1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
/* Copyright 2015-2016 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */
#include "routingtable.h"
#include "peer.h"
struct routing_table_node {
struct routing_table_node __rcu *bit[2];
struct rcu_head rcu;
struct wireguard_peer *peer;
uint8_t cidr;
uint8_t bit_at_a, bit_at_b;
bool incidental;
uint8_t bits[];
};
static inline uint8_t bit_at(const uint8_t *key, uint8_t a, uint8_t b)
{
return (key[a] >> b) & 1;
}
static inline void assign_cidr(struct routing_table_node *node, uint8_t cidr)
{
node->cidr = cidr;
node->bit_at_a = cidr / 8;
node->bit_at_b = 7 - (cidr % 8);
}
/* Non-recursive RCU expansion of:
*
* free_node(node)
* {
* if (!node)
* return;
* free_node(node->bit[0]);
* free_node(node->bit[1]);
* kfree_rcu(node);
* }
*/
#define ref(p) rcu_access_pointer(p)
#define push(p) do { BUG_ON(len >= 128); stack[len++] = rcu_dereference_protected(p, lockdep_is_held(lock)); } while (0)
static void free_node(struct routing_table_node *top, struct mutex *lock)
{
struct routing_table_node *stack[128];
struct routing_table_node *node = NULL;
struct routing_table_node *prev = NULL;
unsigned int len = 0;
if (!top)
return;
stack[len++] = top;
while (len > 0) {
node = stack[len - 1];
if (!prev || ref(prev->bit[0]) == node || ref(prev->bit[1]) == node) {
if (ref(node->bit[0]))
push(node->bit[0]);
else if (ref(node->bit[1]))
push(node->bit[1]);
} else if (ref(node->bit[0]) == prev) {
if (ref(node->bit[1]))
push(node->bit[1]);
} else {
kfree_rcu(node, rcu);
--len;
}
prev = node;
}
}
#undef push
#define push(p) do { BUG_ON(len >= 128); stack[len++] = p; } while (0)
static bool walk_remove_by_peer(struct routing_table_node __rcu **top, struct wireguard_peer *peer, struct mutex *lock)
{
struct routing_table_node __rcu **stack[128];
struct routing_table_node __rcu **nptr;
struct routing_table_node *node = NULL;
struct routing_table_node *prev = NULL;
unsigned int len = 0;
bool ret = false;
stack[len++] = top;
while (len > 0) {
nptr = stack[len - 1];
node = rcu_dereference_protected(*nptr, lockdep_is_held(lock));
if (!node) {
--len;
continue;
}
if (!prev || ref(prev->bit[0]) == node || ref(prev->bit[1]) == node) {
if (ref(node->bit[0]))
push(&node->bit[0]);
else if (ref(node->bit[1]))
push(&node->bit[1]);
} else if (ref(node->bit[0]) == prev) {
if (ref(node->bit[1]))
push(&node->bit[1]);
} else {
if (node->peer == peer) {
ret = true;
node->peer = NULL;
node->incidental = true;
if (!node->bit[0] || !node->bit[1]) {
/* collapse (even if both are null) */
rcu_assign_pointer(*nptr, rcu_dereference_protected(node->bit[!node->bit[0]], lockdep_is_held(lock)));
rcu_assign_pointer(node->bit[0], NULL);
rcu_assign_pointer(node->bit[1], NULL);
free_node(node, lock);
}
}
--len;
}
prev = node;
}
return ret;
}
#undef ref
#undef push
static inline bool match(const struct routing_table_node *node, const uint8_t *key, uint8_t match_len)
{
uint8_t full_blocks_to_match = match_len / 8;
uint8_t bits_leftover = match_len % 8;
uint8_t mask;
const uint8_t *a = node->bits, *b = key;
if (memcmp(a, b, full_blocks_to_match))
return false;
if (!bits_leftover)
return true;
mask = ~(0xff >> bits_leftover);
return (a[full_blocks_to_match] & mask) == (b[full_blocks_to_match] & mask);
}
static inline uint8_t common_bits(const struct routing_table_node *node, const uint8_t *key, uint8_t match_len)
{
uint8_t max = (((match_len > node->cidr) ? match_len : node->cidr) + 7) / 8;
uint8_t bits = 0;
uint8_t i, mask;
const uint8_t *a = node->bits, *b = key;
for (i = 0; i < max; ++i, bits += 8) {
if (a[i] != b[i])
break;
}
if (i == max)
return bits;
for (mask = 128; mask > 0; mask /= 2, ++bits) {
if ((a[i] & mask) != (b[i] & mask))
return bits;
}
BUG();
return bits;
}
static int remove(struct routing_table_node __rcu **trie, const uint8_t *key, uint8_t cidr, struct mutex *lock)
{
struct routing_table_node *parent = NULL, *node;
node = rcu_dereference_protected(*trie, lockdep_is_held(lock));
while (node && node->cidr <= cidr && match(node, key, node->cidr)) {
if (node->cidr == cidr) {
/* exact match */
node->incidental = true;
node->peer = NULL;
if (!node->bit[0] || !node->bit[1]) {
/* collapse (even if both are null) */
if (parent)
rcu_assign_pointer(parent->bit[bit_at(key, parent->bit_at_a, parent->bit_at_b)],
rcu_dereference_protected(node->bit[(!node->bit[0]) ? 1 : 0], lockdep_is_held(lock)));
rcu_assign_pointer(node->bit[0], NULL);
rcu_assign_pointer(node->bit[1], NULL);
free_node(node, lock);
}
return 0;
}
parent = node;
node = rcu_dereference_protected(parent->bit[bit_at(key, parent->bit_at_a, parent->bit_at_b)], lockdep_is_held(lock));
}
return -ENOENT;
}
static inline struct routing_table_node *find_node(struct routing_table_node *trie, uint8_t bits, const uint8_t *key)
{
struct routing_table_node *node = trie, *found = NULL;
while (node && match(node, key, node->cidr)) {
if (!node->incidental)
found = node;
if (node->cidr == bits)
break;
node = rcu_dereference(node->bit[bit_at(key, node->bit_at_a, node->bit_at_b)]);
}
return found;
}
static inline bool node_placement(struct routing_table_node __rcu *trie, const uint8_t *key, uint8_t cidr, struct routing_table_node **rnode, struct mutex *lock)
{
bool exact = false;
struct routing_table_node *parent = NULL, *node = rcu_dereference_protected(trie, lockdep_is_held(lock));
while (node && node->cidr <= cidr && match(node, key, node->cidr)) {
parent = node;
if (parent->cidr == cidr) {
exact = true;
break;
}
node = rcu_dereference_protected(parent->bit[bit_at(key, parent->bit_at_a, parent->bit_at_b)], lockdep_is_held(lock));
}
if (rnode)
*rnode = parent;
return exact;
}
static int add(struct routing_table_node __rcu **trie, uint8_t bits, const uint8_t *key, uint8_t cidr, struct wireguard_peer *peer, struct mutex *lock)
{
struct routing_table_node *node, *parent, *down, *newnode;
int bits_in_common;
if (!rcu_access_pointer(*trie)) {
node = kzalloc(sizeof(*node) + (bits + 7) / 8, GFP_KERNEL);
if (!node)
return -ENOMEM;
node->peer = peer;
memcpy(node->bits, key, (cidr + 7) / 8);
/* Not strictly neccessary for the data structure, but helps keep the data cleaner: */
node->bits[(cidr + 7) / 8 - 1] &= 0xff << ((8 - (cidr % 8)) % 8);
assign_cidr(node, cidr);
rcu_assign_pointer(*trie, node);
return 0;
}
if (node_placement(*trie, key, cidr, &node, lock)) {
/* exact match */
node->incidental = false;
node->peer = peer;
return 0;
}
newnode = kzalloc(sizeof(*node) + (bits + 7) / 8, GFP_KERNEL);
if (!newnode)
return -ENOMEM;
newnode->peer = peer;
memcpy(newnode->bits, key, (cidr + 7) / 8);
/* Not strictly neccessary for the data structure, but helps keep the data cleaner: */
newnode->bits[(cidr + 7) / 8 - 1] &= 0xff << ((8 - (cidr % 8)) % 8);
assign_cidr(newnode, cidr);
if (!node)
down = rcu_dereference_protected(*trie, lockdep_is_held(lock));
else
down = rcu_dereference_protected(node->bit[bit_at(key, node->bit_at_a, node->bit_at_b)], lockdep_is_held(lock));
if (!down) {
rcu_assign_pointer(node->bit[bit_at(key, node->bit_at_a, node->bit_at_b)], newnode);
return 0;
}
/* here we must be inserting between node and down */
bits_in_common = common_bits(down, key, cidr);
parent = node;
if (bits_in_common > cidr)
bits_in_common = cidr;
/* we either need to make a new branch above down and newnode
* or newnode can be the branch. newnode can be the branch if
* its cidr == bits_in_common */
if (newnode->cidr == bits_in_common) {
/* newnode can be the branch */
rcu_assign_pointer(newnode->bit[bit_at(down->bits, newnode->bit_at_a, newnode->bit_at_b)], down);
if (!parent)
rcu_assign_pointer(*trie, newnode);
else
rcu_assign_pointer(parent->bit[bit_at(newnode->bits, parent->bit_at_a, parent->bit_at_b)], newnode);
} else {
/* reparent */
node = kzalloc(sizeof(*node) + (bits + 7) / 8, GFP_KERNEL);
if (!node) {
kfree(newnode);
return -ENOMEM;
}
assign_cidr(node, bits_in_common);
node->incidental = true;
memcpy(node->bits, newnode->bits, (bits + 7) / 8);
rcu_assign_pointer(node->bit[bit_at(down->bits, node->bit_at_a, node->bit_at_b)], down);
rcu_assign_pointer(node->bit[bit_at(newnode->bits, node->bit_at_a, node->bit_at_b)], newnode);
if (!parent)
rcu_assign_pointer(*trie, node);
else
rcu_assign_pointer(parent->bit[bit_at(node->bits, parent->bit_at_a, parent->bit_at_b)], node);
}
return 0;
}
#define push(p) do { \
struct routing_table_node *next = (maybe_lock ? rcu_dereference_protected(p, lockdep_is_held(maybe_lock)) : rcu_dereference(p)); \
if (next) { \
BUG_ON(len >= 128); \
stack[len++] = next; \
} \
} while (0)
static int walk_ips(struct routing_table_node *top, int family, void *ctx, int (*func)(void *ctx, struct wireguard_peer *peer, union nf_inet_addr ip, uint8_t cidr, int family), struct mutex *maybe_lock)
{
int ret;
union nf_inet_addr ip = { .all = { 0 } };
struct routing_table_node *stack[128];
struct routing_table_node *node;
unsigned int len = 0;
struct wireguard_peer *peer;
if (!top)
return 0;
stack[len++] = top;
while (len > 0) {
node = stack[--len];
peer = peer_get(node->peer);
if (peer) {
memcpy(ip.all, node->bits, family == AF_INET6 ? 16 : 4);
ret = func(ctx, peer, ip, node->cidr, family);
peer_put(peer);
if (ret)
return ret;
}
push(node->bit[0]);
push(node->bit[1]);
}
return 0;
}
static int walk_ips_by_peer(struct routing_table_node *top, int family, void *ctx, struct wireguard_peer *peer, int (*func)(void *ctx, union nf_inet_addr ip, uint8_t cidr, int family), struct mutex *maybe_lock)
{
int ret;
union nf_inet_addr ip = { .all = { 0 } };
struct routing_table_node *stack[128];
struct routing_table_node *node;
unsigned int len = 0;
if (!top)
return 0;
stack[len++] = top;
while (len > 0) {
node = stack[--len];
if (node->peer == peer) {
memcpy(ip.all, node->bits, family == AF_INET6 ? 16 : 4);
ret = func(ctx, ip, node->cidr, family);
if (ret)
return ret;
}
push(node->bit[0]);
push(node->bit[1]);
}
return 0;
}
#undef push
void routing_table_init(struct routing_table *table)
{
memset(table, 0, sizeof(struct routing_table));
mutex_init(&table->table_update_lock);
}
void routing_table_free(struct routing_table *table)
{
mutex_lock(&table->table_update_lock);
free_node(rcu_dereference_protected(table->root4, lockdep_is_held(&table->table_update_lock)), &table->table_update_lock);
rcu_assign_pointer(table->root4, NULL);
free_node(rcu_dereference_protected(table->root6, lockdep_is_held(&table->table_update_lock)), &table->table_update_lock);
rcu_assign_pointer(table->root6, NULL);
mutex_unlock(&table->table_update_lock);
}
int routing_table_insert_v4(struct routing_table *table, const struct in_addr *ip, uint8_t cidr, struct wireguard_peer *peer)
{
int ret;
if (cidr > 32)
return -EINVAL;
mutex_lock(&table->table_update_lock);
ret = add(&table->root4, 32, (const uint8_t *)ip, cidr, peer, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
return ret;
}
int routing_table_insert_v6(struct routing_table *table, const struct in6_addr *ip, uint8_t cidr, struct wireguard_peer *peer)
{
int ret;
if (cidr > 128)
return -EINVAL;
mutex_lock(&table->table_update_lock);
ret = add(&table->root6, 128, (const uint8_t *)ip, cidr, peer, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
return ret;
}
/* Returns a strong reference to a peer */
inline struct wireguard_peer *routing_table_lookup_v4(struct routing_table *table, const struct in_addr *ip)
{
struct wireguard_peer *peer = NULL;
struct routing_table_node *node;
rcu_read_lock();
node = find_node(rcu_dereference(table->root4), 32, (const uint8_t *)ip);
if (node)
peer = peer_get(node->peer);
rcu_read_unlock();
return peer;
}
/* Returns a strong reference to a peer */
inline struct wireguard_peer *routing_table_lookup_v6(struct routing_table *table, const struct in6_addr *ip)
{
struct wireguard_peer *peer = NULL;
struct routing_table_node *node;
rcu_read_lock();
node = find_node(rcu_dereference(table->root6), 128, (const uint8_t *)ip);
if (node)
peer = peer_get(node->peer);
rcu_read_unlock();
return peer;
}
int routing_table_remove_v4(struct routing_table *table, const struct in_addr *ip, uint8_t cidr)
{
int ret;
mutex_lock(&table->table_update_lock);
ret = remove(&table->root4, (const uint8_t *)ip, cidr, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
return ret;
}
int routing_table_remove_v6(struct routing_table *table, const struct in6_addr *ip, uint8_t cidr)
{
int ret;
mutex_lock(&table->table_update_lock);
ret = remove(&table->root6, (const uint8_t *)ip, cidr, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
return ret;
}
int routing_table_remove_by_peer(struct routing_table *table, struct wireguard_peer *peer)
{
bool found;
mutex_lock(&table->table_update_lock);
found = walk_remove_by_peer(&table->root4, peer, &table->table_update_lock) | walk_remove_by_peer(&table->root6, peer, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
return found ? 0 : -EINVAL;
}
/* Calls func with a strong reference to each peer, before putting it when the function has completed.
* It's thus up to the caller to call peer_put on it if it's going to be used elsewhere after or stored. */
int routing_table_walk_ips(struct routing_table *table, void *ctx, int (*func)(void *ctx, struct wireguard_peer *peer, union nf_inet_addr ip, uint8_t cidr, int family))
{
int ret;
rcu_read_lock();
ret = walk_ips(rcu_dereference(table->root4), AF_INET, ctx, func, NULL);
rcu_read_unlock();
if (ret)
return ret;
rcu_read_lock();
ret = walk_ips(rcu_dereference(table->root6), AF_INET6, ctx, func, NULL);
rcu_read_unlock();
return ret;
}
int routing_table_walk_ips_by_peer(struct routing_table *table, void *ctx, struct wireguard_peer *peer, int (*func)(void *ctx, union nf_inet_addr ip, uint8_t cidr, int family))
{
int ret;
rcu_read_lock();
ret = walk_ips_by_peer(rcu_dereference(table->root4), AF_INET, ctx, peer, func, NULL);
rcu_read_unlock();
if (ret)
return ret;
rcu_read_lock();
ret = walk_ips_by_peer(rcu_dereference(table->root6), AF_INET6, ctx, peer, func, NULL);
rcu_read_unlock();
return ret;
}
int routing_table_walk_ips_by_peer_sleepable(struct routing_table *table, void *ctx, struct wireguard_peer *peer, int (*func)(void *ctx, union nf_inet_addr ip, uint8_t cidr, int family))
{
int ret;
mutex_lock(&table->table_update_lock);
ret = walk_ips_by_peer(rcu_dereference_protected(table->root4, lockdep_is_held(&table->table_update_lock)), AF_INET, ctx, peer, func, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
if (ret)
return ret;
mutex_lock(&table->table_update_lock);
ret = walk_ips_by_peer(rcu_dereference_protected(table->root6, lockdep_is_held(&table->table_update_lock)), AF_INET6, ctx, peer, func, &table->table_update_lock);
mutex_unlock(&table->table_update_lock);
return ret;
}
static inline bool has_valid_ip_header(struct sk_buff *skb)
{
if (unlikely(skb->len < sizeof(struct iphdr)))
return false;
else if (unlikely(skb->len < sizeof(struct ipv6hdr) && ip_hdr(skb)->version == 6))
return false;
else if (unlikely(ip_hdr(skb)->version != 4 && ip_hdr(skb)->version != 6))
return false;
return true;
}
/* Returns a strong reference to a peer */
struct wireguard_peer *routing_table_lookup_dst(struct routing_table *table, struct sk_buff *skb)
{
if (unlikely(!has_valid_ip_header(skb)))
return NULL;
if (ip_hdr(skb)->version == 4)
return routing_table_lookup_v4(table, (struct in_addr *)&ip_hdr(skb)->daddr);
else if (ip_hdr(skb)->version == 6)
return routing_table_lookup_v6(table, &ipv6_hdr(skb)->daddr);
return NULL;
}
/* Returns a strong reference to a peer */
struct wireguard_peer *routing_table_lookup_src(struct routing_table *table, struct sk_buff *skb)
{
if (unlikely(!has_valid_ip_header(skb)))
return NULL;
if (ip_hdr(skb)->version == 4)
return routing_table_lookup_v4(table, (struct in_addr *)&ip_hdr(skb)->saddr);
else if (ip_hdr(skb)->version == 6)
return routing_table_lookup_v6(table, &ipv6_hdr(skb)->saddr);
return NULL;
}
#include "selftest/routing-table.h"
|