diff options
author | Matt Johnston <matt@ucc.asn.au> | 2020-06-10 23:01:33 +0800 |
---|---|---|
committer | Matt Johnston <matt@ucc.asn.au> | 2020-06-10 23:01:33 +0800 |
commit | 615885be01188e433cf931e2f7f85394fdc31c5d (patch) | |
tree | fae717f5964faafb98d6469a963f084f7d31622e /libtomcrypt/src/ciphers/aes | |
parent | 6b823d617c8e2999767ad00232652b234a1048bc (diff) |
Fix whitespace changes vs upstream libtomcrypt
Diffstat (limited to 'libtomcrypt/src/ciphers/aes')
-rw-r--r-- | libtomcrypt/src/ciphers/aes/aes.c | 116 |
1 files changed, 58 insertions, 58 deletions
diff --git a/libtomcrypt/src/ciphers/aes/aes.c b/libtomcrypt/src/ciphers/aes/aes.c index 47e8eeb..dec9cb7 100644 --- a/libtomcrypt/src/ciphers/aes/aes.c +++ b/libtomcrypt/src/ciphers/aes/aes.c @@ -10,8 +10,8 @@ /* AES implementation by Tom St Denis * * Derived from the Public Domain source code by - ---- + +--- * rijndael-alg-fst.c * * @version 3.0 (December 2000) @@ -26,13 +26,13 @@ /** @file aes.c Implementation of AES -*/ +*/ #include "tomcrypt.h" #ifdef LTC_RIJNDAEL -#ifndef ENCRYPT_ONLY +#ifndef ENCRYPT_ONLY #define SETUP rijndael_setup #define ECB_ENC rijndael_ecb_encrypt @@ -125,20 +125,20 @@ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *s ulong32 temp, *rk; #ifndef ENCRYPT_ONLY ulong32 *rrk; -#endif +#endif LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); - + if (keylen != 16 && keylen != 24 && keylen != 32) { return CRYPT_INVALID_KEYSIZE; } - + if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) { return CRYPT_INVALID_ROUNDS; } - + skey->rijndael.Nr = 10 + ((keylen/8)-2)*2; - + /* setup the forward key */ i = 0; rk = skey->rijndael.eK; @@ -163,7 +163,7 @@ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *s LOAD32H(rk[5], key + 20); for (;;) { #ifdef _MSC_VER - temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5]; + temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5]; #else temp = rk[5]; #endif @@ -185,7 +185,7 @@ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *s LOAD32H(rk[7], key + 28); for (;;) { #ifdef _MSC_VER - temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7]; + temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7]; #else temp = rk[7]; #endif @@ -209,11 +209,11 @@ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *s return CRYPT_ERROR; } -#ifndef ENCRYPT_ONLY +#ifndef ENCRYPT_ONLY /* setup the inverse key now */ rk = skey->rijndael.dK; rrk = skey->rijndael.eK + (28 + keylen) - 4; - + /* apply the inverse MixColumn transform to all round keys but the first and the last: */ /* copy first */ *rk++ = *rrk++; @@ -221,11 +221,11 @@ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *s *rk++ = *rrk++; *rk = *rrk; rk -= 3; rrk -= 3; - + for (i = 1; i < skey->rijndael.Nr; i++) { rrk -= 4; rk += 4; - #ifdef LTC_SMALL_CODE + #ifdef LTC_SMALL_CODE temp = rrk[0]; rk[0] = setup_mix2(temp); temp = rrk[1]; @@ -259,8 +259,8 @@ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *s Tks1[byte(temp, 2)] ^ Tks2[byte(temp, 1)] ^ Tks3[byte(temp, 0)]; - #endif - + #endif + } /* copy last */ @@ -272,7 +272,7 @@ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *s *rk = *rrk; #endif /* ENCRYPT_ONLY */ - return CRYPT_OK; + return CRYPT_OK; } /** @@ -283,21 +283,21 @@ int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *s @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK -static int _rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) +static int _rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #else int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #endif { ulong32 s0, s1, s2, s3, t0, t1, t2, t3, *rk; int Nr, r; - + LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); - + Nr = skey->rijndael.Nr; rk = skey->rijndael.eK; - + /* * map byte array block to cipher state * and add initial round key: @@ -335,7 +335,7 @@ int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) Te2(byte(s1, 1)) ^ Te3(byte(s2, 0)) ^ rk[3]; - if (r == Nr-2) { + if (r == Nr-2) { break; } s0 = t0; s1 = t1; s2 = t2; s3 = t3; @@ -436,7 +436,7 @@ int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) (Te4_3[byte(t3, 3)]) ^ (Te4_2[byte(t0, 2)]) ^ (Te4_1[byte(t1, 1)]) ^ - (Te4_0[byte(t2, 0)]) ^ + (Te4_0[byte(t2, 0)]) ^ rk[3]; STORE32H(s3, ct+12); @@ -444,7 +444,7 @@ int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) } #ifdef LTC_CLEAN_STACK -int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) +int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) { int err = _rijndael_ecb_encrypt(pt, ct, skey); burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2); @@ -452,17 +452,17 @@ int ECB_ENC(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) } #endif -#ifndef ENCRYPT_ONLY +#ifndef ENCRYPT_ONLY /** Decrypts a block of text with AES @param ct The input ciphertext (16 bytes) @param pt The output plaintext (16 bytes) - @param skey The key as scheduled + @param skey The key as scheduled @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK -static int _rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) +static int _rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #else int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #endif @@ -473,7 +473,7 @@ int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LTC_ARGCHK(skey != NULL); - + Nr = skey->rijndael.Nr; rk = skey->rijndael.dK; @@ -514,13 +514,13 @@ int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) Td3(byte(s0, 0)) ^ rk[3]; if (r == Nr-2) { - break; + break; } s0 = t0; s1 = t1; s2 = t2; s3 = t3; } rk += 4; -#else +#else /* * Nr - 1 full rounds: @@ -624,7 +624,7 @@ int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #ifdef LTC_CLEAN_STACK -int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) +int ECB_DEC(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) { int err = _rijndael_ecb_decrypt(ct, pt, skey); burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2); @@ -640,51 +640,51 @@ int ECB_TEST(void) { #ifndef LTC_TEST return CRYPT_NOP; - #else + #else int err; static const struct { int keylen; unsigned char key[32], pt[16], ct[16]; } tests[] = { { 16, - { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, - 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, + { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }, { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, - { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, + { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a } - }, { + }, { 24, - { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 }, { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, - { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0, + { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0, 0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 } }, { 32, - { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, - 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }, { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }, - { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf, + { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf, 0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 } } }; - - symmetric_key key; - unsigned char tmp[2][16]; - int i, y; - - for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { + + symmetric_key key; + unsigned char tmp[2][16]; + int i, y; + + for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { zeromem(&key, sizeof(key)); - if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { + if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { return err; } - + rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key); rijndael_ecb_decrypt(tmp[0], tmp[1], &key); if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES Encrypt", i) || @@ -692,20 +692,20 @@ int ECB_TEST(void) return CRYPT_FAIL_TESTVECTOR; } - /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ - for (y = 0; y < 16; y++) tmp[0][y] = 0; - for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key); - for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key); - for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; - } - return CRYPT_OK; + /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ + for (y = 0; y < 16; y++) tmp[0][y] = 0; + for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key); + for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key); + for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; + } + return CRYPT_OK; #endif } #endif /* ENCRYPT_ONLY */ -/** Terminate the context +/** Terminate the context @param skey The scheduled key */ void ECB_DONE(symmetric_key *skey) |