1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
/* Copyright (C) 2015-2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */
#include "routingtable.h"
#include "peer.h"
struct routing_table_node {
struct routing_table_node __rcu *bit[2];
struct rcu_head rcu;
struct wireguard_peer *peer;
u8 cidr, bit_at_a, bit_at_b;
u8 bits[] __aligned(__alignof__(u64));
};
static inline void copy_and_assign_cidr(struct routing_table_node *node, const u8 *src, u8 cidr)
{
memcpy(node->bits, src, (cidr + 7) / 8);
node->bits[(cidr + 7) / 8 - 1] &= 0xff << ((8 - (cidr % 8)) % 8);
node->cidr = cidr;
node->bit_at_a = cidr / 8;
node->bit_at_b = 7 - (cidr % 8);
}
#define choose_node(parent, key) parent->bit[(key[parent->bit_at_a] >> parent->bit_at_b) & 1]
static void node_free_rcu(struct rcu_head *rcu)
{
kfree(container_of(rcu, struct routing_table_node, rcu));
}
#define push(p, lock) ({ \
if (rcu_access_pointer(p)) { \
BUG_ON(len >= 128); \
stack[len++] = lock ? rcu_dereference_protected(p, lockdep_is_held((struct mutex *)lock)) : rcu_dereference_bh(p); \
} \
true; \
})
#define walk_prep \
struct routing_table_node *stack[128], *node; \
unsigned int len;
#define walk(top, lock) for (len = 0, push(top, lock); len > 0 && (node = stack[--len]) && push(node->bit[0], lock) && push(node->bit[1], lock);)
static void free_root_node(struct routing_table_node __rcu *top, struct mutex *lock)
{
walk_prep;
walk (top, lock)
call_rcu_bh(&node->rcu, node_free_rcu);
}
static size_t count_nodes(struct routing_table_node __rcu *top)
{
size_t ret = 0;
walk_prep;
walk (top, NULL) {
if (node->peer)
++ret;
}
return ret;
}
static int walk_ips_by_peer(struct routing_table_node __rcu *top, int family, void *ctx, struct wireguard_peer *peer, int (*func)(void *ctx, union nf_inet_addr ip, u8 cidr, int family), struct mutex *maybe_lock)
{
int ret;
union nf_inet_addr ip = { .all = { 0 } };
walk_prep;
if (unlikely(!peer))
return 0;
walk (top, maybe_lock) {
if (node->peer != peer)
continue;
memcpy(ip.all, node->bits, family == AF_INET6 ? 16 : 4);
ret = func(ctx, ip, node->cidr, family);
if (ret)
return ret;
}
return 0;
}
#undef push
#define ref(p) rcu_access_pointer(p)
#define deref(p) rcu_dereference_protected(*p, lockdep_is_held(lock))
#define push(p) ({ BUG_ON(len >= 128); stack[len++] = p; })
static void walk_remove_by_peer(struct routing_table_node __rcu **top, struct wireguard_peer *peer, struct mutex *lock)
{
struct routing_table_node __rcu **stack[128], **nptr, *node, *prev;
unsigned int len;
if (unlikely(!peer || !ref(*top)))
return;
for (prev = NULL, len = 0, push(top); len > 0; prev = node) {
nptr = stack[len - 1];
node = deref(nptr);
if (!node) {
--len;
continue;
}
if (!prev || ref(prev->bit[0]) == node || ref(prev->bit[1]) == node) {
if (ref(node->bit[0]))
push(&node->bit[0]);
else if (ref(node->bit[1]))
push(&node->bit[1]);
} else if (ref(node->bit[0]) == prev) {
if (ref(node->bit[1]))
push(&node->bit[1]);
} else {
if (node->peer == peer) {
node->peer = NULL;
if (!node->bit[0] || !node->bit[1]) {
rcu_assign_pointer(*nptr, deref(&node->bit[!ref(node->bit[0])]));
call_rcu_bh(&node->rcu, node_free_rcu);
node = deref(nptr);
}
}
--len;
}
}
}
#undef ref
#undef deref
#undef push
static inline unsigned int fls128(u64 a, u64 b)
{
return a ? fls64(a) + 64 : fls64(b);
}
static inline u8 common_bits(const struct routing_table_node *node, const u8 *key, u8 bits)
{
if (bits == 32)
return 32 - fls(be32_to_cpu(*(const __be32 *)node->bits ^ *(const __be32 *)key));
else if (bits == 128)
return 128 - fls128(be64_to_cpu(*(const __be64 *)&node->bits[0] ^ *(const __be64 *)&key[0]), be64_to_cpu(*(const __be64 *)&node->bits[8] ^ *(const __be64 *)&key[8]));
BUG();
return 0;
}
static inline struct routing_table_node *find_node(struct routing_table_node *trie, u8 bits, const u8 *key)
{
struct routing_table_node *node = trie, *found = NULL;
while (node && common_bits(node, key, bits) >= node->cidr) {
if (node->peer)
found = node;
if (node->cidr == bits)
break;
node = rcu_dereference_bh(choose_node(node, key));
}
return found;
}
/* Returns a strong reference to a peer */
static inline struct wireguard_peer *lookup(struct routing_table_node __rcu *root, u8 bits, const void *ip)
{
struct wireguard_peer *peer = NULL;
struct routing_table_node *node;
rcu_read_lock_bh();
node = find_node(rcu_dereference_bh(root), bits, ip);
if (node)
peer = peer_get(node->peer);
rcu_read_unlock_bh();
return peer;
}
static inline bool node_placement(struct routing_table_node __rcu *trie, const u8 *key, u8 cidr, u8 bits, struct routing_table_node **rnode, struct mutex *lock)
{
bool exact = false;
struct routing_table_node *parent = NULL, *node = rcu_dereference_protected(trie, lockdep_is_held(lock));
while (node && node->cidr <= cidr && common_bits(node, key, bits) >= node->cidr) {
parent = node;
if (parent->cidr == cidr) {
exact = true;
break;
}
node = rcu_dereference_protected(choose_node(parent, key), lockdep_is_held(lock));
}
if (rnode)
*rnode = parent;
return exact;
}
static int add(struct routing_table_node __rcu **trie, u8 bits, const u8 *key, u8 cidr, struct wireguard_peer *peer, struct mutex *lock)
{
struct routing_table_node *node, *parent, *down, *newnode;
if (!rcu_access_pointer(*trie)) {
node = kzalloc(sizeof(*node) + (bits + 7) / 8, GFP_KERNEL);
if (!node)
return -ENOMEM;
node->peer = peer;
copy_and_assign_cidr(node, key, cidr);
rcu_assign_pointer(*trie, node);
return 0;
}
if (node_placement(*trie, key, cidr, bits, &node, lock)) {
node->peer = peer;
return 0;
}
newnode = kzalloc(sizeof(*node) + (bits + 7) / 8, GFP_KERNEL);
if (!newnode)
return -ENOMEM;
newnode->peer = peer;
copy_and_assign_cidr(newnode, key, cidr);
if (!node)
down = rcu_dereference_protected(*trie, lockdep_is_held(lock));
else {
down = rcu_dereference_protected(choose_node(node, key), lockdep_is_held(lock));
if (!down) {
rcu_assign_pointer(choose_node(node, key), newnode);
return 0;
}
}
cidr = min(cidr, common_bits(down, key, bits));
parent = node;
if (newnode->cidr == cidr) {
rcu_assign_pointer(choose_node(newnode, down->bits), down);
if (!parent)
rcu_assign_pointer(*trie, newnode);
else
rcu_assign_pointer(choose_node(parent, newnode->bits), newnode);
} else {
node = kzalloc(sizeof(*node) + (bits + 7) / 8, GFP_KERNEL);
if (!node) {
kfree(newnode);
return -ENOMEM;
}
copy_and_assign_cidr(node, newnode->bits, cidr);
rcu_assign_pointer(choose_node(node, down->bits), down);
rcu_assign_pointer(choose_node(node, newnode->bits), newnode);
if (!parent)
rcu_assign_pointer(*trie, node);
else
rcu_assign_pointer(choose_node(parent, node->bits), node);
}
return 0;
}
void routing_table_init(struct routing_table *table)
{
memset(table, 0, sizeof(struct routing_table));
mutex_init(&table->table_update_lock);
}
void routing_table_free(struct routing_table *table)
{
mutex_lock(&table->table_update_lock);
free_root_node(table->root4, &table->table_update_lock);
rcu_assign_pointer(table->root4, NULL);
free_root_node(table->root6, &table->table_update_lock);
rcu_assign_pointer(table->root6, NULL);
mutex_unlock(&table->table_update_lock);
}
int routing_table_insert_v4(struct routing_table *table, const struct in_addr *ip, u8 cidr, struct wireguard_peer *peer)
{
int ret;
if (unlikely(cidr > 32 || !peer))
return -EINVAL;
mutex_lock(&table->table_update_lock);
ret = add(&table->root4, 32, (const u8 *)ip, cidr, peer, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
return ret;
}
int routing_table_insert_v6(struct routing_table *table, const struct in6_addr *ip, u8 cidr, struct wireguard_peer *peer)
{
int ret;
if (unlikely(cidr > 128 || !peer))
return -EINVAL;
mutex_lock(&table->table_update_lock);
ret = add(&table->root6, 128, (const u8 *)ip, cidr, peer, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
return ret;
}
void routing_table_remove_by_peer(struct routing_table *table, struct wireguard_peer *peer)
{
mutex_lock(&table->table_update_lock);
walk_remove_by_peer(&table->root4, peer, &table->table_update_lock);
walk_remove_by_peer(&table->root6, peer, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
}
size_t routing_table_count_nodes(struct routing_table *table)
{
size_t ret;
rcu_read_lock_bh();
ret = count_nodes(table->root4) + count_nodes(table->root6);
rcu_read_unlock_bh();
return ret;
}
int routing_table_walk_ips_by_peer(struct routing_table *table, void *ctx, struct wireguard_peer *peer, int (*func)(void *ctx, union nf_inet_addr ip, u8 cidr, int family))
{
int ret;
rcu_read_lock_bh();
ret = walk_ips_by_peer(table->root4, AF_INET, ctx, peer, func, NULL);
rcu_read_unlock_bh();
if (ret)
return ret;
rcu_read_lock_bh();
ret = walk_ips_by_peer(table->root6, AF_INET6, ctx, peer, func, NULL);
rcu_read_unlock_bh();
return ret;
}
int routing_table_walk_ips_by_peer_sleepable(struct routing_table *table, void *ctx, struct wireguard_peer *peer, int (*func)(void *ctx, union nf_inet_addr ip, u8 cidr, int family))
{
int ret;
mutex_lock(&table->table_update_lock);
ret = walk_ips_by_peer(table->root4, AF_INET, ctx, peer, func, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
if (ret)
return ret;
mutex_lock(&table->table_update_lock);
ret = walk_ips_by_peer(table->root6, AF_INET6, ctx, peer, func, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
return ret;
}
static inline bool has_valid_ip_header(struct sk_buff *skb)
{
if (unlikely(skb->len < sizeof(struct iphdr)))
return false;
else if (unlikely(skb->len < sizeof(struct ipv6hdr) && ip_hdr(skb)->version == 6))
return false;
else if (unlikely(ip_hdr(skb)->version != 4 && ip_hdr(skb)->version != 6))
return false;
return true;
}
/* Returns a strong reference to a peer */
struct wireguard_peer *routing_table_lookup_dst(struct routing_table *table, struct sk_buff *skb)
{
if (unlikely(!has_valid_ip_header(skb)))
return NULL;
if (ip_hdr(skb)->version == 4)
return lookup(table->root4, 32, &ip_hdr(skb)->daddr);
else if (ip_hdr(skb)->version == 6)
return lookup(table->root6, 128, &ipv6_hdr(skb)->daddr);
return NULL;
}
/* Returns a strong reference to a peer */
struct wireguard_peer *routing_table_lookup_src(struct routing_table *table, struct sk_buff *skb)
{
if (unlikely(!has_valid_ip_header(skb)))
return NULL;
if (ip_hdr(skb)->version == 4)
return lookup(table->root4, 32, &ip_hdr(skb)->saddr);
else if (ip_hdr(skb)->version == 6)
return lookup(table->root6, 128, &ipv6_hdr(skb)->saddr);
return NULL;
}
#include "selftest/routingtable.h"
|