summaryrefslogtreecommitdiffhomepage
path: root/networking/tls_fe.c
blob: 10971bbff892d0b391adb4d82d6228944098a6db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
/*
 * Copyright (C) 2018 Denys Vlasenko
 *
 * Licensed under GPLv2, see file LICENSE in this source tree.
 */
#include "tls.h"

typedef uint8_t  byte;
typedef uint16_t word16;
typedef uint32_t word32;
#define XMEMSET  memset

#define F25519_SIZE CURVE25519_KEYSIZE

/* The code below is taken from wolfssl-3.15.3/wolfcrypt/src/fe_low_mem.c
 * Header comment is kept intact:
 */

/* fe_low_mem.c
 *
 * Copyright (C) 2006-2017 wolfSSL Inc.
 *
 * This file is part of wolfSSL.
 *
 * wolfSSL is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * wolfSSL is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
 */


/* Based from Daniel Beer's public domain work. */

#if 0 //UNUSED
static void fprime_copy(byte *x, const byte *a)
{
	memcpy(x, a, F25519_SIZE);
}
#endif

static void lm_copy(byte* x, const byte* a)
{
	memcpy(x, a, F25519_SIZE);
}

#if 0 //UNUSED
static void fprime_select(byte *dst, const byte *zero, const byte *one, byte condition)
{
	const byte mask = -condition;
	int i;

	for (i = 0; i < F25519_SIZE; i++)
		dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
}
#endif

static void fe_select(byte *dst,
		   const byte *zero, const byte *one,
		   byte condition)
{
	const byte mask = -condition;
	int i;

	for (i = 0; i < F25519_SIZE; i++)
		dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
}

#if 0 //UNUSED
static void raw_add(byte *x, const byte *p)
{
	word16 c = 0;
	int i;

	for (i = 0; i < F25519_SIZE; i++) {
		c += ((word16)x[i]) + ((word16)p[i]);
		x[i] = (byte)c;
		c >>= 8;
	}
}
#endif

#if 0 //UNUSED
static void raw_try_sub(byte *x, const byte *p)
{
	byte minusp[F25519_SIZE];
	word16 c = 0;
	int i;

	for (i = 0; i < F25519_SIZE; i++) {
		c = ((word16)x[i]) - ((word16)p[i]) - c;
		minusp[i] = (byte)c;
		c = (c >> 8) & 1;
	}

	fprime_select(x, minusp, x, (byte)c);
}
#endif

#if 0 //UNUSED
static int prime_msb(const byte *p)
{
    int i;
    byte x;
    int shift = 1;
    int z     = F25519_SIZE - 1;

   /*
       Test for any hot bits.
       As soon as one instance is encountered set shift to 0.
    */
	for (i = F25519_SIZE - 1; i >= 0; i--) {
        shift &= ((shift ^ ((-p[i] | p[i]) >> 7)) & 1);
        z -= shift;
    }
	x = p[z];
	z <<= 3;
    shift = 1;
    for (i = 0; i < 8; i++) {
        shift &= ((-(x >> i) | (x >> i)) >> (7 - i) & 1);
        z += shift;
    }

	return z - 1;
}
#endif

#if 0 //UNUSED
static void fprime_add(byte *r, const byte *a, const byte *modulus)
{
	raw_add(r, a);
	raw_try_sub(r, modulus);
}
#endif

#if 0 //UNUSED
static void fprime_sub(byte *r, const byte *a, const byte *modulus)
{
	raw_add(r, modulus);
	raw_try_sub(r, a);
	raw_try_sub(r, modulus);
}
#endif

#if 0 //UNUSED
static void fprime_mul(byte *r, const byte *a, const byte *b,
		const byte *modulus)
{
	word16 c = 0;
	int i,j;

	XMEMSET(r, 0, F25519_SIZE);

	for (i = prime_msb(modulus); i >= 0; i--) {
		const byte bit = (b[i >> 3] >> (i & 7)) & 1;
		byte plusa[F25519_SIZE];

	    for (j = 0; j < F25519_SIZE; j++) {
		    c |= ((word16)r[j]) << 1;
		    r[j] = (byte)c;
		    c >>= 8;
	    }
		raw_try_sub(r, modulus);

		fprime_copy(plusa, r);
		fprime_add(plusa, a, modulus);

		fprime_select(r, r, plusa, bit);
	}
}
#endif

#if 0 //UNUSED
static void fe_load(byte *x, word32 c)
{
	word32 i;

	for (i = 0; i < sizeof(c); i++) {
		x[i] = c;
		c >>= 8;
	}

	for (; i < F25519_SIZE; i++)
		x[i] = 0;
}
#endif

static void fe_normalize(byte *x)
{
	byte minusp[F25519_SIZE];
	unsigned c;
	int i;

	/* Reduce using 2^255 = 19 mod p */
	c = (x[31] >> 7) * 19;
	x[31] &= 127;

	for (i = 0; i < F25519_SIZE; i++) {
		c += x[i];
		x[i] = (byte)c;
		c >>= 8;
	}

	/* The number is now less than 2^255 + 18, and therefore less than
	 * 2p. Try subtracting p, and conditionally load the subtracted
	 * value if underflow did not occur.
	 */
	c = 19;

	for (i = 0; i < F25519_SIZE - 1; i++) {
		c += x[i];
		minusp[i] = (byte)c;
		c >>= 8;
	}

	c += ((unsigned)x[i]) - 128;
	minusp[31] = (byte)c;

	/* Load x-p if no underflow */
	fe_select(x, minusp, x, (c >> 15) & 1);
}

static void lm_add(byte* r, const byte* a, const byte* b)
{
	unsigned c = 0;
	int i;

	/* Add */
	for (i = 0; i < F25519_SIZE; i++) {
		c >>= 8;
		c += ((unsigned)a[i]) + ((unsigned)b[i]);
		r[i] = (byte)c;
	}

	/* Reduce with 2^255 = 19 mod p */
	r[31] &= 127;
	c = (c >> 7) * 19;

	for (i = 0; i < F25519_SIZE; i++) {
		c += r[i];
		r[i] = (byte)c;
		c >>= 8;
	}
}

static void lm_sub(byte* r, const byte* a, const byte* b)
{
	word32 c = 0;
	int i;

	/* Calculate a + 2p - b, to avoid underflow */
	c = 218;
	for (i = 0; i + 1 < F25519_SIZE; i++) {
		c += 65280 + ((word32)a[i]) - ((word32)b[i]);
		r[i] = c;
		c >>= 8;
	}

	c += ((word32)a[31]) - ((word32)b[31]);
	r[31] = c & 127;
	c = (c >> 7) * 19;

	for (i = 0; i < F25519_SIZE; i++) {
		c += r[i];
		r[i] = c;
		c >>= 8;
	}
}

#if 0 //UNUSED
static void lm_neg(byte* r, const byte* a)
{
	word32 c = 0;
	int i;

	/* Calculate 2p - a, to avoid underflow */
	c = 218;
	for (i = 0; i + 1 < F25519_SIZE; i++) {
		c += 65280 - ((word32)a[i]);
		r[i] = c;
		c >>= 8;
	}

	c -= ((word32)a[31]);
	r[31] = c & 127;
	c = (c >> 7) * 19;

	for (i = 0; i < F25519_SIZE; i++) {
		c += r[i];
		r[i] = c;
		c >>= 8;
	}
}
#endif

static void fe_mul__distinct(byte *r, const byte *a, const byte *b)
{
	word32 c = 0;
	int i;

	for (i = 0; i < F25519_SIZE; i++) {
		int j;

		c >>= 8;
		for (j = 0; j <= i; j++)
			c += ((word32)a[j]) * ((word32)b[i - j]);

		for (; j < F25519_SIZE; j++)
			c += ((word32)a[j]) *
			     ((word32)b[i + F25519_SIZE - j]) * 38;

		r[i] = c;
	}

	r[31] &= 127;
	c = (c >> 7) * 19;

	for (i = 0; i < F25519_SIZE; i++) {
		c += r[i];
		r[i] = c;
		c >>= 8;
	}
}

#if 0 //UNUSED
static void lm_mul(byte *r, const byte* a, const byte *b)
{
	byte tmp[F25519_SIZE];

	fe_mul__distinct(tmp, a, b);
	lm_copy(r, tmp);
}
#endif

static void fe_mul_c(byte *r, const byte *a, word32 b)
{
	word32 c = 0;
	int i;

	for (i = 0; i < F25519_SIZE; i++) {
		c >>= 8;
		c += b * ((word32)a[i]);
		r[i] = c;
	}

	r[31] &= 127;
	c >>= 7;
	c *= 19;

	for (i = 0; i < F25519_SIZE; i++) {
		c += r[i];
		r[i] = c;
		c >>= 8;
	}
}

static void fe_inv__distinct(byte *r, const byte *x)
{
	byte s[F25519_SIZE];
	int i;

	/* This is a prime field, so by Fermat's little theorem:
	 *
	 *     x^(p-1) = 1 mod p
	 *
	 * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative
	 * inverse.
	 *
	 * This is a 255-bit binary number with the digits:
	 *
	 *     11111111... 01011
	 *
	 * We compute the result by the usual binary chain, but
	 * alternate between keeping the accumulator in r and s, so as
	 * to avoid copying temporaries.
	 */

	/* 1 1 */
	fe_mul__distinct(s, x, x);
	fe_mul__distinct(r, s, x);

	/* 1 x 248 */
	for (i = 0; i < 248; i++) {
		fe_mul__distinct(s, r, r);
		fe_mul__distinct(r, s, x);
	}

	/* 0 */
	fe_mul__distinct(s, r, r);

	/* 1 */
	fe_mul__distinct(r, s, s);
	fe_mul__distinct(s, r, x);

	/* 0 */
	fe_mul__distinct(r, s, s);

	/* 1 */
	fe_mul__distinct(s, r, r);
	fe_mul__distinct(r, s, x);

	/* 1 */
	fe_mul__distinct(s, r, r);
	fe_mul__distinct(r, s, x);
}

#if 0 //UNUSED
static void lm_invert(byte *r, const byte *x)
{
	byte tmp[F25519_SIZE];

	fe_inv__distinct(tmp, x);
	lm_copy(r, tmp);
}
#endif

#if 0 //UNUSED
/* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary
 * storage.
 */
static void exp2523(byte *r, const byte *x, byte *s)
{
	int i;

	/* This number is a 252-bit number with the binary expansion:
	 *
	 *     111111... 01
	 */

	/* 1 1 */
	fe_mul__distinct(r, x, x);
	fe_mul__distinct(s, r, x);

	/* 1 x 248 */
	for (i = 0; i < 248; i++) {
		fe_mul__distinct(r, s, s);
		fe_mul__distinct(s, r, x);
	}

	/* 0 */
	fe_mul__distinct(r, s, s);

	/* 1 */
	fe_mul__distinct(s, r, r);
	fe_mul__distinct(r, s, x);
}
#endif

#if 0 //UNUSED
static void fe_sqrt(byte *r, const byte *a)
{
	byte v[F25519_SIZE];
	byte i[F25519_SIZE];
	byte x[F25519_SIZE];
	byte y[F25519_SIZE];

	/* v = (2a)^((p-5)/8) [x = 2a] */
	fe_mul_c(x, a, 2);
	exp2523(v, x, y);

	/* i = 2av^2 - 1 */
	fe_mul__distinct(y, v, v);
	fe_mul__distinct(i, x, y);
	fe_load(y, 1);
	lm_sub(i, i, y);

	/* r = avi */
	fe_mul__distinct(x, v, a);
	fe_mul__distinct(r, x, i);
}
#endif

/* Differential addition */
static void xc_diffadd(byte *x5, byte *z5,
		       const byte *x1, const byte *z1,
		       const byte *x2, const byte *z2,
		       const byte *x3, const byte *z3)
{
	/* Explicit formulas database: dbl-1987-m3
	 *
	 * source 1987 Montgomery "Speeding the Pollard and elliptic curve
	 *   methods of factorization", page 261, fifth display, plus
	 *   common-subexpression elimination
	 * compute A = X2+Z2
	 * compute B = X2-Z2
	 * compute C = X3+Z3
	 * compute D = X3-Z3
	 * compute DA = D A
	 * compute CB = C B
	 * compute X5 = Z1(DA+CB)^2
	 * compute Z5 = X1(DA-CB)^2
	 */
	byte da[F25519_SIZE];
	byte cb[F25519_SIZE];
	byte a[F25519_SIZE];
	byte b[F25519_SIZE];

	lm_add(a, x2, z2);
	lm_sub(b, x3, z3); /* D */
	fe_mul__distinct(da, a, b);

	lm_sub(b, x2, z2);
	lm_add(a, x3, z3); /* C */
	fe_mul__distinct(cb, a, b);

	lm_add(a, da, cb);
	fe_mul__distinct(b, a, a);
	fe_mul__distinct(x5, z1, b);

	lm_sub(a, da, cb);
	fe_mul__distinct(b, a, a);
	fe_mul__distinct(z5, x1, b);
}

/* Double an X-coordinate */
static void xc_double(byte *x3, byte *z3,
		      const byte *x1, const byte *z1)
{
	/* Explicit formulas database: dbl-1987-m
	 *
	 * source 1987 Montgomery "Speeding the Pollard and elliptic
	 *   curve methods of factorization", page 261, fourth display
	 * compute X3 = (X1^2-Z1^2)^2
	 * compute Z3 = 4 X1 Z1 (X1^2 + a X1 Z1 + Z1^2)
	 */
	byte x1sq[F25519_SIZE];
	byte z1sq[F25519_SIZE];
	byte x1z1[F25519_SIZE];
	byte a[F25519_SIZE];

	fe_mul__distinct(x1sq, x1, x1);
	fe_mul__distinct(z1sq, z1, z1);
	fe_mul__distinct(x1z1, x1, z1);

	lm_sub(a, x1sq, z1sq);
	fe_mul__distinct(x3, a, a);

	fe_mul_c(a, x1z1, 486662);
	lm_add(a, x1sq, a);
	lm_add(a, z1sq, a);
	fe_mul__distinct(x1sq, x1z1, a);
	fe_mul_c(z3, x1sq, 4);
}

void FAST_FUNC curve25519(byte *result, const byte *e, const byte *q)
{
	int i;

	struct {
		/* from wolfssl-3.15.3/wolfssl/wolfcrypt/fe_operations.h */
		/*static const*/ byte f25519_one[F25519_SIZE]; // = {1};

		/* Current point: P_m */
		byte xm[F25519_SIZE];
		byte zm[F25519_SIZE]; // = {1};
		/* Predecessor: P_(m-1) */
		byte xm1[F25519_SIZE]; // = {1};
		byte zm1[F25519_SIZE]; // = {0};
	} z;
#define f25519_one z.f25519_one
#define xm         z.xm
#define zm         z.zm
#define xm1        z.xm1
#define zm1        z.zm1
	memset(&z, 0, sizeof(z));
	f25519_one[0] = 1;
	zm[0] = 1;
	xm1[0] = 1;

	/* Note: bit 254 is assumed to be 1 */
	lm_copy(xm, q);

	for (i = 253; i >= 0; i--) {
		const int bit = (e[i >> 3] >> (i & 7)) & 1;
		byte xms[F25519_SIZE];
		byte zms[F25519_SIZE];

		/* From P_m and P_(m-1), compute P_(2m) and P_(2m-1) */
		xc_diffadd(xm1, zm1, q, f25519_one, xm, zm, xm1, zm1);
		xc_double(xm, zm, xm, zm);

		/* Compute P_(2m+1) */
		xc_diffadd(xms, zms, xm1, zm1, xm, zm, q, f25519_one);

		/* Select:
		 *   bit = 1 --> (P_(2m+1), P_(2m))
		 *   bit = 0 --> (P_(2m), P_(2m-1))
		 */
		fe_select(xm1, xm1, xm, bit);
		fe_select(zm1, zm1, zm, bit);
		fe_select(xm, xm, xms, bit);
		fe_select(zm, zm, zms, bit);
	}

	/* Freeze out of projective coordinates */
	fe_inv__distinct(zm1, zm);
	fe_mul__distinct(result, zm1, xm);
	fe_normalize(result);
}