1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2015-2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*/
#include "hashtables.h"
#include "peer.h"
#include "noise.h"
static inline struct hlist_head *pubkey_bucket(struct pubkey_hashtable *table, const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
{
/* siphash gives us a secure 64bit number based on a random key. Since the bits are
* uniformly distributed, we can then mask off to get the bits we need.
*/
return &table->hashtable[siphash(pubkey, NOISE_PUBLIC_KEY_LEN, &table->key) & (HASH_SIZE(table->hashtable) - 1)];
}
void pubkey_hashtable_init(struct pubkey_hashtable *table)
{
get_random_bytes(&table->key, sizeof(table->key));
hash_init(table->hashtable);
mutex_init(&table->lock);
}
void pubkey_hashtable_add(struct pubkey_hashtable *table, struct wireguard_peer *peer)
{
mutex_lock(&table->lock);
hlist_add_head_rcu(&peer->pubkey_hash, pubkey_bucket(table, peer->handshake.remote_static));
mutex_unlock(&table->lock);
}
void pubkey_hashtable_remove(struct pubkey_hashtable *table, struct wireguard_peer *peer)
{
mutex_lock(&table->lock);
hlist_del_init_rcu(&peer->pubkey_hash);
mutex_unlock(&table->lock);
}
/* Returns a strong reference to a peer */
struct wireguard_peer *pubkey_hashtable_lookup(struct pubkey_hashtable *table, const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
{
struct wireguard_peer *iter_peer, *peer = NULL;
rcu_read_lock_bh();
hlist_for_each_entry_rcu_bh(iter_peer, pubkey_bucket(table, pubkey), pubkey_hash) {
if (!memcmp(pubkey, iter_peer->handshake.remote_static, NOISE_PUBLIC_KEY_LEN)) {
peer = iter_peer;
break;
}
}
peer = peer_get(peer);
rcu_read_unlock_bh();
return peer;
}
static inline struct hlist_head *index_bucket(struct index_hashtable *table, const __le32 index)
{
/* Since the indices are random and thus all bits are uniformly distributed,
* we can find its bucket simply by masking.
*/
return &table->hashtable[(__force u32)index & (HASH_SIZE(table->hashtable) - 1)];
}
void index_hashtable_init(struct index_hashtable *table)
{
hash_init(table->hashtable);
spin_lock_init(&table->lock);
}
/* At the moment, we limit ourselves to 2^20 total peers, which generally might amount to 2^20*3
* items in this hashtable. The algorithm below works by picking a random number and testing it.
* We can see that these limits mean we usually succeed pretty quickly:
*
* >>> def calculation(tries, size):
* ... return (size / 2**32)**(tries - 1) * (1 - (size / 2**32))
* ...
* >>> calculation(1, 2**20 * 3)
* 0.999267578125
* >>> calculation(2, 2**20 * 3)
* 0.0007318854331970215
* >>> calculation(3, 2**20 * 3)
* 5.360489012673497e-07
* >>> calculation(4, 2**20 * 3)
* 3.9261394135792216e-10
*
* At the moment, we don't do any masking, so this algorithm isn't exactly constant time in
* either the random guessing or in the hash list lookup. We could require a minimum of 3
* tries, which would successfully mask the guessing. TODO: this would not, however, help
* with the growing hash lengths.
*/
__le32 index_hashtable_insert(struct index_hashtable *table, struct index_hashtable_entry *entry)
{
struct index_hashtable_entry *existing_entry;
spin_lock_bh(&table->lock);
hlist_del_init_rcu(&entry->index_hash);
spin_unlock_bh(&table->lock);
rcu_read_lock_bh();
search_unused_slot:
/* First we try to find an unused slot, randomly, while unlocked. */
entry->index = (__force __le32)get_random_u32();
hlist_for_each_entry_rcu_bh(existing_entry, index_bucket(table, entry->index), index_hash) {
if (existing_entry->index == entry->index)
goto search_unused_slot; /* If it's already in use, we continue searching. */
}
/* Once we've found an unused slot, we lock it, and then double-check
* that nobody else stole it from us.
*/
spin_lock_bh(&table->lock);
hlist_for_each_entry_rcu_bh(existing_entry, index_bucket(table, entry->index), index_hash) {
if (existing_entry->index == entry->index) {
spin_unlock_bh(&table->lock);
goto search_unused_slot; /* If it was stolen, we start over. */
}
}
/* Otherwise, we know we have it exclusively (since we're locked), so we insert. */
hlist_add_head_rcu(&entry->index_hash, index_bucket(table, entry->index));
spin_unlock_bh(&table->lock);
rcu_read_unlock_bh();
return entry->index;
}
bool index_hashtable_replace(struct index_hashtable *table, struct index_hashtable_entry *old, struct index_hashtable_entry *new)
{
if (unlikely(hlist_unhashed(&old->index_hash)))
return false;
spin_lock_bh(&table->lock);
new->index = old->index;
hlist_replace_rcu(&old->index_hash, &new->index_hash);
INIT_HLIST_NODE(&old->index_hash);
spin_unlock_bh(&table->lock);
return true;
}
void index_hashtable_remove(struct index_hashtable *table, struct index_hashtable_entry *entry)
{
spin_lock_bh(&table->lock);
hlist_del_init_rcu(&entry->index_hash);
spin_unlock_bh(&table->lock);
}
/* Returns a strong reference to a entry->peer */
struct index_hashtable_entry *index_hashtable_lookup(struct index_hashtable *table, const enum index_hashtable_type type_mask, const __le32 index)
{
struct index_hashtable_entry *iter_entry, *entry = NULL;
rcu_read_lock_bh();
hlist_for_each_entry_rcu_bh(iter_entry, index_bucket(table, index), index_hash) {
if (iter_entry->index == index) {
if (likely(iter_entry->type & type_mask))
entry = iter_entry;
break;
}
}
if (likely(entry)) {
entry->peer = peer_get(entry->peer);
if (unlikely(!entry->peer))
entry = NULL;
}
rcu_read_unlock_bh();
return entry;
}
|