out */ - if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { - goto LBL_V; - } + if (k > 0) { + /* divide the power of two out */ + if ((err = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { + goto LBL_V; + } - if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { - goto LBL_V; - } - } + if ((err = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { + goto LBL_V; + } + } - /* divide any remaining factors of two out */ - if (u_lsb != k) { - if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { - goto LBL_V; - } - } + /* divide any remaining factors of two out */ + if (u_lsb != k) { + if ((err = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { + goto LBL_V; + } + } - if (v_lsb != k) { - if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { - goto LBL_V; - } - } + if (v_lsb != k) { + if ((err = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { + goto LBL_V; + } + } - while (mp_iszero(&v) == MP_NO) { - /* make sure v is the largest */ - if (mp_cmp_mag(&u, &v) == MP_GT) { - /* swap u and v to make sure v is >= u */ - mp_exch(&u, &v); - } - - /* subtract smallest from largest */ - if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { - goto LBL_V; - } - - /* Divide out all factors of two */ - if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { - goto LBL_V; - } - } + while (!MP_IS_ZERO(&v)) { + /* make sure v is the largest */ + if (mp_cmp_mag(&u, &v) == MP_GT) { + /* swap u and v to make sure v is >= u */ + mp_exch(&u, &v); + } - /* multiply by 2**k which we divided out at the beginning */ - if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { - goto LBL_V; - } - c->sign = MP_ZPOS; - res = MP_OKAY; -LBL_V:mp_clear (&u); -LBL_U:mp_clear (&v); - return res; + /* subtract smallest from largest */ + if ((err = s_mp_sub(&v, &u, &v)) != MP_OKAY) { + goto LBL_V; + } + + /* Divide out all factors of two */ + if ((err = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { + goto LBL_V; + } + } + + /* multiply by 2**k which we divided out at the beginning */ + if ((err = mp_mul_2d(&u, k, c)) != MP_OKAY) { + goto LBL_V; + } + c->sign = MP_ZPOS; + err = MP_OKAY; +LBL_V: + mp_clear(&u); +LBL_U: + mp_clear(&v); + return err; } #endif - -/* ref: $Format:%D$ */ -/* git commit: $Format:%H$ */ -/* commit time: $Format:%ai$ */ |