summaryrefslogtreecommitdiff
path: root/filter/decl.m4
blob: 5b35b672ad52dc22d4be973b4bf51c1f37ed39b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
m4_divert(-1)m4_dnl
#
#	BIRD -- Construction of per-instruction structures
#
#	(c) 2018 Maria Matejka <mq@jmq.cz>
#
#	Can be freely distributed and used under the terms of the GNU GPL.
#
#	THIS IS A M4 MACRO FILE GENERATING 3 FILES ALTOGETHER.
#	KEEP YOUR HANDS OFF UNLESS YOU KNOW WHAT YOU'RE DOING.
#	EDITING AND DEBUGGING THIS FILE MAY DAMAGE YOUR BRAIN SERIOUSLY.
#
#	But you're welcome to read and edit and debug if you aren't scared.
#
#	Uncomment the following line to get exhaustive debug output.
#	m4_debugmode(aceflqtx)
#
#	How it works:
#	1) Instruction to code conversion (uses diversions 100..199)
#	2) Code wrapping (uses diversions 1..99)
#	3) Final preparation (uses diversions 200..299)
#	4) Shipout
#
#	See below for detailed description.
#
#
#	1) Instruction to code conversion
#	The code provided in f-inst.c between consecutive INST() calls
#	is interleaved for many different places. It is here processed
#	and split into separate instances where split-by-instruction
#	happens. These parts are stored in temporary diversions listed:
#
#	101	content of per-inst struct
#	102	constructor arguments
#	110	constructor attributes
#	103	constructor body
#	104	dump line item content
#		(there may be nothing in dump-line content and
#		 it must be handled specially in phase 2)
#	105	linearize body
#	106	comparator body
#	107	struct f_line_item content
#	108	interpreter body
#	109	iterator body
#
#	Here are macros to allow you to _divert to the right directions.
m4_define(FID_STRUCT_IN, `m4_divert(101)')
m4_define(FID_NEW_ARGS, `m4_divert(102)')
m4_define(FID_NEW_ATTRIBUTES, `m4_divert(110)')
m4_define(FID_NEW_BODY, `m4_divert(103)')
m4_define(FID_DUMP_BODY, `m4_divert(104)m4_define([[FID_DUMP_BODY_EXISTS]])')
m4_define(FID_LINEARIZE_BODY, `m4_divert(105)')
m4_define(FID_SAME_BODY, `m4_divert(106)')
m4_define(FID_LINE_IN, `m4_divert(107)')
m4_define(FID_INTERPRET_BODY, `m4_divert(108)')
m4_define(FID_ITERATE_BODY, `m4_divert(109)')

#	Sometimes you want slightly different code versions in different
#	outputs.
#	Use FID_HIC(code for inst-gen.h, code for inst-gen.c, code for inst-interpret.c)
#	and put it into [[ ]] quotes if it shall contain commas.
m4_define(FID_HIC, `m4_ifelse(TARGET, [[H]], [[$1]], TARGET, [[I]], [[$2]], TARGET, [[C]], [[$3]])')

#	In interpreter code, this is quite common.
m4_define(FID_INTERPRET_EXEC, `FID_HIC(,[[FID_INTERPRET_BODY()]],[[m4_divert(-1)]])')
m4_define(FID_INTERPRET_NEW,  `FID_HIC(,[[m4_divert(-1)]],[[FID_INTERPRET_BODY()]])')

#	If the instruction is never converted to constant, the interpret
#	code is not produced at all for constructor
m4_define(NEVER_CONSTANT, `m4_define([[INST_NEVER_CONSTANT]])')
m4_define(FID_IFCONST, `m4_ifdef([[INST_NEVER_CONSTANT]],[[$2]],[[$1]])')

#	If the instruction has some attributes (here called members),
#	these are typically carried with the instruction from constructor
#	to interpreter. This yields a line of code everywhere on the path.
#	FID_MEMBER is a macro to help with this task.
m4_define(FID_MEMBER, `m4_dnl
FID_LINE_IN()m4_dnl
      $1 $2;
FID_STRUCT_IN()m4_dnl
      $1 $2;
FID_NEW_ARGS()m4_dnl
  , $1 $2
FID_NEW_BODY()m4_dnl
whati->$2 = $2;
FID_LINEARIZE_BODY()m4_dnl
item->$2 = whati->$2;
m4_ifelse($3,,,[[
FID_SAME_BODY()m4_dnl
if ($3) return 0;
]])
m4_ifelse($4,,,[[
FID_DUMP_BODY()m4_dnl
debug("%s" $4 "\n", INDENT, $5);
]])
FID_INTERPRET_EXEC()m4_dnl
const $1 $2 = whati->$2
FID_INTERPRET_BODY')

#	Instruction arguments are needed only until linearization is done.
#	This puts the arguments into the filter line to be executed before
#	the instruction itself.
#
#	To achieve this, ARG_ANY must be called before anything writes into
#	the instruction line as it moves the instruction pointer forward.
m4_define(ARG_ANY, `
FID_STRUCT_IN()m4_dnl
      struct f_inst * f$1;
FID_NEW_ARGS()m4_dnl
  , struct f_inst * f$1
FID_NEW_ATTRIBUTES()m4_dnl
NONNULL(m4_eval($1+1))
FID_NEW_BODY()m4_dnl
whati->f$1 = f$1;
const struct f_inst *child$1 = f$1;
do {
  what->size += child$1->size;
FID_IFCONST([[
  if (child$1->fi_code != FI_CONSTANT)
    constargs = 0;
]])
} while (child$1 = child$1->next);
FID_LINEARIZE_BODY
pos = linearize(dest, whati->f$1, pos);
FID_INTERPRET_BODY()')

#	Some instructions accept variable number of arguments.
m4_define(VARARG, `
FID_NEW_ARGS()m4_dnl
  , struct f_inst * fvar
FID_STRUCT_IN()m4_dnl
      struct f_inst * fvar;
      uint varcount;
FID_LINE_IN()m4_dnl
      uint varcount;
FID_NEW_BODY()m4_dnl
whati->varcount = 0;
whati->fvar = fvar;
for (const struct f_inst *child = fvar; child; child = child->next, whati->varcount++) {
  what->size += child->size;
FID_IFCONST([[
  if (child->fi_code != FI_CONSTANT)
    constargs = 0;
]])
}
FID_IFCONST([[
  const struct f_inst **items = NULL;
  if (constargs && whati->varcount) {
    items = alloca(whati->varcount * sizeof(struct f_inst *));
    const struct f_inst *child = fvar;
    for (uint i=0; child; i++)
      child = (items[i] = child)->next;
  }
]])
FID_LINEARIZE_BODY()m4_dnl
  pos = linearize(dest, whati->fvar, pos);
  item->varcount = whati->varcount;
FID_DUMP_BODY()m4_dnl
  debug("%snumber of varargs %u\n", INDENT, item->varcount);
FID_SAME_BODY()m4_dnl
  if (f1->varcount != f2->varcount) return 0;
FID_INTERPRET_BODY()
FID_HIC(,[[
  if (fstk->vcnt < whati->varcount) runtime("Stack underflow");
  fstk->vcnt -= whati->varcount;
]],)
')

#	Some arguments need to check their type. After that, ARG_ANY is called.
m4_define(ARG, `ARG_ANY($1) ARG_TYPE($1,$2)')
m4_define(ARG_TYPE, `ARG_TYPE_STATIC($1,$2) ARG_TYPE_DYNAMIC($1,$2)')

m4_define(ARG_TYPE_STATIC, `
FID_NEW_BODY()m4_dnl
if (f$1->type && (f$1->type != ($2)) && !f_const_promotion(f$1, ($2)))
  cf_error("Argument $1 of %s must be of type %s, got type %s",
	   f_instruction_name(what->fi_code), f_type_name($2), f_type_name(f$1->type));
FID_INTERPRET_BODY()')

m4_define(ARG_TYPE_DYNAMIC, `
FID_INTERPRET_EXEC()m4_dnl
if (v$1.type != ($2))
  runtime("Argument $1 of %s must be of type %s, got type %s",
	   f_instruction_name(what->fi_code), f_type_name($2), f_type_name(v$1.type));
FID_INTERPRET_BODY()')

m4_define(ARG_SAME_TYPE, `
FID_NEW_BODY()m4_dnl
if (f$1->type && f$2->type && (f$1->type != f$2->type) &&
   !f_const_promotion(f$2, f$1->type) && !f_const_promotion(f$1, f$2->type))
  cf_error("Arguments $1 and $2 of %s must be of the same type", f_instruction_name(what->fi_code));
FID_INTERPRET_BODY()')

m4_define(ARG_PREFER_SAME_TYPE, `
FID_NEW_BODY()m4_dnl
if (f$1->type && f$2->type && (f$1->type != f$2->type))
   (void) (f_const_promotion(f$2, f$1->type) || f_const_promotion(f$1, f$2->type));
FID_INTERPRET_BODY()')

#	Executing another filter line. This replaces the recursion
#	that was needed in the former implementation.
m4_define(LINEX, `FID_INTERPRET_EXEC()LINEX_($1)FID_INTERPRET_NEW()return $1 FID_INTERPRET_BODY()')
m4_define(LINEX_, `do {
  fstk->estk[fstk->ecnt].pos = 0;
  fstk->estk[fstk->ecnt].line = $1;
  fstk->estk[fstk->ecnt].ventry = fstk->vcnt;
  fstk->estk[fstk->ecnt].vbase = fstk->estk[fstk->ecnt-1].vbase;
  fstk->estk[fstk->ecnt].emask = 0;
  fstk->ecnt++;
} while (0)')

m4_define(LINE, `
FID_LINE_IN()m4_dnl
      const struct f_line * fl$1;
FID_STRUCT_IN()m4_dnl
      struct f_inst * f$1;
FID_NEW_ARGS()m4_dnl
  , struct f_inst * f$1
FID_NEW_BODY()m4_dnl
whati->f$1 = f$1;
FID_DUMP_BODY()m4_dnl
f_dump_line(item->fl$1, indent + 1);
FID_LINEARIZE_BODY()m4_dnl
item->fl$1 = f_linearize(whati->f$1, $2);
FID_SAME_BODY()m4_dnl
if (!f_same(f1->fl$1, f2->fl$1)) return 0;
FID_ITERATE_BODY()m4_dnl
if (whati->fl$1) BUFFER_PUSH(fit->lines) = whati->fl$1;
FID_INTERPRET_EXEC()m4_dnl
do { if (whati->fl$1) {
  LINEX_(whati->fl$1);
} } while(0)
FID_INTERPRET_NEW()m4_dnl
return whati->f$1
FID_INTERPRET_BODY()')

#	Some of the instructions have a result. These constructions
#	state the result and put it to the right place.
m4_define(RESULT, `RESULT_TYPE([[$1]]) RESULT_([[$1]],[[$2]],[[$3]])')
m4_define(RESULT_, `RESULT_VAL([[ (struct f_val) { .type = $1, .val.$2 = $3 } ]])')
m4_define(RESULT_VAL, `FID_HIC(, [[do { res = $1; fstk->vcnt++; } while (0)]],
[[return fi_constant(what, $1)]])')
m4_define(RESULT_VOID, `RESULT_VAL([[ (struct f_val) { .type = T_VOID } ]])')

m4_define(ERROR,
       `m4_errprint(m4___file__:m4___line__: $*
       )m4_m4exit(1)')

#	This macro specifies result type and makes there are no conflicting definitions
m4_define(RESULT_TYPE,
	`m4_ifdef([[INST_RESULT_TYPE]],
		  [[m4_ifelse(INST_RESULT_TYPE,$1,,[[ERROR([[Multiple type definitions in]] INST_NAME)]])]],
		  [[m4_define(INST_RESULT_TYPE,$1) RESULT_TYPE_($1)]])')

m4_define(RESULT_TYPE_CHECK,
	`m4_ifelse(INST_OUTVAL,0,,
		   [[m4_ifdef([[INST_RESULT_TYPE]],,[[ERROR([[Missing type definition in]] INST_NAME)]])]])')

m4_define(RESULT_TYPE_, `
FID_NEW_BODY()m4_dnl
what->type = $1;
FID_INTERPRET_BODY()')

#	Some common filter instruction members
m4_define(SYMBOL, `FID_MEMBER(struct symbol *, sym, [[strcmp(f1->sym->name, f2->sym->name) || (f1->sym->class != f2->sym->class)]], "symbol %s", item->sym->name)')
m4_define(RTC, `FID_MEMBER(struct rtable_config *, rtc, [[strcmp(f1->rtc->name, f2->rtc->name)]], "route table %s", item->rtc->name)')
m4_define(STATIC_ATTR, `FID_MEMBER(struct f_static_attr, sa, f1->sa.sa_code != f2->sa.sa_code,,)')
m4_define(DYNAMIC_ATTR, `FID_MEMBER(struct f_dynamic_attr, da, f1->da.ea_code != f2->da.ea_code,,)')
m4_define(ACCESS_RTE, `FID_HIC(,[[do { if (!fs->rte) runtime("No route to access"); } while (0)]],NEVER_CONSTANT())')

#	2) Code wrapping
#	The code produced in 1xx temporary diversions is a raw code without
#	any auxiliary commands and syntactical structures around. When the
#	instruction is done, INST_FLUSH is called. More precisely, it is called
#	at the beginning of INST() call and at the end of file.
#
#	INST_FLUSH picks all the temporary diversions, wraps their content
#	into appropriate headers and structures and saves them into global
#	diversions listed:
#
#	4	enum fi_code
#	5	enum fi_code to string
#	6	dump line item
#	7	dump line item callers
#	8	linearize
#	9	same (filter comparator)
#	10	iterate
#	1	union in struct f_inst
#	3	constructors + interpreter
#
#	These global diversions contain blocks of code that can be directly
#	put into the final file, yet it still can't be written out now as
#	every instruction writes to all of these diversions.

#	Code wrapping diversion names. Here we want an explicit newline
#	after the C comment.
m4_define(FID_ZONE, `m4_divert($1) /* $2 for INST_NAME() */
')
m4_define(FID_INST, `FID_ZONE(1, Instruction structure for config)')
m4_define(FID_LINE, `FID_ZONE(2, Instruction structure for interpreter)')
m4_define(FID_NEW, `FID_ZONE(3, Constructor)')
m4_define(FID_ENUM, `FID_ZONE(4, Code enum)')
m4_define(FID_ENUM_STR, `FID_ZONE(5, Code enum to string)')
m4_define(FID_DUMP, `FID_ZONE(6, Dump line)')
m4_define(FID_DUMP_CALLER, `FID_ZONE(7, Dump line caller)')
m4_define(FID_LINEARIZE, `FID_ZONE(8, Linearize)')
m4_define(FID_SAME, `FID_ZONE(9, Comparison)')
m4_define(FID_ITERATE, `FID_ZONE(10, Iteration)')

#	This macro does all the code wrapping. See inline comments.
m4_define(INST_FLUSH, `m4_ifdef([[INST_NAME]], [[
RESULT_TYPE_CHECK()m4_dnl		 Check for defined RESULT_TYPE()
FID_ENUM()m4_dnl			 Contents of enum fi_code { ... }
  INST_NAME(),
FID_ENUM_STR()m4_dnl			 Contents of const char * indexed by enum fi_code
  [INST_NAME()] = "INST_NAME()",
FID_INST()m4_dnl			 Anonymous structure inside struct f_inst
    struct {
m4_undivert(101)m4_dnl
    } i_[[]]INST_NAME();
FID_LINE()m4_dnl			 Anonymous structure inside struct f_line_item
    struct {
m4_undivert(107)m4_dnl
    } i_[[]]INST_NAME();
FID_NEW()m4_dnl				 Constructor and interpreter code together
FID_HIC(
[[m4_dnl				 Public declaration of constructor in H file
struct f_inst *
m4_undivert(110)m4_dnl
f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
m4_undivert(102)m4_dnl
);]],
[[m4_dnl				 The one case in The Big Switch inside interpreter
  case INST_NAME():
  #define whati (&(what->i_]]INST_NAME()[[))
  m4_ifelse(m4_eval(INST_INVAL() > 0), 1, [[if (fstk->vcnt < INST_INVAL()) runtime("Stack underflow"); fstk->vcnt -= INST_INVAL(); ]])
  m4_undivert(108)m4_dnl
  #undef whati
  break;
]],
[[m4_dnl				 Constructor itself
struct f_inst *
m4_undivert(110)m4_dnl
f_new_inst_]]INST_NAME()[[(enum f_instruction_code fi_code
m4_undivert(102)m4_dnl
)
  {
    /* Allocate the structure */
    struct f_inst *what = fi_new(fi_code);
    FID_IFCONST([[uint constargs = 1;]])

    /* Initialize all the members */
  #define whati (&(what->i_]]INST_NAME()[[))
  m4_undivert(103)m4_dnl

    /* If not constant, return the instruction itself */
    FID_IFCONST([[if (!constargs)]])
      return what;

    /* Try to pre-calculate the result */
    FID_IFCONST([[m4_undivert(108)]])m4_dnl
  #undef whati
  }
]])

FID_DUMP_CALLER()m4_dnl			 Case in another big switch used in instruction dumping (debug)
case INST_NAME(): f_dump_line_item_]]INST_NAME()[[(item, indent + 1); break;

FID_DUMP()m4_dnl			 The dumper itself
m4_ifdef([[FID_DUMP_BODY_EXISTS]],
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item_, const int indent)]],
[[static inline void f_dump_line_item_]]INST_NAME()[[(const struct f_line_item *item UNUSED, const int indent UNUSED)]])
m4_undefine([[FID_DUMP_BODY_EXISTS]])
{
#define item (&(item_->i_]]INST_NAME()[[))
m4_undivert(104)m4_dnl
#undef item
}

FID_LINEARIZE()m4_dnl			 The linearizer
case INST_NAME(): {
#define whati (&(what->i_]]INST_NAME()[[))
#define item (&(dest->items[pos].i_]]INST_NAME()[[))
  m4_undivert(105)m4_dnl
#undef whati
#undef item
  dest->items[pos].fi_code = what->fi_code;
  dest->items[pos].flags = what->flags;
  dest->items[pos].lineno = what->lineno;
  break;
}

FID_SAME()m4_dnl			 This code compares two f_line"s while reconfiguring
case INST_NAME():
#define f1 (&(f1_->i_]]INST_NAME()[[))
#define f2 (&(f2_->i_]]INST_NAME()[[))
m4_undivert(106)m4_dnl
#undef f1
#undef f2
break;

FID_ITERATE()m4_dnl			The iterator
case INST_NAME():
#define whati (&(what->i_]]INST_NAME()[[))
m4_undivert(109)m4_dnl
#undef whati
break;

m4_divert(-1)FID_FLUSH(101,200)m4_dnl  And finally this flushes all the unused diversions
]])')

m4_define(INST, `m4_dnl				This macro is called on beginning of each instruction.
INST_FLUSH()m4_dnl				First, old data is flushed
m4_define([[INST_NAME]], [[$1]])m4_dnl		Then we store instruction name,
m4_define([[INST_INVAL]], [[$2]])m4_dnl		instruction input value count,
m4_define([[INST_OUTVAL]], [[$3]])m4_dnl	instruction output value count,
m4_undefine([[INST_NEVER_CONSTANT]])m4_dnl	reset NEVER_CONSTANT trigger,
m4_undefine([[INST_RESULT_TYPE]])m4_dnl		and reset RESULT_TYPE value.
FID_INTERPRET_BODY()m4_dnl 			By default, every code is interpreter code.
')

#	3) Final preparation
#
#	Now we prepare all the code around the global diversions.
#	It must be here, not in m4wrap, as we want M4 to mark the code
#	by #line directives correctly, not to claim that every single line
#	is at the beginning of the m4wrap directive.
#
#	This part is split by the final file.
#	H for inst-gen.h
#	I for inst-interpret.c
#	C for inst-gen.c
#
#	So we in cycle:
#	  A. open a diversion
#	  B. send there some code
#	  C. close that diversion
#	  D. flush a global diversion
#	  E. open another diversion and goto B.
#
#	Final diversions
#	200+	completed text before it is flushed to output

#	This is a list of output diversions
m4_define(FID_WR_PUT_LIST)

#	This macro does the steps C to E, see before.
m4_define(FID_WR_PUT_ALSO, `m4_define([[FID_WR_PUT_LIST]],FID_WR_PUT_LIST()[[FID_WR_DPUT(]]FID_WR_DIDX[[)FID_WR_DPUT(]]$1[[)]])m4_define([[FID_WR_DIDX]],m4_eval(FID_WR_DIDX+1))m4_divert(FID_WR_DIDX)')

#	These macros do the splitting between H/I/C
m4_define(FID_WR_DIRECT, `m4_ifelse(TARGET,[[$1]],[[FID_WR_INIT()]],[[FID_WR_STOP()]])')
m4_define(FID_WR_INIT, `m4_define([[FID_WR_DIDX]],200)m4_define([[FID_WR_PUT]],[[FID_WR_PUT_ALSO($]][[@)]])m4_divert(200)')
m4_define(FID_WR_STOP, `m4_define([[FID_WR_PUT]])m4_divert(-1)')

#	Here is the direct code to be put into the output files
#	together with the undiversions, being hidden under FID_WR_PUT()

m4_changequote([[,]])
FID_WR_DIRECT(I)
FID_WR_PUT(3)
FID_WR_DIRECT(C)

#if defined(__GNUC__) && __GNUC__ >= 6
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmisleading-indentation"
#endif

#include "nest/bird.h"
#include "filter/filter.h"
#include "filter/f-inst.h"

/* Instruction codes to string */
static const char * const f_instruction_name_str[] = {
FID_WR_PUT(5)
};

const char *
f_instruction_name_(enum f_instruction_code fi)
{
  if (fi < (sizeof(f_instruction_name_str) / sizeof(f_instruction_name_str[0])))
    return f_instruction_name_str[fi];
  else
    bug("Got unknown instruction code: %d", fi);
}

static inline struct f_inst *
fi_new(enum f_instruction_code fi_code)
{
  struct f_inst *what = tmp_allocz(sizeof(struct f_inst));
  what->lineno = ifs->lino;
  what->size = 1;
  what->fi_code = fi_code;
  return what;
}

static inline struct f_inst *
fi_constant(struct f_inst *what, struct f_val val)
{
  what->fi_code = FI_CONSTANT;
  what->i_FI_CONSTANT.val = val;
  return what;
}

static int
f_const_promotion(struct f_inst *arg, enum f_type want)
{
  if (arg->fi_code != FI_CONSTANT)
    return 0;

  struct f_val *c = &arg->i_FI_CONSTANT.val;

  if ((c->type == T_IP) && ipa_is_ip4(c->val.ip) && (want == T_QUAD)) {
    *c = (struct f_val) {
      .type = T_QUAD,
      .val.i = ipa_to_u32(c->val.ip),
    };
    return 1;
  }

  else if ((c->type == T_SET) && (!c->val.t) && (want == T_PREFIX_SET)) {
    *c = f_const_empty_prefix_set;
    return 1;
  }

  return 0;
}

#define v1 whati->f1->i_FI_CONSTANT.val
#define v2 whati->f2->i_FI_CONSTANT.val
#define v3 whati->f3->i_FI_CONSTANT.val
#define vv(i) items[i]->i_FI_CONSTANT.val
#define runtime(fmt, ...) cf_error("filter preevaluation, line %d: " fmt, ifs->lino, ##__VA_ARGS__)
#define fpool cfg_mem
#define falloc(size) cfg_alloc(size)
/* Instruction constructors */
FID_WR_PUT(3)
#undef v1
#undef v2
#undef v3
#undef vv

/* Line dumpers */
#define INDENT (((const char *) f_dump_line_indent_str) + sizeof(f_dump_line_indent_str) - (indent) - 1)
static const char f_dump_line_indent_str[] = "                                ";

FID_WR_PUT(6)

void f_dump_line(const struct f_line *dest, uint indent)
{
  if (!dest) {
    debug("%sNo filter line (NULL)\n", INDENT);
    return;
  }
  debug("%sFilter line %p (len=%u)\n", INDENT, dest, dest->len);
  for (uint i=0; i<dest->len; i++) {
    const struct f_line_item *item = &dest->items[i];
    debug("%sInstruction %s at line %u\n", INDENT, f_instruction_name_(item->fi_code), item->lineno);
    switch (item->fi_code) {
FID_WR_PUT(7)
      default: bug("Unknown instruction %x in f_dump_line", item->fi_code);
    }
  }
  debug("%sFilter line %p dump done\n", INDENT, dest);
}

/* Linearize */
static uint
linearize(struct f_line *dest, const struct f_inst *what, uint pos)
{
  for ( ; what; what = what->next) {
    switch (what->fi_code) {
FID_WR_PUT(8)
    }
    pos++;
  }
  return pos;
}

struct f_line *
f_linearize_concat(const struct f_inst * const inst[], uint count, uint results)
{
  uint len = 0;
  for (uint i=0; i<count; i++)
    for (const struct f_inst *what = inst[i]; what; what = what->next)
      len += what->size;

  struct f_line *out = cfg_allocz(sizeof(struct f_line) + sizeof(struct f_line_item)*len);

  for (uint i=0; i<count; i++)
    out->len = linearize(out, inst[i], out->len);

  out->results = results;

#ifdef LOCAL_DEBUG
  f_dump_line(out, 0);
#endif
  return out;
}

/* Filter line comparison */
int
f_same(const struct f_line *fl1, const struct f_line *fl2)
{
  if ((!fl1) && (!fl2))
    return 1;
  if ((!fl1) || (!fl2))
    return 0;
  if (fl1->len != fl2->len)
    return 0;
  for (uint i=0; i<fl1->len; i++) {
#define f1_ (&(fl1->items[i]))
#define f2_ (&(fl2->items[i]))
    if (f1_->fi_code != f2_->fi_code)
      return 0;
    if (f1_->flags != f2_->flags)
      return 0;

    switch(f1_->fi_code) {
FID_WR_PUT(9)
    }
  }
#undef f1_
#undef f2_
  return 1;
}


/* Part of FI_SWITCH filter iterator */
static void
f_add_tree_lines(const struct f_tree *t, void *fit_)
{
  struct filter_iterator * fit = fit_;

  if (t->data)
    BUFFER_PUSH(fit->lines) = t->data;
}

/* Filter line iterator */
void
f_add_lines(const struct f_line_item *what, struct filter_iterator *fit)
{
  switch(what->fi_code) {
FID_WR_PUT(10)
  }
}


#if defined(__GNUC__) && __GNUC__ >= 6
#pragma GCC diagnostic pop
#endif

FID_WR_DIRECT(H)
/* Filter instruction codes */
enum f_instruction_code {
FID_WR_PUT(4)m4_dnl
} PACKED;

/* Filter instruction structure for config */
struct f_inst {
  struct f_inst *next;			/* Next instruction */
  enum f_instruction_code fi_code;	/* Instruction code */
  enum f_instruction_flags flags;	/* Flags, instruction-specific */
  enum f_type type;			/* Type of returned value, if known */
  int size;				/* How many instructions are underneath */
  int lineno;				/* Line number */
  union {
FID_WR_PUT(1)m4_dnl
  };
};

/* Filter line item */
struct f_line_item {
  enum f_instruction_code fi_code;	/* What to do */
  enum f_instruction_flags flags;	/* Flags, instruction-specific */
  uint lineno;				/* Where */
  union {
FID_WR_PUT(2)m4_dnl
  };
};

/* Instruction constructors */
FID_WR_PUT(3)
m4_divert(-1)

#	4) Shipout
#
#	Everything is prepared in FID_WR_PUT_LIST now. Let's go!

m4_changequote(`,')

#	Flusher auxiliary macro
m4_define(FID_FLUSH, `m4_ifelse($1,$2,,[[m4_undivert($1)FID_FLUSH(m4_eval($1+1),$2)]])')

#	Defining the macro used in FID_WR_PUT_LIST
m4_define(FID_WR_DPUT, `m4_undivert($1)')

#	After the code is read and parsed, we:
m4_m4wrap(`INST_FLUSH()m4_divert(0)FID_WR_PUT_LIST()m4_divert(-1)FID_FLUSH(1,200)')

m4_changequote([[,]])
#	And now M4 is going to parse f-inst.c, fill the diversions
#	and after the file is done, the content of m4_m4wrap (see before)
#	is executed.