summaryrefslogtreecommitdiff
path: root/filter/tree.c
blob: d27db18b7d90a02824050e61c2254c1c5eee37c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
 *	Filters: utility functions
 *
 *	Copyright 1998 Pavel Machek <pavel@ucw.cz>
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

#include "lib/alloca.h"
#include "nest/bird.h"
#include "conf/conf.h"
#include "filter/filter.h"

/**
 * find_tree
 * @t: tree to search in
 * @val: value to find
 *
 * Search for given value in the tree. I relies on fact that sorted tree is populated
 * by &f_val structures (that can be compared by val_compare()). In each node of tree, 
 * either single value (then t->from==t->to) or range is present.
 *
 * Both set matching and |switch() { }| construction is implemented using this function,
 * thus both are as fast as they can be.
 */
struct f_tree *
find_tree(struct f_tree *t, struct f_val val)
{
  if (!t)
    return NULL;
  if ((val_compare(t->from, val) != 1) &&
      (val_compare(t->to, val) != -1))
    return t;
  if (val_compare(t->from, val) == -1)
    return find_tree(t->right, val);
  else
    return find_tree(t->left, val);
}

static struct f_tree *
build_tree_rec(struct f_tree **buf, int l, int h)
{
  struct f_tree *n;
  int pos;

  if (l >= h)
    return NULL;

  pos = (l+h)/2;
  n = buf[pos];
  n->left = build_tree_rec(buf, l, pos);
  n->right = build_tree_rec(buf, pos+1, h);
  return n;
}

static int 
tree_compare(const void *p1, const void *p2)
{
  return val_compare((* (struct f_tree **) p1)->from, (* (struct f_tree **) p2)->from);
}

/**
 * build_tree
 * @from: degenerated tree (linked by @tree->left) to be transformed into form suitable for find_tree()
 *
 * Transforms denerated tree into balanced tree.
 */
struct f_tree *
build_tree(struct f_tree *from)
{
  struct f_tree *tmp, *root;
  struct f_tree **buf;
  int len, i;

  if (from == NULL)
    return NULL;

  len = 0;
  for (tmp = from; tmp != NULL; tmp = tmp->left)
    len++;

  if (len <= 1024)
    buf = alloca(len * sizeof(struct f_tree *));
  else
    buf = malloc(len * sizeof(struct f_tree *));

  /* Convert a degenerated tree into an sorted array */
  i = 0;
  for (tmp = from; tmp != NULL; tmp = tmp->left)
    buf[i++] = tmp;

  qsort(buf, len, sizeof(struct f_tree *), tree_compare);

  root = build_tree_rec(buf, 0, len);

  if (len > 1024)
    free(buf);

  return root;
}

struct f_tree *
f_new_tree(void)
{
  struct f_tree * ret;
  ret = cfg_alloc(sizeof(struct f_tree));
  ret->left = ret->right = NULL;
  ret->from.type = ret->to.type = T_VOID;
  ret->from.val.i = ret->to.val.i = 0;
  ret->data = NULL;
  return ret;
}

/**
 * same_tree
 * @t1: first tree to be compared
 * @t2: second one
 *
 * Compares two trees and returns 1 if they are same
 */
int
same_tree(struct f_tree *t1, struct f_tree *t2)
{
  if ((!!t1) != (!!t2))
    return 0;
  if (!t1)
    return 1;
  if (val_compare(t1->from, t2->from))
    return 0;
  if (val_compare(t1->to, t2->to))
    return 0;
  if (!same_tree(t1->left, t2->left))
    return 0;
  if (!same_tree(t1->right, t2->right))
    return 0;
  if (!i_same(t1->data, t2->data))
    return 0;
  return 1;
}