summaryrefslogtreecommitdiffhomepage
path: root/src/data.c
blob: 75b96a19e6cb2262565850178d62cb01b71aa46d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/* Copyright (C) 2015-2016 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */

#include "noise.h"
#include "device.h"
#include "peer.h"
#include "messages.h"
#include "packets.h"
#include "hashtables.h"

#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <linux/bitmap.h>
#include <linux/scatterlist.h>
#include <net/ip_tunnels.h>
#include <net/xfrm.h>
#include <crypto/algapi.h>

struct encryption_skb_cb {
	uint8_t ds;
	uint8_t num_frags;
	unsigned int plaintext_len, trailer_len;
	struct sk_buff *trailer;
	uint64_t nonce;
};

struct encryption_ctx {
	struct padata_priv padata;
	struct sk_buff_head queue;
	void (*callback)(struct sk_buff_head *, struct wireguard_peer *);
	struct wireguard_peer *peer;
	struct noise_keypair *keypair;
};

struct decryption_ctx {
	struct padata_priv padata;
	struct sk_buff *skb;
	void (*callback)(struct sk_buff *skb, struct wireguard_peer *, struct endpoint *, bool used_new_key, int err);
	struct noise_keypair *keypair;
	struct endpoint endpoint;
	uint64_t nonce;
	uint8_t num_frags;
	int ret;
};

#ifdef CONFIG_WIREGUARD_PARALLEL
static struct kmem_cache *encryption_ctx_cache;
static struct kmem_cache *decryption_ctx_cache;

int packet_init_data_caches(void)
{
	BUILD_BUG_ON(sizeof(struct encryption_skb_cb) > sizeof(((struct sk_buff *)0)->cb));
	encryption_ctx_cache = kmem_cache_create("wireguard_encryption_ctx", sizeof(struct encryption_ctx), 0, 0, NULL);
	if (!encryption_ctx_cache)
		return -ENOMEM;
	decryption_ctx_cache = kmem_cache_create("wireguard_decryption_ctx", sizeof(struct decryption_ctx), 0, 0, NULL);
	if (!decryption_ctx_cache) {
		kmem_cache_destroy(encryption_ctx_cache);
		return -ENOMEM;
	}
	return 0;
}

void packet_deinit_data_caches(void)
{
	kmem_cache_destroy(encryption_ctx_cache);
	kmem_cache_destroy(decryption_ctx_cache);
}
#endif

/* This is RFC6479, a replay detection bitmap algorithm that avoids bitshifts */
static inline bool counter_validate(union noise_counter *counter, u64 their_counter)
{
	bool ret = false;
	unsigned long index, index_current, top, i;
	spin_lock_bh(&counter->receive.lock);

	if (unlikely(counter->receive.counter >= REJECT_AFTER_MESSAGES + 1 || their_counter >= REJECT_AFTER_MESSAGES))
		goto out;

	++their_counter;

	if (unlikely((COUNTER_WINDOW_SIZE + their_counter) < counter->receive.counter))
		goto out;

	index = their_counter >> ilog2(COUNTER_REDUNDANT_BITS);

	if (likely(their_counter > counter->receive.counter)) {
		index_current = counter->receive.counter >> ilog2(COUNTER_REDUNDANT_BITS);
		top = min_t(unsigned long, index - index_current, COUNTER_BITS_TOTAL / BITS_PER_LONG);
		for (i = 1; i <= top; ++i)
			counter->receive.backtrack[(i + index_current) & ((COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1)] = 0;
		counter->receive.counter = their_counter;
	}

	index &= (COUNTER_BITS_TOTAL / BITS_PER_LONG) - 1;
	ret = !test_and_set_bit(their_counter & (COUNTER_REDUNDANT_BITS - 1), &counter->receive.backtrack[index]);

out:
	spin_unlock_bh(&counter->receive.lock);
	return ret;
}
#include "selftest/counter.h"

static inline unsigned int skb_padding(struct sk_buff *skb)
{
	/* We do this modulo business with the MTU, just in case the networking layer
	 * gives us a packet that's bigger than the MTU. Now that we support GSO, this
	 * shouldn't be a real problem, and this can likely be removed. But, caution! */
	unsigned int last_unit = skb->len % skb->dev->mtu;
	unsigned int padded_size = (last_unit + MESSAGE_PADDING_MULTIPLE - 1) & ~(MESSAGE_PADDING_MULTIPLE - 1);
	if (padded_size > skb->dev->mtu)
		padded_size = skb->dev->mtu;
	return padded_size - last_unit;
}

static inline void skb_reset(struct sk_buff *skb)
{
	skb_scrub_packet(skb, false);
	memset(&skb->headers_start, 0, offsetof(struct sk_buff, headers_end) - offsetof(struct sk_buff, headers_start));
	skb->queue_mapping = 0;
	skb->nohdr = 0;
	skb->peeked = 0;
	skb->mac_len = 0;
	skb->dev = NULL;
	skb->hdr_len = skb_headroom(skb);
	skb_reset_mac_header(skb);
	skb_reset_network_header(skb);
	skb_probe_transport_header(skb, 0);
}

static inline void skb_encrypt(struct sk_buff *skb, struct noise_keypair *keypair, bool have_simd)
{
	struct encryption_skb_cb *cb = (struct encryption_skb_cb *)skb->cb;
	struct scatterlist sg[cb->num_frags]; /* This should be bound to at most 128 by the caller. */
	struct message_data *header;

	/* We have to remember to add the checksum to the innerpacket, in case the receiver forwards it. */
	if (likely(!skb_checksum_setup(skb, true)))
		skb_checksum_help(skb);

	/* Only after checksumming can we safely add on the padding at the end and the header. */
	header = (struct message_data *)skb_push(skb, sizeof(struct message_data));
	header->header.type = MESSAGE_DATA;
	header->key_idx = keypair->remote_index;
	header->counter = cpu_to_le64(cb->nonce);
	pskb_put(skb, cb->trailer, cb->trailer_len);

	/* Now we can encrypt the scattergather segments */
	sg_init_table(sg, cb->num_frags);
	skb_to_sgvec(skb, sg, sizeof(struct message_data), noise_encrypted_len(cb->plaintext_len));
	chacha20poly1305_encrypt_sg(sg, sg, cb->plaintext_len, NULL, 0, cb->nonce, keypair->sending.key, have_simd);
}

static inline bool skb_decrypt(struct sk_buff *skb, uint8_t num_frags, uint64_t nonce, struct noise_symmetric_key *key)
{
	struct scatterlist sg[num_frags]; /* This should be bound to at most 128 by the caller. */

	if (unlikely(!key))
		return false;

	if (unlikely(!key->is_valid || time_is_before_eq_jiffies64(key->birthdate + REJECT_AFTER_TIME) || key->counter.receive.counter >= REJECT_AFTER_MESSAGES)) {
		key->is_valid = false;
		return false;
	}

	sg_init_table(sg, num_frags);
	skb_to_sgvec(skb, sg, 0, skb->len);

	if (!chacha20poly1305_decrypt_sg(sg, sg, skb->len, NULL, 0, nonce, key->key))
		return false;

	return pskb_trim(skb, skb->len - noise_encrypted_len(0)) == 0;
}

static inline bool get_encryption_nonce(uint64_t *nonce, struct noise_symmetric_key *key)
{
	if (unlikely(!key))
		return false;

	if (unlikely(!key->is_valid || time_is_before_eq_jiffies64(key->birthdate + REJECT_AFTER_TIME))) {
		key->is_valid = false;
		return false;
	}

	*nonce = atomic64_inc_return(&key->counter.counter) - 1;
	if (*nonce >= REJECT_AFTER_MESSAGES) {
		key->is_valid = false;
		return false;
	}

	return true;
}

static inline void queue_encrypt_reset(struct sk_buff_head *queue, struct noise_keypair *keypair)
{
	struct sk_buff *skb;
	bool have_simd = chacha20poly1305_init_simd();
	skb_queue_walk(queue, skb) {
		skb_encrypt(skb, keypair, have_simd);
		skb_reset(skb);
	}
	chacha20poly1305_deinit_simd(have_simd);
	noise_keypair_put(keypair);
}

#ifdef CONFIG_WIREGUARD_PARALLEL
static void do_encryption(struct padata_priv *padata)
{
	struct encryption_ctx *ctx = container_of(padata, struct encryption_ctx, padata);

	queue_encrypt_reset(&ctx->queue, ctx->keypair);
	padata_do_serial(padata);
}

static void finish_encryption(struct padata_priv *padata)
{
	struct encryption_ctx *ctx = container_of(padata, struct encryption_ctx, padata);

	ctx->callback(&ctx->queue, ctx->peer);
	atomic_dec(&ctx->peer->parallel_encryption_inflight);
	peer_put(ctx->peer);
	kmem_cache_free(encryption_ctx_cache, ctx);
}

static inline int start_encryption(struct padata_instance *padata, struct padata_priv *priv, int cb_cpu)
{
	memset(priv, 0, sizeof(struct padata_priv));
	priv->parallel = do_encryption;
	priv->serial = finish_encryption;
	return padata_do_parallel(padata, priv, cb_cpu);
}

static inline unsigned int choose_cpu(__le32 key)
{
	unsigned int cpu_index, cpu, cb_cpu;

	/* This ensures that packets encrypted to the same key are sent in-order. */
	cpu_index = ((__force unsigned int)key) % cpumask_weight(cpu_online_mask);
	cb_cpu = cpumask_first(cpu_online_mask);
	for (cpu = 0; cpu < cpu_index; ++cpu)
		cb_cpu = cpumask_next(cb_cpu, cpu_online_mask);

	return cb_cpu;
}
#endif

int packet_create_data(struct sk_buff_head *queue, struct wireguard_peer *peer, void(*callback)(struct sk_buff_head *, struct wireguard_peer *))
{
	int ret = -ENOKEY;
	struct noise_keypair *keypair;
	struct sk_buff *skb;

	rcu_read_lock();
	keypair = noise_keypair_get(rcu_dereference(peer->keypairs.current_keypair));
	if (unlikely(!keypair))
		goto err_rcu;
	rcu_read_unlock();

	skb_queue_walk(queue, skb) {
		struct encryption_skb_cb *cb = (struct encryption_skb_cb *)skb->cb;
		unsigned int padding_len, num_frags;

		if (unlikely(!get_encryption_nonce(&cb->nonce, &keypair->sending)))
			goto err;

		padding_len = skb_padding(skb);
		cb->trailer_len = padding_len + noise_encrypted_len(0);
		cb->plaintext_len = skb->len + padding_len;

		/* Store the ds bit in the cb */
		cb->ds = ip_tunnel_ecn_encap(0 /* No outer TOS: no leak. TODO: should we use flowi->tos as outer? */, ip_hdr(skb), skb);

		/* Expand data section to have room for padding and auth tag */
		ret = skb_cow_data(skb, cb->trailer_len, &cb->trailer);
		if (unlikely(ret < 0))
			goto err;
		num_frags = ret;
		ret = -ENOMEM;
		if (unlikely(num_frags > 128))
			goto err;
		cb->num_frags = num_frags;

		/* Set the padding to zeros, and make sure it and the auth tag are part of the skb */
		memset(skb_tail_pointer(cb->trailer), 0, padding_len);

		/* Expand head section to have room for our header and the network stack's headers. */
		ret = skb_cow_head(skb, DATA_PACKET_HEAD_ROOM);
		if (unlikely(ret < 0))
			goto err;

		/* After the first time through the loop, if we've suceeded with a legitimate nonce,
		 * then we don't want a -ENOKEY error if subsequent nonces fail. Rather, if this
		 * condition arises, we simply want error out hard, and drop the entire queue. This
		 * is partially lazy programming and TODO: this could be made to only requeue the
		 * ones that had no nonce. But I'm not sure it's worth the added complexity, given
		 * how rarely that condition should arise. */
		ret = -EPIPE;
	}

#ifdef CONFIG_WIREGUARD_PARALLEL
	if ((skb_queue_len(queue) > 1 || queue->next->len > 256 || atomic_read(&peer->parallel_encryption_inflight) > 0) && cpumask_weight(cpu_online_mask) > 1) {
		unsigned int cpu = choose_cpu(keypair->remote_index);
		struct encryption_ctx *ctx = kmem_cache_alloc(encryption_ctx_cache, GFP_ATOMIC);
		if (!ctx)
			goto serial_encrypt;
		skb_queue_head_init(&ctx->queue);
		skb_queue_splice_init(queue, &ctx->queue);
		ctx->callback = callback;
		ctx->keypair = keypair;
		ctx->peer = peer_rcu_get(peer);
		ret = -EBUSY;
		if (unlikely(!ctx->peer))
			goto err_parallel;
		atomic_inc(&peer->parallel_encryption_inflight);
		ret = start_encryption(peer->device->parallel_send, &ctx->padata, cpu);
		if (unlikely(ret < 0)) {
			atomic_dec(&peer->parallel_encryption_inflight);
			peer_put(ctx->peer);
err_parallel:
			skb_queue_splice(&ctx->queue, queue);
			kmem_cache_free(encryption_ctx_cache, ctx);
			goto err;
		}
	} else
serial_encrypt:
#endif
	{
		queue_encrypt_reset(queue, keypair);
		callback(queue, peer);
	}
	return 0;

err:
	noise_keypair_put(keypair);
	return ret;
err_rcu:
	rcu_read_unlock();
	return ret;
}

static void begin_decrypt_packet(struct decryption_ctx *ctx)
{
	if (unlikely(!skb_decrypt(ctx->skb, ctx->num_frags, ctx->nonce, &ctx->keypair->receiving)))
		goto err;

	skb_reset(ctx->skb);
	ctx->ret = 0;
	return;

err:
	ctx->ret = -ENOKEY;
	peer_put(ctx->keypair->entry.peer);
}

static void finish_decrypt_packet(struct decryption_ctx *ctx)
{
	struct noise_keypairs *keypairs;
	bool used_new_key = false;
	int ret = ctx->ret;
	if (ret)
		goto err;

	keypairs = &ctx->keypair->entry.peer->keypairs;
	ret = counter_validate(&ctx->keypair->receiving.counter, ctx->nonce) ? 0 : -ERANGE;

	if (likely(!ret))
		used_new_key = noise_received_with_keypair(&ctx->keypair->entry.peer->keypairs, ctx->keypair);
	else {
		net_dbg_ratelimited("Packet has invalid nonce %Lu (max %Lu)\n", ctx->nonce, ctx->keypair->receiving.counter.receive.counter);
		peer_put(ctx->keypair->entry.peer);
		goto err;
	}

	noise_keypair_put(ctx->keypair);
	ctx->callback(ctx->skb, ctx->keypair->entry.peer, &ctx->endpoint, used_new_key, 0);
	return;

err:
	noise_keypair_put(ctx->keypair);
	ctx->callback(ctx->skb, NULL, NULL, false, ret);
}

#ifdef CONFIG_WIREGUARD_PARALLEL
static void do_decryption(struct padata_priv *padata)
{
	struct decryption_ctx *ctx = container_of(padata, struct decryption_ctx, padata);
	begin_decrypt_packet(ctx);
	padata_do_serial(padata);
}

static void finish_decryption(struct padata_priv *padata)
{
	struct decryption_ctx *ctx = container_of(padata, struct decryption_ctx, padata);
	finish_decrypt_packet(ctx);
	kmem_cache_free(decryption_ctx_cache, ctx);
}

static inline int start_decryption(struct padata_instance *padata, struct padata_priv *priv, int cb_cpu)
{
	priv->parallel = do_decryption;
	priv->serial = finish_decryption;
	return padata_do_parallel(padata, priv, cb_cpu);
}
#endif

void packet_consume_data(struct sk_buff *skb, size_t offset, struct wireguard_device *wg, void(*callback)(struct sk_buff *skb, struct wireguard_peer *, struct endpoint *, bool used_new_key, int err))
{
	int ret;
	struct endpoint endpoint;
	unsigned int num_frags;
	struct sk_buff *trailer;
	struct message_data *header;
	struct noise_keypair *keypair;
	uint64_t nonce;
	__le32 idx;

	ret = socket_endpoint_from_skb(&endpoint, skb);
	if (unlikely(ret < 0))
		goto err;

	ret = -ENOMEM;
	if (unlikely(!pskb_may_pull(skb, offset + sizeof(struct message_data))))
		goto err;

	header = (struct message_data *)(skb->data + offset);
	offset += sizeof(struct message_data);
	skb_pull(skb, offset);

	idx = header->key_idx;
	nonce = le64_to_cpu(header->counter);

	ret = skb_cow_data(skb, 0, &trailer);
	if (unlikely(ret < 0))
		goto err;
	num_frags = ret;
	ret = -ENOMEM;
	if (unlikely(num_frags > 128))
		goto err;
	ret = -EINVAL;
	rcu_read_lock();
	keypair = noise_keypair_get((struct noise_keypair *)index_hashtable_lookup(&wg->index_hashtable, INDEX_HASHTABLE_KEYPAIR, idx));
	rcu_read_unlock();
	if (unlikely(!keypair))
		goto err;
#ifdef CONFIG_WIREGUARD_PARALLEL
	if (cpumask_weight(cpu_online_mask) > 1) {
		unsigned int cpu = choose_cpu(idx);
		struct decryption_ctx *ctx;

		ret = -ENOMEM;
		ctx = kmem_cache_alloc(decryption_ctx_cache, GFP_ATOMIC);
		if (unlikely(!ctx))
			goto err_peer;

		ctx->skb = skb;
		ctx->keypair = keypair;
		ctx->callback = callback;
		ctx->nonce = nonce;
		ctx->num_frags = num_frags;
		ctx->endpoint = endpoint;
		ret = start_decryption(wg->parallel_receive, &ctx->padata, cpu);
		if (unlikely(ret)) {
			kmem_cache_free(decryption_ctx_cache, ctx);
			goto err_peer;
		}
	} else
#endif
	{
		struct decryption_ctx ctx = {
			.skb = skb,
			.keypair = keypair,
			.callback = callback,
			.nonce = nonce,
			.num_frags = num_frags,
			.endpoint = endpoint
		};
		begin_decrypt_packet(&ctx);
		finish_decrypt_packet(&ctx);
	}
	return;

#ifdef CONFIG_WIREGUARD_PARALLEL
err_peer:
	peer_put(keypair->entry.peer);
	noise_keypair_put(keypair);
#endif
err:
	callback(skb, NULL, NULL, false, ret);
}