/* SPDX-License-Identifier: GPL-2.0 * * Copyright (C) 2015-2018 Jason A. Donenfeld . All Rights Reserved. */ #include "queueing.h" #include "timers.h" #include "device.h" #include "peer.h" #include "socket.h" #include "messages.h" #include "cookie.h" #include "crypto/simd.h" #include #include #include #include #include #include static void packet_send_handshake_initiation(struct wireguard_peer *peer) { struct message_handshake_initiation packet; down_write(&peer->handshake.lock); if (!has_expired(peer->last_sent_handshake, REKEY_TIMEOUT)) { up_write(&peer->handshake.lock); return; /* This function is rate limited. */ } peer->last_sent_handshake = ktime_get_boot_fast_ns(); up_write(&peer->handshake.lock); net_dbg_ratelimited("%s: Sending handshake initiation to peer %llu (%pISpfsc)\n", peer->device->dev->name, peer->internal_id, &peer->endpoint.addr); if (noise_handshake_create_initiation(&packet, &peer->handshake)) { cookie_add_mac_to_packet(&packet, sizeof(packet), peer); timers_any_authenticated_packet_traversal(peer); timers_any_authenticated_packet_sent(peer); socket_send_buffer_to_peer(peer, &packet, sizeof(struct message_handshake_initiation), HANDSHAKE_DSCP); timers_handshake_initiated(peer); } } void packet_handshake_send_worker(struct work_struct *work) { struct wireguard_peer *peer = container_of(work, struct wireguard_peer, transmit_handshake_work); packet_send_handshake_initiation(peer); peer_put(peer); } void packet_send_queued_handshake_initiation(struct wireguard_peer *peer, bool is_retry) { if (!is_retry) peer->timer_handshake_attempts = 0; /* First checking the timestamp here is just an optimization; it will * be caught while properly locked inside the actual work queue. */ rcu_read_lock_bh(); if (!has_expired(peer->last_sent_handshake, REKEY_TIMEOUT) || unlikely(peer->is_dead)) goto out; peer_get(peer); /* Queues up calling packet_send_queued_handshakes(peer), where we do a peer_put(peer) after: */ if (!queue_work(peer->device->handshake_send_wq, &peer->transmit_handshake_work)) peer_put(peer); /* If the work was already queued, we want to drop the extra reference */ out: rcu_read_unlock_bh(); } void packet_send_handshake_response(struct wireguard_peer *peer) { struct message_handshake_response packet; net_dbg_ratelimited("%s: Sending handshake response to peer %llu (%pISpfsc)\n", peer->device->dev->name, peer->internal_id, &peer->endpoint.addr); peer->last_sent_handshake = ktime_get_boot_fast_ns(); if (noise_handshake_create_response(&packet, &peer->handshake)) { cookie_add_mac_to_packet(&packet, sizeof(packet), peer); if (noise_handshake_begin_session(&peer->handshake, &peer->keypairs)) { timers_session_derived(peer); timers_any_authenticated_packet_traversal(peer); timers_any_authenticated_packet_sent(peer); socket_send_buffer_to_peer(peer, &packet, sizeof(struct message_handshake_response), HANDSHAKE_DSCP); } } } void packet_send_handshake_cookie(struct wireguard_device *wg, struct sk_buff *initiating_skb, __le32 sender_index) { struct message_handshake_cookie packet; net_dbg_skb_ratelimited("%s: Sending cookie response for denied handshake message for %pISpfsc\n", wg->dev->name, initiating_skb); cookie_message_create(&packet, initiating_skb, sender_index, &wg->cookie_checker); socket_send_buffer_as_reply_to_skb(wg, initiating_skb, &packet, sizeof(packet)); } static inline void keep_key_fresh(struct wireguard_peer *peer) { struct noise_keypair *keypair; bool send = false; rcu_read_lock_bh(); keypair = rcu_dereference_bh(peer->keypairs.current_keypair); if (likely(keypair && keypair->sending.is_valid) && (unlikely(atomic64_read(&keypair->sending.counter.counter) > REKEY_AFTER_MESSAGES) || (keypair->i_am_the_initiator && unlikely(has_expired(keypair->sending.birthdate, REKEY_AFTER_TIME))))) send = true; rcu_read_unlock_bh(); if (send) packet_send_queued_handshake_initiation(peer, false); } static inline unsigned int skb_padding(struct sk_buff *skb) { /* We do this modulo business with the MTU, just in case the networking layer * gives us a packet that's bigger than the MTU. In that case, we wouldn't want * the final subtraction to overflow in the case of the padded_size being clamped. */ unsigned int last_unit = skb->len % PACKET_CB(skb)->mtu; unsigned int padded_size = ALIGN(last_unit, MESSAGE_PADDING_MULTIPLE); if (padded_size > PACKET_CB(skb)->mtu) padded_size = PACKET_CB(skb)->mtu; return padded_size - last_unit; } static inline bool skb_encrypt(struct sk_buff *skb, struct noise_keypair *keypair, bool have_simd) { struct scatterlist sg[MAX_SKB_FRAGS * 2 + 1]; struct message_data *header; unsigned int padding_len, plaintext_len, trailer_len; int num_frags; struct sk_buff *trailer; /* Calculate lengths */ padding_len = skb_padding(skb); trailer_len = padding_len + noise_encrypted_len(0); plaintext_len = skb->len + padding_len; /* Expand data section to have room for padding and auth tag */ num_frags = skb_cow_data(skb, trailer_len, &trailer); if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg))) return false; /* Set the padding to zeros, and make sure it and the auth tag are part of the skb */ memset(skb_tail_pointer(trailer), 0, padding_len); /* Expand head section to have room for our header and the network stack's headers. */ if (unlikely(skb_cow_head(skb, DATA_PACKET_HEAD_ROOM) < 0)) return false; /* We have to remember to add the checksum to the innerpacket, in case the receiver forwards it. */ if (likely(!skb_checksum_setup(skb, true))) skb_checksum_help(skb); /* Only after checksumming can we safely add on the padding at the end and the header. */ skb_set_inner_network_header(skb, 0); header = (struct message_data *)skb_push(skb, sizeof(struct message_data)); header->header.type = cpu_to_le32(MESSAGE_DATA); header->key_idx = keypair->remote_index; header->counter = cpu_to_le64(PACKET_CB(skb)->nonce); pskb_put(skb, trailer, trailer_len); /* Now we can encrypt the scattergather segments */ sg_init_table(sg, num_frags); if (skb_to_sgvec(skb, sg, sizeof(struct message_data), noise_encrypted_len(plaintext_len)) <= 0) return false; return chacha20poly1305_encrypt_sg(sg, sg, plaintext_len, NULL, 0, PACKET_CB(skb)->nonce, keypair->sending.key, have_simd); } void packet_send_keepalive(struct wireguard_peer *peer) { struct sk_buff *skb; if (skb_queue_empty(&peer->staged_packet_queue)) { skb = alloc_skb(DATA_PACKET_HEAD_ROOM + MESSAGE_MINIMUM_LENGTH, GFP_ATOMIC); if (unlikely(!skb)) return; skb_reserve(skb, DATA_PACKET_HEAD_ROOM); skb->dev = peer->device->dev; PACKET_CB(skb)->mtu = skb->dev->mtu; skb_queue_tail(&peer->staged_packet_queue, skb); net_dbg_ratelimited("%s: Sending keepalive packet to peer %llu (%pISpfsc)\n", peer->device->dev->name, peer->internal_id, &peer->endpoint.addr); } packet_send_staged_packets(peer); } #define skb_walk_null_queue_safe(first, skb, next) for (skb = first, next = skb->next; skb; skb = next, next = skb ? skb->next : NULL) static inline void skb_free_null_queue(struct sk_buff *first) { struct sk_buff *skb, *next; skb_walk_null_queue_safe(first, skb, next) dev_kfree_skb(skb); } static void packet_create_data_done(struct sk_buff *first, struct wireguard_peer *peer) { struct sk_buff *skb, *next; bool is_keepalive, data_sent = false; timers_any_authenticated_packet_traversal(peer); timers_any_authenticated_packet_sent(peer); skb_walk_null_queue_safe(first, skb, next) { is_keepalive = skb->len == message_data_len(0); if (likely(!socket_send_skb_to_peer(peer, skb, PACKET_CB(skb)->ds) && !is_keepalive)) data_sent = true; } if (likely(data_sent)) timers_data_sent(peer); keep_key_fresh(peer); } void packet_tx_worker(struct work_struct *work) { struct crypt_queue *queue = container_of(work, struct crypt_queue, work); struct wireguard_peer *peer; struct noise_keypair *keypair; struct sk_buff *first; enum packet_state state; while ((first = __ptr_ring_peek(&queue->ring)) != NULL && (state = atomic_read_acquire(&PACKET_CB(first)->state)) != PACKET_STATE_UNCRYPTED) { __ptr_ring_discard_one(&queue->ring); peer = PACKET_PEER(first); keypair = PACKET_CB(first)->keypair; if (likely(state == PACKET_STATE_CRYPTED)) packet_create_data_done(first, peer); else skb_free_null_queue(first); noise_keypair_put(keypair, false); peer_put(peer); } } void packet_encrypt_worker(struct work_struct *work) { struct crypt_queue *queue = container_of(work, struct multicore_worker, work)->ptr; struct sk_buff *first, *skb, *next; bool have_simd = simd_get(); while ((first = ptr_ring_consume_bh(&queue->ring)) != NULL) { enum packet_state state = PACKET_STATE_CRYPTED; skb_walk_null_queue_safe(first, skb, next) { if (likely(skb_encrypt(skb, PACKET_CB(first)->keypair, have_simd))) skb_reset(skb); else { state = PACKET_STATE_DEAD; break; } } queue_enqueue_per_peer(&PACKET_PEER(first)->tx_queue, first, state); have_simd = simd_relax(have_simd); } simd_put(have_simd); } static void packet_create_data(struct sk_buff *first) { struct wireguard_peer *peer = PACKET_PEER(first); struct wireguard_device *wg = peer->device; int ret = -EINVAL; rcu_read_lock_bh(); if (unlikely(peer->is_dead)) goto err; ret = queue_enqueue_per_device_and_peer(&wg->encrypt_queue, &peer->tx_queue, first, wg->packet_crypt_wq, &wg->encrypt_queue.last_cpu); if (unlikely(ret == -EPIPE)) queue_enqueue_per_peer(&peer->tx_queue, first, PACKET_STATE_DEAD); err: rcu_read_unlock_bh(); if (likely(!ret || ret == -EPIPE)) return; noise_keypair_put(PACKET_CB(first)->keypair, false); peer_put(peer); skb_free_null_queue(first); } void packet_send_staged_packets(struct wireguard_peer *peer) { struct noise_keypair *keypair; struct noise_symmetric_key *key; struct sk_buff_head packets; struct sk_buff *skb; /* Steal the current queue into our local one. */ __skb_queue_head_init(&packets); spin_lock_bh(&peer->staged_packet_queue.lock); skb_queue_splice_init(&peer->staged_packet_queue, &packets); spin_unlock_bh(&peer->staged_packet_queue.lock); if (unlikely(skb_queue_empty(&packets))) return; /* First we make sure we have a valid reference to a valid key. */ rcu_read_lock_bh(); keypair = noise_keypair_get(rcu_dereference_bh(peer->keypairs.current_keypair)); rcu_read_unlock_bh(); if (unlikely(!keypair)) goto out_nokey; key = &keypair->sending; if (unlikely(!key->is_valid)) goto out_nokey; if (unlikely(has_expired(key->birthdate, REJECT_AFTER_TIME))) goto out_invalid; /* After we know we have a somewhat valid key, we now try to assign nonces to * all of the packets in the queue. If we can't assign nonces for all of them, * we just consider it a failure and wait for the next handshake. */ skb_queue_walk(&packets, skb) { PACKET_CB(skb)->ds = ip_tunnel_ecn_encap(0 /* No outer TOS: no leak. TODO: should we use flowi->tos as outer? */, ip_hdr(skb), skb); PACKET_CB(skb)->nonce = atomic64_inc_return(&key->counter.counter) - 1; if (unlikely(PACKET_CB(skb)->nonce >= REJECT_AFTER_MESSAGES)) goto out_invalid; } packets.prev->next = NULL; peer_get(keypair->entry.peer); PACKET_CB(packets.next)->keypair = keypair; packet_create_data(packets.next); return; out_invalid: key->is_valid = false; out_nokey: noise_keypair_put(keypair, false); /* We orphan the packets if we're waiting on a handshake, so that they * don't block a socket's pool. */ skb_queue_walk(&packets, skb) skb_orphan(skb); /* Then we put them back on the top of the queue. We're not too concerned about * accidentally getting things a little out of order if packets are being added * really fast, because this queue is for before packets can even be sent and * it's small anyway. */ spin_lock_bh(&peer->staged_packet_queue.lock); skb_queue_splice(&packets, &peer->staged_packet_queue); spin_unlock_bh(&peer->staged_packet_queue.lock); /* If we're exiting because there's something wrong with the key, it means * we should initiate a new handshake. */ packet_send_queued_handshake_initiation(peer, false); }