summaryrefslogtreecommitdiffhomepage
path: root/src/peerlookup.c
blob: f2783aa7a88f110d36790b5dd6bfb8e41a83e065 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 */

#include "peerlookup.h"
#include "peer.h"
#include "noise.h"

static struct hlist_head *pubkey_bucket(struct pubkey_hashtable *table,
					const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
{
	/* siphash gives us a secure 64bit number based on a random key. Since
	 * the bits are uniformly distributed, we can then mask off to get the
	 * bits we need.
	 */
	const u64 hash = siphash(pubkey, NOISE_PUBLIC_KEY_LEN, &table->key);

	return &table->hashtable[hash & (HASH_SIZE(table->hashtable) - 1)];
}

struct pubkey_hashtable *wg_pubkey_hashtable_alloc(void)
{
	struct pubkey_hashtable *table = kvmalloc(sizeof(*table), GFP_KERNEL);

	if (!table)
		return NULL;

	get_random_bytes(&table->key, sizeof(table->key));
	hash_init(table->hashtable);
	mutex_init(&table->lock);
	return table;
}

void wg_pubkey_hashtable_add(struct pubkey_hashtable *table,
			     struct wg_peer *peer)
{
	mutex_lock(&table->lock);
	hlist_add_head_rcu(&peer->pubkey_hash,
			   pubkey_bucket(table, peer->handshake.remote_static));
	mutex_unlock(&table->lock);
}

void wg_pubkey_hashtable_remove(struct pubkey_hashtable *table,
				struct wg_peer *peer)
{
	mutex_lock(&table->lock);
	hlist_del_init_rcu(&peer->pubkey_hash);
	mutex_unlock(&table->lock);
}

/* Returns a strong reference to a peer */
struct wg_peer *
wg_pubkey_hashtable_lookup(struct pubkey_hashtable *table,
			   const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
{
	struct wg_peer *iter_peer, *peer = NULL;

	rcu_read_lock_bh();
	hlist_for_each_entry_rcu_bh(iter_peer, pubkey_bucket(table, pubkey),
				    pubkey_hash) {
		if (!memcmp(pubkey, iter_peer->handshake.remote_static,
			    NOISE_PUBLIC_KEY_LEN)) {
			peer = iter_peer;
			break;
		}
	}
	peer = wg_peer_get_maybe_zero(peer);
	rcu_read_unlock_bh();
	return peer;
}

static struct hlist_head *index_bucket(struct index_hashtable *table,
				       const __le32 index)
{
	/* Since the indices are random and thus all bits are uniformly
	 * distributed, we can find its bucket simply by masking.
	 */
	return &table->hashtable[(__force u32)index &
				 (HASH_SIZE(table->hashtable) - 1)];
}

struct index_hashtable *wg_index_hashtable_alloc(void)
{
	struct index_hashtable *table = kvmalloc(sizeof(*table), GFP_KERNEL);

	if (!table)
		return NULL;

	hash_init(table->hashtable);
	spin_lock_init(&table->lock);
	return table;
}

/* At the moment, we limit ourselves to 2^20 total peers, which generally might
 * amount to 2^20*3 items in this hashtable. The algorithm below works by
 * picking a random number and testing it. We can see that these limits mean we
 * usually succeed pretty quickly:
 *
 * >>> def calculation(tries, size):
 * ...     return (size / 2**32)**(tries - 1) *  (1 - (size / 2**32))
 * ...
 * >>> calculation(1, 2**20 * 3)
 * 0.999267578125
 * >>> calculation(2, 2**20 * 3)
 * 0.0007318854331970215
 * >>> calculation(3, 2**20 * 3)
 * 5.360489012673497e-07
 * >>> calculation(4, 2**20 * 3)
 * 3.9261394135792216e-10
 *
 * At the moment, we don't do any masking, so this algorithm isn't exactly
 * constant time in either the random guessing or in the hash list lookup. We
 * could require a minimum of 3 tries, which would successfully mask the
 * guessing. this would not, however, help with the growing hash lengths, which
 * is another thing to consider moving forward.
 */

__le32 wg_index_hashtable_insert(struct index_hashtable *table,
				 struct index_hashtable_entry *entry)
{
	struct index_hashtable_entry *existing_entry;

	spin_lock_bh(&table->lock);
	hlist_del_init_rcu(&entry->index_hash);
	spin_unlock_bh(&table->lock);

	rcu_read_lock_bh();

search_unused_slot:
	/* First we try to find an unused slot, randomly, while unlocked. */
	entry->index = (__force __le32)get_random_u32();
	hlist_for_each_entry_rcu_bh(existing_entry,
				    index_bucket(table, entry->index),
				    index_hash) {
		if (existing_entry->index == entry->index)
			/* If it's already in use, we continue searching. */
			goto search_unused_slot;
	}

	/* Once we've found an unused slot, we lock it, and then double-check
	 * that nobody else stole it from us.
	 */
	spin_lock_bh(&table->lock);
	hlist_for_each_entry_rcu_bh(existing_entry,
				    index_bucket(table, entry->index),
				    index_hash) {
		if (existing_entry->index == entry->index) {
			spin_unlock_bh(&table->lock);
			/* If it was stolen, we start over. */
			goto search_unused_slot;
		}
	}
	/* Otherwise, we know we have it exclusively (since we're locked),
	 * so we insert.
	 */
	hlist_add_head_rcu(&entry->index_hash,
			   index_bucket(table, entry->index));
	spin_unlock_bh(&table->lock);

	rcu_read_unlock_bh();

	return entry->index;
}

bool wg_index_hashtable_replace(struct index_hashtable *table,
				struct index_hashtable_entry *old,
				struct index_hashtable_entry *new)
{
	bool ret;

	spin_lock_bh(&table->lock);
	ret = !hlist_unhashed(&old->index_hash);
	if (unlikely(!ret))
		goto out;

	new->index = old->index;
	hlist_replace_rcu(&old->index_hash, &new->index_hash);

	/* Calling init here NULLs out index_hash, and in fact after this
	 * function returns, it's theoretically possible for this to get
	 * reinserted elsewhere. That means the RCU lookup below might either
	 * terminate early or jump between buckets, in which case the packet
	 * simply gets dropped, which isn't terrible.
	 */
	INIT_HLIST_NODE(&old->index_hash);
out:
	spin_unlock_bh(&table->lock);
	return ret;
}

void wg_index_hashtable_remove(struct index_hashtable *table,
			       struct index_hashtable_entry *entry)
{
	spin_lock_bh(&table->lock);
	hlist_del_init_rcu(&entry->index_hash);
	spin_unlock_bh(&table->lock);
}

/* Returns a strong reference to a entry->peer */
struct index_hashtable_entry *
wg_index_hashtable_lookup(struct index_hashtable *table,
			  const enum index_hashtable_type type_mask,
			  const __le32 index, struct wg_peer **peer)
{
	struct index_hashtable_entry *iter_entry, *entry = NULL;

	rcu_read_lock_bh();
	hlist_for_each_entry_rcu_bh(iter_entry, index_bucket(table, index),
				    index_hash) {
		if (iter_entry->index == index) {
			if (likely(iter_entry->type & type_mask))
				entry = iter_entry;
			break;
		}
	}
	if (likely(entry)) {
		entry->peer = wg_peer_get_maybe_zero(entry->peer);
		if (likely(entry->peer))
			*peer = entry->peer;
		else
			entry = NULL;
	}
	rcu_read_unlock_bh();
	return entry;
}