1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2018 Google, Inc.
*/
#include <linux/linkage.h>
#include <asm/assembler.h>
/*
* Design notes:
*
* 16 registers would be needed to hold the state matrix, but only 14 are
* available because 'sp' and 'pc' cannot be used. So we spill the elements
* (x8, x9) to the stack and swap them out with (x10, x11). This adds one
* 'ldrd' and one 'strd' instruction per round.
*
* All rotates are performed using the implicit rotate operand accepted by the
* 'add' and 'eor' instructions. This is faster than using explicit rotate
* instructions. To make this work, we allow the values in the second and last
* rows of the ChaCha state matrix (rows 'b' and 'd') to temporarily have the
* wrong rotation amount. The rotation amount is then fixed up just in time
* when the values are used. 'brot' is the number of bits the values in row 'b'
* need to be rotated right to arrive at the correct values, and 'drot'
* similarly for row 'd'. (brot, drot) start out as (0, 0) but we make it such
* that they end up as (25, 24) after every round.
*/
// ChaCha state registers
X0 .req r0
X1 .req r1
X2 .req r2
X3 .req r3
X4 .req r4
X5 .req r5
X6 .req r6
X7 .req r7
X8_X10 .req r8 // shared by x8 and x10
X9_X11 .req r9 // shared by x9 and x11
X12 .req r10
X13 .req r11
X14 .req r12
X15 .req r14
.Lexpand_32byte_k:
// "expand 32-byte k"
.word 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
#ifdef __thumb2__
# define adrl adr
#endif
.macro __rev out, in, t0, t1, t2
.if __LINUX_ARM_ARCH__ >= 6
rev \out, \in
.else
lsl \t0, \in, #24
and \t1, \in, #0xff00
and \t2, \in, #0xff0000
orr \out, \t0, \in, lsr #24
orr \out, \out, \t1, lsl #8
orr \out, \out, \t2, lsr #8
.endif
.endm
.macro _le32_bswap x, t0, t1, t2
#ifdef __ARMEB__
__rev \x, \x, \t0, \t1, \t2
#endif
.endm
.macro _le32_bswap_4x a, b, c, d, t0, t1, t2
_le32_bswap \a, \t0, \t1, \t2
_le32_bswap \b, \t0, \t1, \t2
_le32_bswap \c, \t0, \t1, \t2
_le32_bswap \d, \t0, \t1, \t2
.endm
.macro __ldrd a, b, src, offset
#if __LINUX_ARM_ARCH__ >= 6
ldrd \a, \b, [\src, #\offset]
#else
ldr \a, [\src, #\offset]
ldr \b, [\src, #\offset + 4]
#endif
.endm
.macro __strd a, b, dst, offset
#if __LINUX_ARM_ARCH__ >= 6
strd \a, \b, [\dst, #\offset]
#else
str \a, [\dst, #\offset]
str \b, [\dst, #\offset + 4]
#endif
.endm
.macro _halfround a1, b1, c1, d1, a2, b2, c2, d2
// a += b; d ^= a; d = rol(d, 16);
add \a1, \a1, \b1, ror #brot
add \a2, \a2, \b2, ror #brot
eor \d1, \a1, \d1, ror #drot
eor \d2, \a2, \d2, ror #drot
// drot == 32 - 16 == 16
// c += d; b ^= c; b = rol(b, 12);
add \c1, \c1, \d1, ror #16
add \c2, \c2, \d2, ror #16
eor \b1, \c1, \b1, ror #brot
eor \b2, \c2, \b2, ror #brot
// brot == 32 - 12 == 20
// a += b; d ^= a; d = rol(d, 8);
add \a1, \a1, \b1, ror #20
add \a2, \a2, \b2, ror #20
eor \d1, \a1, \d1, ror #16
eor \d2, \a2, \d2, ror #16
// drot == 32 - 8 == 24
// c += d; b ^= c; b = rol(b, 7);
add \c1, \c1, \d1, ror #24
add \c2, \c2, \d2, ror #24
eor \b1, \c1, \b1, ror #20
eor \b2, \c2, \b2, ror #20
// brot == 32 - 7 == 25
.endm
.macro _doubleround
// column round
// quarterrounds: (x0, x4, x8, x12) and (x1, x5, x9, x13)
_halfround X0, X4, X8_X10, X12, X1, X5, X9_X11, X13
// save (x8, x9); restore (x10, x11)
__strd X8_X10, X9_X11, sp, 0
__ldrd X8_X10, X9_X11, sp, 8
// quarterrounds: (x2, x6, x10, x14) and (x3, x7, x11, x15)
_halfround X2, X6, X8_X10, X14, X3, X7, X9_X11, X15
.set brot, 25
.set drot, 24
// diagonal round
// quarterrounds: (x0, x5, x10, x15) and (x1, x6, x11, x12)
_halfround X0, X5, X8_X10, X15, X1, X6, X9_X11, X12
// save (x10, x11); restore (x8, x9)
__strd X8_X10, X9_X11, sp, 8
__ldrd X8_X10, X9_X11, sp, 0
// quarterrounds: (x2, x7, x8, x13) and (x3, x4, x9, x14)
_halfround X2, X7, X8_X10, X13, X3, X4, X9_X11, X14
.endm
.macro _chacha_permute nrounds
.set brot, 0
.set drot, 0
.rept \nrounds / 2
_doubleround
.endr
.endm
.macro _chacha nrounds
.Lnext_block\@:
// Stack: unused0-unused1 x10-x11 x0-x15 OUT IN LEN
// Registers contain x0-x9,x12-x15.
// Do the core ChaCha permutation to update x0-x15.
_chacha_permute \nrounds
add sp, #8
// Stack: x10-x11 orig_x0-orig_x15 OUT IN LEN
// Registers contain x0-x9,x12-x15.
// x4-x7 are rotated by 'brot'; x12-x15 are rotated by 'drot'.
// Free up some registers (r8-r12,r14) by pushing (x8-x9,x12-x15).
push {X8_X10, X9_X11, X12, X13, X14, X15}
// Load (OUT, IN, LEN).
ldr r14, [sp, #96]
ldr r12, [sp, #100]
ldr r11, [sp, #104]
orr r10, r14, r12
// Use slow path if fewer than 64 bytes remain.
cmp r11, #64
blt .Lxor_slowpath\@
// Use slow path if IN and/or OUT isn't 4-byte aligned. Needed even on
// ARMv6+, since ldmia and stmia (used below) still require alignment.
tst r10, #3
bne .Lxor_slowpath\@
// Fast path: XOR 64 bytes of aligned data.
// Stack: x8-x9 x12-x15 x10-x11 orig_x0-orig_x15 OUT IN LEN
// Registers: r0-r7 are x0-x7; r8-r11 are free; r12 is IN; r14 is OUT.
// x4-x7 are rotated by 'brot'; x12-x15 are rotated by 'drot'.
// x0-x3
__ldrd r8, r9, sp, 32
__ldrd r10, r11, sp, 40
add X0, X0, r8
add X1, X1, r9
add X2, X2, r10
add X3, X3, r11
_le32_bswap_4x X0, X1, X2, X3, r8, r9, r10
ldmia r12!, {r8-r11}
eor X0, X0, r8
eor X1, X1, r9
eor X2, X2, r10
eor X3, X3, r11
stmia r14!, {X0-X3}
// x4-x7
__ldrd r8, r9, sp, 48
__ldrd r10, r11, sp, 56
add X4, r8, X4, ror #brot
add X5, r9, X5, ror #brot
ldmia r12!, {X0-X3}
add X6, r10, X6, ror #brot
add X7, r11, X7, ror #brot
_le32_bswap_4x X4, X5, X6, X7, r8, r9, r10
eor X4, X4, X0
eor X5, X5, X1
eor X6, X6, X2
eor X7, X7, X3
stmia r14!, {X4-X7}
// x8-x15
pop {r0-r7} // (x8-x9,x12-x15,x10-x11)
__ldrd r8, r9, sp, 32
__ldrd r10, r11, sp, 40
add r0, r0, r8 // x8
add r1, r1, r9 // x9
add r6, r6, r10 // x10
add r7, r7, r11 // x11
_le32_bswap_4x r0, r1, r6, r7, r8, r9, r10
ldmia r12!, {r8-r11}
eor r0, r0, r8 // x8
eor r1, r1, r9 // x9
eor r6, r6, r10 // x10
eor r7, r7, r11 // x11
stmia r14!, {r0,r1,r6,r7}
ldmia r12!, {r0,r1,r6,r7}
__ldrd r8, r9, sp, 48
__ldrd r10, r11, sp, 56
add r2, r8, r2, ror #drot // x12
add r3, r9, r3, ror #drot // x13
add r4, r10, r4, ror #drot // x14
add r5, r11, r5, ror #drot // x15
_le32_bswap_4x r2, r3, r4, r5, r9, r10, r11
ldr r9, [sp, #72] // load LEN
eor r2, r2, r0 // x12
eor r3, r3, r1 // x13
eor r4, r4, r6 // x14
eor r5, r5, r7 // x15
subs r9, #64 // decrement and check LEN
stmia r14!, {r2-r5}
beq .Ldone\@
.Lprepare_for_next_block\@:
// Stack: x0-x15 OUT IN LEN
// Increment block counter (x12)
add r8, #1
// Store updated (OUT, IN, LEN)
str r14, [sp, #64]
str r12, [sp, #68]
str r9, [sp, #72]
mov r14, sp
// Store updated block counter (x12)
str r8, [sp, #48]
sub sp, #16
// Reload state and do next block
ldmia r14!, {r0-r11} // load x0-x11
__strd r10, r11, sp, 8 // store x10-x11 before state
ldmia r14, {r10-r12,r14} // load x12-x15
b .Lnext_block\@
.Lxor_slowpath\@:
// Slow path: < 64 bytes remaining, or unaligned input or output buffer.
// We handle it by storing the 64 bytes of keystream to the stack, then
// XOR-ing the needed portion with the data.
// Allocate keystream buffer
sub sp, #64
mov r14, sp
// Stack: ks0-ks15 x8-x9 x12-x15 x10-x11 orig_x0-orig_x15 OUT IN LEN
// Registers: r0-r7 are x0-x7; r8-r11 are free; r12 is IN; r14 is &ks0.
// x4-x7 are rotated by 'brot'; x12-x15 are rotated by 'drot'.
// Save keystream for x0-x3
__ldrd r8, r9, sp, 96
__ldrd r10, r11, sp, 104
add X0, X0, r8
add X1, X1, r9
add X2, X2, r10
add X3, X3, r11
_le32_bswap_4x X0, X1, X2, X3, r8, r9, r10
stmia r14!, {X0-X3}
// Save keystream for x4-x7
__ldrd r8, r9, sp, 112
__ldrd r10, r11, sp, 120
add X4, r8, X4, ror #brot
add X5, r9, X5, ror #brot
add X6, r10, X6, ror #brot
add X7, r11, X7, ror #brot
_le32_bswap_4x X4, X5, X6, X7, r8, r9, r10
add r8, sp, #64
stmia r14!, {X4-X7}
// Save keystream for x8-x15
ldm r8, {r0-r7} // (x8-x9,x12-x15,x10-x11)
__ldrd r8, r9, sp, 128
__ldrd r10, r11, sp, 136
add r0, r0, r8 // x8
add r1, r1, r9 // x9
add r6, r6, r10 // x10
add r7, r7, r11 // x11
_le32_bswap_4x r0, r1, r6, r7, r8, r9, r10
stmia r14!, {r0,r1,r6,r7}
__ldrd r8, r9, sp, 144
__ldrd r10, r11, sp, 152
add r2, r8, r2, ror #drot // x12
add r3, r9, r3, ror #drot // x13
add r4, r10, r4, ror #drot // x14
add r5, r11, r5, ror #drot // x15
_le32_bswap_4x r2, r3, r4, r5, r9, r10, r11
stmia r14, {r2-r5}
// Stack: ks0-ks15 unused0-unused7 x0-x15 OUT IN LEN
// Registers: r8 is block counter, r12 is IN.
ldr r9, [sp, #168] // LEN
ldr r14, [sp, #160] // OUT
cmp r9, #64
mov r0, sp
movle r1, r9
movgt r1, #64
// r1 is number of bytes to XOR, in range [1, 64]
.if __LINUX_ARM_ARCH__ < 6
orr r2, r12, r14
tst r2, #3 // IN or OUT misaligned?
bne .Lxor_next_byte\@
.endif
// XOR a word at a time
.rept 16
subs r1, #4
blt .Lxor_words_done\@
ldr r2, [r12], #4
ldr r3, [r0], #4
eor r2, r2, r3
str r2, [r14], #4
.endr
b .Lxor_slowpath_done\@
.Lxor_words_done\@:
ands r1, r1, #3
beq .Lxor_slowpath_done\@
// XOR a byte at a time
.Lxor_next_byte\@:
ldrb r2, [r12], #1
ldrb r3, [r0], #1
eor r2, r2, r3
strb r2, [r14], #1
subs r1, #1
bne .Lxor_next_byte\@
.Lxor_slowpath_done\@:
subs r9, #64
add sp, #96
bgt .Lprepare_for_next_block\@
.Ldone\@:
.endm // _chacha
/*
* void chacha20_arm(u8 *out, const u8 *in, size_t len, const u32 key[8],
* const u32 iv[4]);
*/
ENTRY(chacha20_arm)
cmp r2, #0 // len == 0?
reteq lr
push {r0-r2,r4-r11,lr}
// Push state x0-x15 onto stack.
// Also store an extra copy of x10-x11 just before the state.
ldr r4, [sp, #48] // iv
mov r0, sp
sub sp, #80
// iv: x12-x15
ldm r4, {X12,X13,X14,X15}
stmdb r0!, {X12,X13,X14,X15}
// key: x4-x11
__ldrd X8_X10, X9_X11, r3, 24
__strd X8_X10, X9_X11, sp, 8
stmdb r0!, {X8_X10, X9_X11}
ldm r3, {X4-X9_X11}
stmdb r0!, {X4-X9_X11}
// constants: x0-x3
adrl X3, .Lexpand_32byte_k
ldm X3, {X0-X3}
__strd X0, X1, sp, 16
__strd X2, X3, sp, 24
_chacha 20
add sp, #76
pop {r4-r11, pc}
ENDPROC(chacha20_arm)
/*
* void hchacha20_arm(const u32 state[16], u32 out[8]);
*/
ENTRY(hchacha20_arm)
push {r1,r4-r11,lr}
mov r14, r0
ldmia r14!, {r0-r11} // load x0-x11
push {r10-r11} // store x10-x11 to stack
ldm r14, {r10-r12,r14} // load x12-x15
sub sp, #8
_chacha_permute 20
// Skip over (unused0-unused1, x10-x11)
add sp, #16
// Fix up rotations of x12-x15
ror X12, X12, #drot
ror X13, X13, #drot
pop {r4} // load 'out'
ror X14, X14, #drot
ror X15, X15, #drot
// Store (x0-x3,x12-x15) to 'out'
stm r4, {X0,X1,X2,X3,X12,X13,X14,X15}
pop {r4-r11,pc}
ENDPROC(hchacha20_arm)
|