summaryrefslogtreecommitdiff
path: root/filter/trie.c
blob: dccf9130ea60e11cdcd02944c56cd627473da0f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*
 *	Filters: Trie for prefix sets
 *
 *	Copyright 2009 Ondrej Zajicek <santiago@crfreenet.org>
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

/**
 * DOC: Trie for prefix sets
 *
 * We use a (compressed) trie to represent prefix sets. Every node
 * in the trie represents one prefix (&addr/&plen) and &plen also
 * indicates the index of the bit in the address that is used to
 * branch at the node. If we need to represent just a set of
 * prefixes, it would be simple, but we have to represent a
 * set of prefix patterns. Each prefix pattern consists of
 * &ppaddr/&pplen and two integers: &low and &high, and a prefix
 * &paddr/&plen matches that pattern if the first MIN(&plen, &pplen)
 * bits of &paddr and &ppaddr are the same and &low <= &plen <= &high.
 *
 * We use a bitmask (&accept) to represent accepted prefix lengths
 * at a node. As there are 33 prefix lengths (0..32 for IPv4), but
 * there is just one prefix of zero length in the whole trie so we
 * have &zero flag in &f_trie (indicating whether the trie accepts
 * prefix 0.0.0.0/0) as a special case, and &accept bitmask
 * represents accepted prefix lengths from 1 to 32.
 *
 * There are two cases in prefix matching - a match when the length
 * of the prefix is smaller that the length of the prefix pattern,
 * (&plen < &pplen) and otherwise. The second case is simple - we
 * just walk through the trie and look at every visited node
 * whether that prefix accepts our prefix length (&plen). The
 * first case is tricky - we don't want to examine every descendant
 * of a final node, so (when we create the trie) we have to propagate
 * that information from nodes to their ascendants.
 *
 * Suppose that we have two masks (M1 and M2) for a node. Mask M1
 * represents accepted prefix lengths by just the node and mask M2
 * represents accepted prefix lengths by the node or any of its
 * descendants. Therefore M2 is a bitwise or of M1 and children's
 * M2 and this is a maintained invariant during trie building.
 * Basically, when we want to match a prefix, we walk through the trie,
 * check mask M1 for our prefix length and when we came to
 * final node, we check mask M2.
 *
 * There are two differences in the real implementation. First,
 * we use a compressed trie so there is a case that we skip our
 * final node (if it is not in the trie) and we came to node that
 * is either extension of our prefix, or completely out of path
 * In the first case, we also have to check M2.
 *
 * Second, we really need not to maintain two separate bitmasks.
 * Checks for mask M1 are always larger than &applen and we need
 * just the first &pplen bits of mask M2 (if trie compression
 * hadn't been used it would suffice to know just $applen-th bit),
 * so we have to store them together in &accept mask - the first
 * &pplen bits of mask M2 and then mask M1.
 *
 * There are four cases when we walk through a trie:
 *
 * - we are in NULL
 * - we are out of path (prefixes are inconsistent)
 * - we are in the wanted (final) node (node length == &plen)
 * - we are beyond the end of path (node length > &plen)
 * - we are still on path and keep walking (node length < &plen)
 *
 * The walking code in trie_match_prefix() is structured according to
 * these cases.
 */

#include "nest/bird.h"
#include "lib/string.h"
#include "conf/conf.h"
#include "filter/filter.h"
#include "filter/f-util.h"


/*
 * In the trie code, the prefix length is internally treated as for the whole
 * ip_addr, regardless whether it contains an IPv4 or IPv6 address. Therefore,
 * remaining definitions make sense.
 */

#define ipa_mkmask(x) ip6_mkmask(x)
#define ipa_masklen(x) ip6_masklen(&x)
#define ipa_pxlen(x,y) ip6_pxlen(x,y)
#define ipa_getbit(x,n) ip6_getbit(x,n)


/**
 * f_new_trie - allocates and returns a new empty trie
 * @lp: linear pool to allocate items from
 * @node_size: node size to be used (&f_trie_node and user data)
 */
struct f_trie *
f_new_trie(linpool *lp, uint node_size)
{
  struct f_trie * ret;
  ret = lp_allocz(lp, sizeof(struct f_trie) + node_size);
  ret->lp = lp;
  ret->node_size = node_size;
  return ret;
}

static inline struct f_trie_node *
new_node(struct f_trie *t, int plen, ip_addr paddr, ip_addr pmask, ip_addr amask)
{
  struct f_trie_node *n = lp_allocz(t->lp, t->node_size);
  n->plen = plen;
  n->addr = paddr;
  n->mask = pmask;
  n->accept = amask;
  return n;
}

static inline void
attach_node(struct f_trie_node *parent, struct f_trie_node *child)
{
  parent->c[ipa_getbit(child->addr, parent->plen) ? 1 : 0] = child;
}

/**
 * trie_add_prefix
 * @t: trie to add to
 * @net: IP network prefix
 * @l: prefix lower bound
 * @h: prefix upper bound
 *
 * Adds prefix (prefix pattern) @n to trie @t.  @l and @h are lower
 * and upper bounds on accepted prefix lengths, both inclusive.
 * 0 <= l, h <= 32 (128 for IPv6).
 *
 * Returns a pointer to the allocated node. The function can return a pointer to
 * an existing node if @px and @plen are the same. If px/plen == 0/0 (or ::/0),
 * a pointer to the root node is returned.
 */

void *
trie_add_prefix(struct f_trie *t, const net_addr *net, uint l, uint h)
{
  ip_addr px = net_prefix(net);
  uint plen = net_pxlen(net);

  if (net->type == NET_IP4)
  {
    const uint delta = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
    plen += delta;
    l += delta;
    h += delta;
  }

  if (l == 0)
    t->zero = 1;
  else
    l--;

  if (h < plen)
    plen = h;

  ip_addr amask = ipa_xor(ipa_mkmask(l), ipa_mkmask(h));
  ip_addr pmask = ipa_mkmask(plen);
  ip_addr paddr = ipa_and(px, pmask);
  struct f_trie_node *o = NULL;
  struct f_trie_node *n = t->root;

  while (n)
    {
      ip_addr cmask = ipa_and(n->mask, pmask);

      if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
	{
	  /* We are out of path - we have to add branching node 'b'
	     between node 'o' and node 'n', and attach new node 'a'
	     as the other child of 'b'. */
	  int blen = ipa_pxlen(paddr, n->addr);
	  ip_addr bmask = ipa_mkmask(blen);
	  ip_addr baddr = ipa_and(px, bmask);

	  /* Merge accept masks from children to get accept mask for node 'b' */
	  ip_addr baccm = ipa_and(ipa_or(amask, n->accept), bmask);

	  struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
	  struct f_trie_node *b = new_node(t, blen, baddr, bmask, baccm);
	  attach_node(o, b);
	  attach_node(b, n);
	  attach_node(b, a);
	  return a;
	}

      if (plen < n->plen)
	{
	  /* We add new node 'a' between node 'o' and node 'n' */
	  amask = ipa_or(amask, ipa_and(n->accept, pmask));
	  struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
	  attach_node(o, a);
	  attach_node(a, n);
	  return a;
	}

      if (plen == n->plen)
	{
	  /* We already found added node in trie. Just update accept mask */
	  n->accept = ipa_or(n->accept, amask);
	  return n;
	}

      /* Update accept mask part M2 and go deeper */
      n->accept = ipa_or(n->accept, ipa_and(amask, n->mask));

      /* n->plen < plen and plen <= 32 (128) */
      o = n;
      n = n->c[ipa_getbit(paddr, n->plen) ? 1 : 0];
    }

  /* We add new tail node 'a' after node 'o' */
  struct f_trie_node *a = new_node(t, plen, paddr, pmask, amask);
  attach_node(o, a);

  return a;
}

static int
trie_match_prefix(const struct f_trie *t, ip_addr px, uint plen)
{
  ip_addr pmask = ipa_mkmask(plen);
  ip_addr paddr = ipa_and(px, pmask);

  if (plen == 0)
    return t->zero;

  int plentest = plen - 1;
  const struct f_trie_node *n = t->root;

  while(n)
    {
      ip_addr cmask = ipa_and(n->mask, pmask);

      /* We are out of path */
      if (ipa_compare(ipa_and(paddr, cmask), ipa_and(n->addr, cmask)))
	return 0;

      /* Check accept mask */
      if (ipa_getbit(n->accept, plentest))
	return 1;

      /* We finished trie walk and still no match */
      if (plen <= n->plen)
	return 0;

      /* Choose children */
      n =  n->c[(ipa_getbit(paddr, n->plen)) ? 1 : 0];
    }

  return 0;
}

/**
 * trie_match_net
 * @t: trie
 * @n: net address
 *
 * Tries to find a matching net in the trie such that
 * prefix @n matches that prefix pattern. Returns 1 if there
 * is such prefix pattern in the trie.
 */
int
trie_match_net(const struct f_trie *t, const net_addr *n)
{
  uint add = 0;

  switch (n->type) {
    case NET_IP4:
    case NET_VPN4:
    case NET_ROA4:
      add = IP6_MAX_PREFIX_LENGTH - IP4_MAX_PREFIX_LENGTH;
  }

  return trie_match_prefix(t, net_prefix(n), net_pxlen(n) + add);
}

static int
trie_node_same(const struct f_trie_node *t1, const struct f_trie_node *t2)
{
  if ((t1 == NULL) && (t2 == NULL))
    return 1;

  if ((t1 == NULL) || (t2 == NULL))
    return 0;

  if ((t1->plen != t2->plen) ||
      (! ipa_equal(t1->addr, t2->addr)) ||
      (! ipa_equal(t1->accept, t2->accept)))
    return 0;

  return trie_node_same(t1->c[0], t2->c[0]) && trie_node_same(t1->c[1], t2->c[1]);
}

/**
 * trie_same
 * @t1: first trie to be compared
 * @t2: second one
 *
 * Compares two tries and returns 1 if they are same
 */
int
trie_same(const struct f_trie *t1, const struct f_trie *t2)
{
  return (t1->zero == t2->zero) && trie_node_same(t1->root, t2->root);
}

static void
trie_node_format(const struct f_trie_node *t, buffer *buf)
{
  if (t == NULL)
    return;

  if (ipa_nonzero(t->accept))
    buffer_print(buf, "%I/%d{%I}, ", t->addr, t->plen, t->accept);

  trie_node_format(t->c[0], buf);
  trie_node_format(t->c[1], buf);
}

/**
 * trie_format
 * @t: trie to be formatted
 * @buf: destination buffer
 *
 * Prints the trie to the supplied buffer.
 */
void
trie_format(const struct f_trie *t, buffer *buf)
{
  buffer_puts(buf, "[");

  if (t->zero)
    buffer_print(buf, "%I/%d, ", IPA_NONE, 0);
  trie_node_format(t->root, buf);

  if (buf->pos == buf->end)
    return;

  /* Undo last separator */
  if (buf->pos[-1] != '[')
    buf->pos -= 2;

  buffer_puts(buf, "]");
}