1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
|
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2008 Google Inc. All Rights Reserved.
* Copyright (C) 2015-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*
* Original author: Adam Langley <agl@imperialviolet.org>
*/
#define ARCH_HAS_SEPARATE_IRQ_STACK
#if (defined(CONFIG_MIPS) && LINUX_VERSION_CODE < KERNEL_VERSION(4, 11, 0)) || defined(CONFIG_ARM)
#undef ARCH_HAS_SEPARATE_IRQ_STACK
#endif
typedef s64 limb;
/* Field element representation:
*
* Field elements are written as an array of signed, 64-bit limbs, least
* significant first. The value of the field element is:
* x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
*
* i.e. the limbs are 26, 25, 26, 25, ... bits wide.
*/
/* Sum two numbers: output += in */
static void fsum(limb *output, const limb *in)
{
unsigned int i;
for (i = 0; i < 10; i += 2) {
output[0 + i] = output[0 + i] + in[0 + i];
output[1 + i] = output[1 + i] + in[1 + i];
}
}
/* Find the difference of two numbers: output = in - output
* (note the order of the arguments!).
*/
static void fdifference(limb *output, const limb *in)
{
unsigned int i;
for (i = 0; i < 10; ++i)
output[i] = in[i] - output[i];
}
/* Multiply a number by a scalar: output = in * scalar */
static void fscalar_product(limb *output, const limb *in, const limb scalar)
{
unsigned int i;
for (i = 0; i < 10; ++i)
output[i] = in[i] * scalar;
}
/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs.
*/
static void fproduct(limb *output, const limb *in2, const limb *in)
{
output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
((limb) ((s32) in2[1])) * ((s32) in[0]);
output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[0]);
output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[0]);
output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[1])) +
((limb) ((s32) in2[0])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[0]);
output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[0]);
output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[0]);
output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[0]);
output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[0]);
output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[0]);
output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[1])) +
((limb) ((s32) in2[4])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[4]) +
((limb) ((s32) in2[2])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[2]);
output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[2]);
output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[3])) +
((limb) ((s32) in2[4])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[4]);
output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[6]) +
((limb) ((s32) in2[5])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[4]);
output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
((limb) ((s32) in2[5])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[5])) +
((limb) ((s32) in2[6])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[6]);
output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[7]) +
((limb) ((s32) in2[6])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[6]);
output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[7]));
output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[8]);
output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
}
/* Reduce a long form to a short form by taking the input mod 2^255 - 19.
*
* On entry: |output[i]| < 14*2^54
* On exit: |output[0..8]| < 280*2^54
*/
static void freduce_degree(limb *output)
{
/* Each of these shifts and adds ends up multiplying the value by 19.
*
* For output[0..8], the absolute entry value is < 14*2^54 and we add, at
* most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54.
*/
output[8] += output[18] << 4;
output[8] += output[18] << 1;
output[8] += output[18];
output[7] += output[17] << 4;
output[7] += output[17] << 1;
output[7] += output[17];
output[6] += output[16] << 4;
output[6] += output[16] << 1;
output[6] += output[16];
output[5] += output[15] << 4;
output[5] += output[15] << 1;
output[5] += output[15];
output[4] += output[14] << 4;
output[4] += output[14] << 1;
output[4] += output[14];
output[3] += output[13] << 4;
output[3] += output[13] << 1;
output[3] += output[13];
output[2] += output[12] << 4;
output[2] += output[12] << 1;
output[2] += output[12];
output[1] += output[11] << 4;
output[1] += output[11] << 1;
output[1] += output[11];
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
}
#if (-1 & 3) != 3
#error "This code only works on a two's complement system"
#endif
/* return v / 2^26, using only shifts and adds.
*
* On entry: v can take any value.
*/
static inline limb div_by_2_26(const limb v)
{
/* High word of v; no shift needed. */
const u32 highword = (u32) (((u64) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const s32 sign = ((s32) highword) >> 31;
/* Set to 0x3ffffff if v was negative; else set to 0. */
const s32 roundoff = ((u32) sign) >> 6;
/* Should return v / (1<<26) */
return (v + roundoff) >> 26;
}
/* return v / (2^25), using only shifts and adds.
*
* On entry: v can take any value.
*/
static inline limb div_by_2_25(const limb v)
{
/* High word of v; no shift needed*/
const u32 highword = (u32) (((u64) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const s32 sign = ((s32) highword) >> 31;
/* Set to 0x1ffffff if v was negative; else set to 0. */
const s32 roundoff = ((u32) sign) >> 7;
/* Should return v / (1<<25) */
return (v + roundoff) >> 25;
}
/* Reduce all coefficients of the short form input so that |x| < 2^26.
*
* On entry: |output[i]| < 280*2^54
*/
static void freduce_coefficients(limb *output)
{
unsigned int i;
output[10] = 0;
for (i = 0; i < 10; i += 2) {
limb over = div_by_2_26(output[i]);
/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
* most, 280*2^28 in the first iteration of this loop. This is added to the
* next limb and we can approximate the resulting bound of that limb by
* 281*2^54.
*/
output[i] -= over << 26;
output[i+1] += over;
/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
* 281*2^29. When this is added to the next limb, the resulting bound can
* be approximated as 281*2^54.
*
* For subsequent iterations of the loop, 281*2^54 remains a conservative
* bound and no overflow occurs.
*/
over = div_by_2_25(output[i+1]);
output[i+1] -= over << 25;
output[i+2] += over;
}
/* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
output[10] = 0;
/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
* So |over| will be no more than 2^16.
*/
{
limb over = div_by_2_26(output[0]);
output[0] -= over << 26;
output[1] += over;
}
/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
* bound on |output[1]| is sufficient to meet our needs.
*/
}
/* A helpful wrapper around fproduct: output = in * in2.
*
* On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
*
* output must be distinct to both inputs. The output is reduced degree
* (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26.
*/
static void fmul(limb *output, const limb *in, const limb *in2)
{
limb t[19];
fproduct(t, in, in2);
/* |t[i]| < 14*2^54 */
freduce_degree(t);
freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10);
}
/* Square a number: output = in**2
*
* output must be distinct from the input. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs.
*/
static void fsquare_inner(limb *output, const limb *in)
{
output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
((limb) ((s32) in[0])) * ((s32) in[2]));
output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
((limb) ((s32) in[0])) * ((s32) in[3]));
output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
((limb) ((s32) in[1])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[5]));
output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
((limb) ((s32) in[2])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[6]) +
2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
((limb) ((s32) in[2])) * ((s32) in[5]) +
((limb) ((s32) in[1])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[7]));
output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[5])));
output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
((limb) ((s32) in[3])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[8]) +
((limb) ((s32) in[0])) * ((s32) in[9]));
output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
((limb) ((s32) in[4])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[9])));
output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
((limb) ((s32) in[4])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[8]) +
((limb) ((s32) in[2])) * ((s32) in[9]));
output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[9])));
output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
((limb) ((s32) in[5])) * ((s32) in[8]) +
((limb) ((s32) in[4])) * ((s32) in[9]));
output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
((limb) ((s32) in[6])) * ((s32) in[8]) +
2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
((limb) ((s32) in[6])) * ((s32) in[9]));
output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
}
/* fsquare sets output = in^2.
*
* On entry: The |in| argument is in reduced coefficients form and |in[i]| <
* 2^27.
*
* On exit: The |output| argument is in reduced coefficients form (indeed, one
* need only provide storage for 10 limbs) and |out[i]| < 2^26.
*/
static void fsquare(limb *output, const limb *in)
{
limb t[19];
fsquare_inner(t, in);
/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
* 2^(27+27) and fsquare_inner adds together, at most, 14 of those
* products.
*/
freduce_degree(t);
freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10);
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
static inline void fexpand(limb *output, const u8 *input)
{
#define F(n, start, shift, mask) \
output[n] = ((((limb) input[start + 0]) | \
((limb) input[start + 1]) << 8 | \
((limb) input[start + 2]) << 16 | \
((limb) input[start + 3]) << 24) >> shift) & mask;
F(0, 0, 0, 0x3ffffff);
F(1, 3, 2, 0x1ffffff);
F(2, 6, 3, 0x3ffffff);
F(3, 9, 5, 0x1ffffff);
F(4, 12, 6, 0x3ffffff);
F(5, 16, 0, 0x1ffffff);
F(6, 19, 1, 0x3ffffff);
F(7, 22, 3, 0x1ffffff);
F(8, 25, 4, 0x3ffffff);
F(9, 28, 6, 0x1ffffff);
#undef F
}
#if (-32 >> 1) != -16
#error "This code only works when >> does sign-extension on negative numbers"
#endif
/* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
static s32 s32_eq(s32 a, s32 b)
{
a = ~(a ^ b);
a &= a << 16;
a &= a << 8;
a &= a << 4;
a &= a << 2;
a &= a << 1;
return a >> 31;
}
/* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
* both non-negative.
*/
static s32 s32_gte(s32 a, s32 b)
{
a -= b;
/* a >= 0 iff a >= b. */
return ~(a >> 31);
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array.
*
* On entry: |input_limbs[i]| < 2^26
*/
static void fcontract(u8 *output, limb *input_limbs)
{
int i;
int j;
s32 input[10];
s32 mask;
/* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
for (i = 0; i < 10; i++) {
input[i] = input_limbs[i];
}
for (j = 0; j < 2; ++j) {
for (i = 0; i < 9; ++i) {
if ((i & 1) == 1) {
/* This calculation is a time-invariant way to make input[i]
* non-negative by borrowing from the next-larger limb.
*/
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 25);
input[i] = input[i] + (carry << 25);
input[i+1] = input[i+1] - carry;
} else {
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 26);
input[i] = input[i] + (carry << 26);
input[i+1] = input[i+1] - carry;
}
}
/* There's no greater limb for input[9] to borrow from, but we can multiply
* by 19 and borrow from input[0], which is valid mod 2^255-19.
*/
{
const s32 mask = input[9] >> 31;
const s32 carry = -((input[9] & mask) >> 25);
input[9] = input[9] + (carry << 25);
input[0] = input[0] - (carry * 19);
}
/* After the first iteration, input[1..9] are non-negative and fit within
* 25 or 26 bits, depending on position. However, input[0] may be
* negative.
*/
}
/* The first borrow-propagation pass above ended with every limb
except (possibly) input[0] non-negative.
If input[0] was negative after the first pass, then it was because of a
carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
In the second pass, each limb is decreased by at most one. Thus the second
borrow-propagation pass could only have wrapped around to decrease
input[0] again if the first pass left input[0] negative *and* input[1]
through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
and this last borrow-propagation step will leave input[1] non-negative. */
{
const s32 mask = input[0] >> 31;
const s32 carry = -((input[0] & mask) >> 26);
input[0] = input[0] + (carry << 26);
input[1] = input[1] - carry;
}
/* All input[i] are now non-negative. However, there might be values between
* 2^25 and 2^26 in a limb which is, nominally, 25 bits wide.
*/
for (j = 0; j < 2; j++) {
for (i = 0; i < 9; i++) {
if ((i & 1) == 1) {
const s32 carry = input[i] >> 25;
input[i] &= 0x1ffffff;
input[i+1] += carry;
} else {
const s32 carry = input[i] >> 26;
input[i] &= 0x3ffffff;
input[i+1] += carry;
}
}
{
const s32 carry = input[9] >> 25;
input[9] &= 0x1ffffff;
input[0] += 19*carry;
}
}
/* If the first carry-chain pass, just above, ended up with a carry from
* input[9], and that caused input[0] to be out-of-bounds, then input[0] was
* < 2^26 + 2*19, because the carry was, at most, two.
*
* If the second pass carried from input[9] again then input[0] is < 2*19 and
* the input[9] -> input[0] carry didn't push input[0] out of bounds.
*/
/* It still remains the case that input might be between 2^255-19 and 2^255.
* In this case, input[1..9] must take their maximum value and input[0] must
* be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed.
*/
mask = s32_gte(input[0], 0x3ffffed);
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
mask &= s32_eq(input[i], 0x1ffffff);
} else {
mask &= s32_eq(input[i], 0x3ffffff);
}
}
/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
* this conditionally subtracts 2^255-19.
*/
input[0] -= mask & 0x3ffffed;
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
input[i] -= mask & 0x1ffffff;
} else {
input[i] -= mask & 0x3ffffff;
}
}
input[1] <<= 2;
input[2] <<= 3;
input[3] <<= 5;
input[4] <<= 6;
input[6] <<= 1;
input[7] <<= 3;
input[8] <<= 4;
input[9] <<= 6;
#define F(i, s) \
output[s+0] |= input[i] & 0xff; \
output[s+1] = (input[i] >> 8) & 0xff; \
output[s+2] = (input[i] >> 16) & 0xff; \
output[s+3] = (input[i] >> 24) & 0xff;
output[0] = 0;
output[16] = 0;
F(0, 0);
F(1, 3);
F(2, 6);
F(3, 9);
F(4, 12);
F(5, 16);
F(6, 19);
F(7, 22);
F(8, 25);
F(9, 28);
#undef F
}
/* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
* them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
* side-channel attacks.
*
* NOTE that this function requires that 'iswap' be 1 or 0; other values give
* wrong results. Also, the two limb arrays must be in reduced-coefficient,
* reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
* and all all values in a[0..9],b[0..9] must have magnitude less than
* INT32_MAX.
*/
static void swap_conditional(limb a[19], limb b[19], limb iswap)
{
unsigned int i;
const s32 swap = (s32) -iswap;
for (i = 0; i < 10; ++i) {
const s32 x = swap & (((s32)a[i]) ^ ((s32)b[i]));
a[i] = ((s32)a[i]) ^ x;
b[i] = ((s32)b[i]) ^ x;
}
}
static void crecip(limb *out, const limb *z)
{
limb z2[10];
limb z9[10];
limb z11[10];
limb z2_5_0[10];
limb z2_10_0[10];
limb z2_20_0[10];
limb z2_50_0[10];
limb z2_100_0[10];
limb t0[10];
limb t1[10];
int i;
/* 2 */ fsquare(z2, z);
/* 4 */ fsquare(t1, z2);
/* 8 */ fsquare(t0, t1);
/* 9 */ fmul(z9, t0, z);
/* 11 */ fmul(z11, z9, z2);
/* 22 */ fsquare(t0, z11);
/* 2^5 - 2^0 = 31 */ fmul(z2_5_0, t0, z9);
/* 2^6 - 2^1 */ fsquare(t0, z2_5_0);
/* 2^7 - 2^2 */ fsquare(t1, t0);
/* 2^8 - 2^3 */ fsquare(t0, t1);
/* 2^9 - 2^4 */ fsquare(t1, t0);
/* 2^10 - 2^5 */ fsquare(t0, t1);
/* 2^10 - 2^0 */ fmul(z2_10_0, t0, z2_5_0);
/* 2^11 - 2^1 */ fsquare(t0, z2_10_0);
/* 2^12 - 2^2 */ fsquare(t1, t0);
/* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
/* 2^20 - 2^0 */ fmul(z2_20_0, t1, z2_10_0);
/* 2^21 - 2^1 */ fsquare(t0, z2_20_0);
/* 2^22 - 2^2 */ fsquare(t1, t0);
/* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
/* 2^40 - 2^0 */ fmul(t0, t1, z2_20_0);
/* 2^41 - 2^1 */ fsquare(t1, t0);
/* 2^42 - 2^2 */ fsquare(t0, t1);
/* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t1, t0); fsquare(t0, t1); }
/* 2^50 - 2^0 */ fmul(z2_50_0, t0, z2_10_0);
/* 2^51 - 2^1 */ fsquare(t0, z2_50_0);
/* 2^52 - 2^2 */ fsquare(t1, t0);
/* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
/* 2^100 - 2^0 */ fmul(z2_100_0, t1, z2_50_0);
/* 2^101 - 2^1 */ fsquare(t1, z2_100_0);
/* 2^102 - 2^2 */ fsquare(t0, t1);
/* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { fsquare(t1, t0); fsquare(t0, t1); }
/* 2^200 - 2^0 */ fmul(t1, t0, z2_100_0);
/* 2^201 - 2^1 */ fsquare(t0, t1);
/* 2^202 - 2^2 */ fsquare(t1, t0);
/* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
/* 2^250 - 2^0 */ fmul(t0, t1, z2_50_0);
/* 2^251 - 2^1 */ fsquare(t1, t0);
/* 2^252 - 2^2 */ fsquare(t0, t1);
/* 2^253 - 2^3 */ fsquare(t1, t0);
/* 2^254 - 2^4 */ fsquare(t0, t1);
/* 2^255 - 2^5 */ fsquare(t1, t0);
/* 2^255 - 21 */ fmul(out, t1, z11);
}
#ifdef ARCH_HAS_SEPARATE_IRQ_STACK
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form
* x3 z3: long form
* x z: short form, destroyed
* xprime zprime: short form, destroyed
* qmqp: short form, preserved
*
* On entry and exit, the absolute value of the limbs of all inputs and outputs
* are < 2^26.
*/
static void fmonty(limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */
limb *xprime, limb *zprime, /* input Q' */
const limb *qmqp /* input Q - Q' */)
{
limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
zzprime[19], zzzprime[19], xxxprime[19];
memcpy(origx, x, 10 * sizeof(limb));
fsum(x, z);
/* |x[i]| < 2^27 */
fdifference(z, origx); /* does x - z */
/* |z[i]| < 2^27 */
memcpy(origxprime, xprime, sizeof(limb) * 10);
fsum(xprime, zprime);
/* |xprime[i]| < 2^27 */
fdifference(zprime, origxprime);
/* |zprime[i]| < 2^27 */
fproduct(xxprime, xprime, z);
/* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
* 2^(27+27) and fproduct adds together, at most, 14 of those products.
* (Approximating that to 2^58 doesn't work out.)
*/
fproduct(zzprime, x, zprime);
/* |zzprime[i]| < 14*2^54 */
freduce_degree(xxprime);
freduce_coefficients(xxprime);
/* |xxprime[i]| < 2^26 */
freduce_degree(zzprime);
freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(origxprime, xxprime, sizeof(limb) * 10);
fsum(xxprime, zzprime);
/* |xxprime[i]| < 2^27 */
fdifference(zzprime, origxprime);
/* |zzprime[i]| < 2^27 */
fsquare(xxxprime, xxprime);
/* |xxxprime[i]| < 2^26 */
fsquare(zzzprime, zzprime);
/* |zzzprime[i]| < 2^26 */
fproduct(zzprime, zzzprime, qmqp);
/* |zzprime[i]| < 14*2^52 */
freduce_degree(zzprime);
freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(x3, xxxprime, sizeof(limb) * 10);
memcpy(z3, zzprime, sizeof(limb) * 10);
fsquare(xx, x);
/* |xx[i]| < 2^26 */
fsquare(zz, z);
/* |zz[i]| < 2^26 */
fproduct(x2, xx, zz);
/* |x2[i]| < 14*2^52 */
freduce_degree(x2);
freduce_coefficients(x2);
/* |x2[i]| < 2^26 */
fdifference(zz, xx); // does zz = xx - zz
/* |zz[i]| < 2^27 */
memset(zzz + 10, 0, sizeof(limb) * 9);
fscalar_product(zzz, zz, 121665);
/* |zzz[i]| < 2^(27+17) */
/* No need to call freduce_degree here:
fscalar_product doesn't increase the degree of its input. */
freduce_coefficients(zzz);
/* |zzz[i]| < 2^26 */
fsum(zzz, xx);
/* |zzz[i]| < 2^27 */
fproduct(z2, zz, zzz);
/* |z2[i]| < 14*2^(26+27) */
freduce_degree(z2);
freduce_coefficients(z2);
/* |z2|i| < 2^26 */
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form)
*/
static void cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q)
{
limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
unsigned int i, j;
memcpy(nqpqx, q, sizeof(limb) * 10);
for (i = 0; i < 32; ++i) {
u8 byte = n[31 - i];
for (j = 0; j < 8; ++j) {
const limb bit = byte >> 7;
swap_conditional(nqx, nqpqx, bit);
swap_conditional(nqz, nqpqz, bit);
fmonty(nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q);
swap_conditional(nqx2, nqpqx2, bit);
swap_conditional(nqz2, nqpqz2, bit);
t = nqx;
nqx = nqx2;
nqx2 = t;
t = nqz;
nqz = nqz2;
nqz2 = t;
t = nqpqx;
nqpqx = nqpqx2;
nqpqx2 = t;
t = nqpqz;
nqpqz = nqpqz2;
nqpqz2 = t;
byte <<= 1;
}
}
memcpy(resultx, nqx, sizeof(limb) * 10);
memcpy(resultz, nqz, sizeof(limb) * 10);
}
static bool curve25519_donna(u8 mypublic[CURVE25519_POINT_SIZE], const u8 secret[CURVE25519_POINT_SIZE], const u8 basepoint[CURVE25519_POINT_SIZE])
{
limb bp[10], x[10], z[11], zmone[10];
u8 e[32];
memcpy(e, secret, 32);
normalize_secret(e);
fexpand(bp, basepoint);
cmult(x, z, e, bp);
crecip(zmone, z);
fmul(z, x, zmone);
fcontract(mypublic, z);
memzero_explicit(e, sizeof(e));
memzero_explicit(bp, sizeof(bp));
memzero_explicit(x, sizeof(x));
memzero_explicit(z, sizeof(z));
memzero_explicit(zmone, sizeof(zmone));
return true;
}
#else
struct other_stack {
limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19], zzprime[19], zzzprime[19], xxxprime[19];
limb a[19], b[19], c[19], d[19], e[19], f[19], g[19], h[19];
limb bp[10], x[10], z[11], zmone[10];
u8 ee[32];
};
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form
* x3 z3: long form
* x z: short form, destroyed
* xprime zprime: short form, destroyed
* qmqp: short form, preserved
*
* On entry and exit, the absolute value of the limbs of all inputs and outputs
* are < 2^26.
*/
static void fmonty(struct other_stack *s,
limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */
limb *xprime, limb *zprime, /* input Q' */
const limb *qmqp /* input Q - Q' */)
{
memcpy(s->origx, x, 10 * sizeof(limb));
fsum(x, z);
/* |x[i]| < 2^27 */
fdifference(z, s->origx); /* does x - z */
/* |z[i]| < 2^27 */
memcpy(s->origxprime, xprime, sizeof(limb) * 10);
fsum(xprime, zprime);
/* |xprime[i]| < 2^27 */
fdifference(zprime, s->origxprime);
/* |zprime[i]| < 2^27 */
fproduct(s->xxprime, xprime, z);
/* |s->xxprime[i]| < 14*2^54: the largest product of two limbs will be <
* 2^(27+27) and fproduct adds together, at most, 14 of those products.
* (Approximating that to 2^58 doesn't work out.)
*/
fproduct(s->zzprime, x, zprime);
/* |s->zzprime[i]| < 14*2^54 */
freduce_degree(s->xxprime);
freduce_coefficients(s->xxprime);
/* |s->xxprime[i]| < 2^26 */
freduce_degree(s->zzprime);
freduce_coefficients(s->zzprime);
/* |s->zzprime[i]| < 2^26 */
memcpy(s->origxprime, s->xxprime, sizeof(limb) * 10);
fsum(s->xxprime, s->zzprime);
/* |s->xxprime[i]| < 2^27 */
fdifference(s->zzprime, s->origxprime);
/* |s->zzprime[i]| < 2^27 */
fsquare(s->xxxprime, s->xxprime);
/* |s->xxxprime[i]| < 2^26 */
fsquare(s->zzzprime, s->zzprime);
/* |s->zzzprime[i]| < 2^26 */
fproduct(s->zzprime, s->zzzprime, qmqp);
/* |s->zzprime[i]| < 14*2^52 */
freduce_degree(s->zzprime);
freduce_coefficients(s->zzprime);
/* |s->zzprime[i]| < 2^26 */
memcpy(x3, s->xxxprime, sizeof(limb) * 10);
memcpy(z3, s->zzprime, sizeof(limb) * 10);
fsquare(s->xx, x);
/* |s->xx[i]| < 2^26 */
fsquare(s->zz, z);
/* |s->zz[i]| < 2^26 */
fproduct(x2, s->xx, s->zz);
/* |x2[i]| < 14*2^52 */
freduce_degree(x2);
freduce_coefficients(x2);
/* |x2[i]| < 2^26 */
fdifference(s->zz, s->xx); // does s->zz = s->xx - s->zz
/* |s->zz[i]| < 2^27 */
memset(s->zzz + 10, 0, sizeof(limb) * 9);
fscalar_product(s->zzz, s->zz, 121665);
/* |s->zzz[i]| < 2^(27+17) */
/* No need to call freduce_degree here:
fscalar_product doesn't increase the degree of its input. */
freduce_coefficients(s->zzz);
/* |s->zzz[i]| < 2^26 */
fsum(s->zzz, s->xx);
/* |s->zzz[i]| < 2^27 */
fproduct(z2, s->zz, s->zzz);
/* |z2[i]| < 14*2^(26+27) */
freduce_degree(z2);
freduce_coefficients(z2);
/* |z2|i| < 2^26 */
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form)
*/
static void cmult(struct other_stack *s, limb *resultx, limb *resultz, const u8 *n, const limb *q)
{
unsigned int i, j;
limb *nqpqx = s->a, *nqpqz = s->b, *nqx = s->c, *nqz = s->d, *t;
limb *nqpqx2 = s->e, *nqpqz2 = s->f, *nqx2 = s->g, *nqz2 = s->h;
*nqpqz = *nqx = *nqpqz2 = *nqz2 = 1;
memcpy(nqpqx, q, sizeof(limb) * 10);
for (i = 0; i < 32; ++i) {
u8 byte = n[31 - i];
for (j = 0; j < 8; ++j) {
const limb bit = byte >> 7;
swap_conditional(nqx, nqpqx, bit);
swap_conditional(nqz, nqpqz, bit);
fmonty(s,
nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q);
swap_conditional(nqx2, nqpqx2, bit);
swap_conditional(nqz2, nqpqz2, bit);
t = nqx;
nqx = nqx2;
nqx2 = t;
t = nqz;
nqz = nqz2;
nqz2 = t;
t = nqpqx;
nqpqx = nqpqx2;
nqpqx2 = t;
t = nqpqz;
nqpqz = nqpqz2;
nqpqz2 = t;
byte <<= 1;
}
}
memcpy(resultx, nqx, sizeof(limb) * 10);
memcpy(resultz, nqz, sizeof(limb) * 10);
}
static bool curve25519_donna(u8 mypublic[CURVE25519_POINT_SIZE], const u8 secret[CURVE25519_POINT_SIZE], const u8 basepoint[CURVE25519_POINT_SIZE])
{
struct other_stack *s = kzalloc(sizeof(struct other_stack), GFP_KERNEL);
if (unlikely(!s))
return false;
memcpy(s->ee, secret, 32);
normalize_secret(s->ee);
fexpand(s->bp, basepoint);
cmult(s, s->x, s->z, s->ee, s->bp);
crecip(s->zmone, s->z);
fmul(s->z, s->x, s->zmone);
fcontract(mypublic, s->z);
kzfree(s);
return true;
}
#endif
|