/* Copyright (C) 2015-2017 Jason A. Donenfeld . All Rights Reserved. */ #include "noise.h" #include "device.h" #include "peer.h" #include "messages.h" #include "packets.h" #include "hashtables.h" #include #include #include #include #include #include /* This implements Noise_IKpsk2: * * <- s * ****** * -> e, es, s, ss, {t} * <- e, ee, se, psk, {} */ static const u8 handshake_name[37] = "Noise_IKpsk2_25519_ChaChaPoly_BLAKE2s"; static const u8 identifier_name[34] = "WireGuard v1 zx2c4 Jason@zx2c4.com"; static u8 handshake_init_hash[NOISE_HASH_LEN] __read_mostly; static u8 handshake_init_chaining_key[NOISE_HASH_LEN] __read_mostly; static atomic64_t keypair_counter = ATOMIC64_INIT(0); void noise_init(void) { struct blake2s_state blake; blake2s(handshake_init_chaining_key, handshake_name, NULL, NOISE_HASH_LEN, sizeof(handshake_name), 0); blake2s_init(&blake, NOISE_HASH_LEN); blake2s_update(&blake, handshake_init_chaining_key, NOISE_HASH_LEN); blake2s_update(&blake, identifier_name, sizeof(identifier_name)); blake2s_final(&blake, handshake_init_hash, NOISE_HASH_LEN); } void noise_handshake_init(struct noise_handshake *handshake, struct noise_static_identity *static_identity, const u8 peer_public_key[NOISE_PUBLIC_KEY_LEN], const u8 peer_preshared_key[NOISE_SYMMETRIC_KEY_LEN], struct wireguard_peer *peer) { memset(handshake, 0, sizeof(struct noise_handshake)); init_rwsem(&handshake->lock); handshake->entry.type = INDEX_HASHTABLE_HANDSHAKE; handshake->entry.peer = peer; memcpy(handshake->remote_static, peer_public_key, NOISE_PUBLIC_KEY_LEN); memcpy(handshake->preshared_key, peer_preshared_key, NOISE_SYMMETRIC_KEY_LEN); handshake->static_identity = static_identity; handshake->state = HANDSHAKE_ZEROED; } void noise_handshake_clear(struct noise_handshake *handshake) { index_hashtable_remove(&handshake->entry.peer->device->index_hashtable, &handshake->entry); down_write(&handshake->lock); memset(&handshake->ephemeral_private, 0, NOISE_PUBLIC_KEY_LEN); memset(&handshake->remote_ephemeral, 0, NOISE_PUBLIC_KEY_LEN); memset(&handshake->hash, 0, NOISE_HASH_LEN); memset(&handshake->chaining_key, 0, NOISE_HASH_LEN); handshake->remote_index = 0; handshake->state = HANDSHAKE_ZEROED; up_write(&handshake->lock); index_hashtable_remove(&handshake->entry.peer->device->index_hashtable, &handshake->entry); } static struct noise_keypair *keypair_create(struct wireguard_peer *peer) { struct noise_keypair *keypair = kzalloc(sizeof(struct noise_keypair), GFP_KERNEL); if (unlikely(!keypair)) return NULL; keypair->internal_id = atomic64_inc_return(&keypair_counter); keypair->entry.type = INDEX_HASHTABLE_KEYPAIR; keypair->entry.peer = peer; kref_init(&keypair->refcount); return keypair; } static void keypair_free_rcu(struct rcu_head *rcu) { struct noise_keypair *keypair = container_of(rcu, struct noise_keypair, rcu); net_dbg_ratelimited("Keypair %Lu destroyed for peer %Lu\n", keypair->internal_id, keypair->entry.peer->internal_id); kzfree(keypair); } static void keypair_free_kref(struct kref *kref) { struct noise_keypair *keypair = container_of(kref, struct noise_keypair, refcount); index_hashtable_remove(&keypair->entry.peer->device->index_hashtable, &keypair->entry); call_rcu_bh(&keypair->rcu, keypair_free_rcu); } void noise_keypair_put(struct noise_keypair *keypair) { if (unlikely(!keypair)) return; kref_put(&keypair->refcount, keypair_free_kref); } struct noise_keypair *noise_keypair_get(struct noise_keypair *keypair) { RCU_LOCKDEP_WARN(!rcu_read_lock_bh_held(), "Calling noise_keypair_get without holding the RCU BH read lock"); if (unlikely(!keypair || !kref_get_unless_zero(&keypair->refcount))) return NULL; return keypair; } void noise_keypairs_clear(struct noise_keypairs *keypairs) { struct noise_keypair *old; mutex_lock(&keypairs->keypair_update_lock); old = rcu_dereference_protected(keypairs->previous_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); rcu_assign_pointer(keypairs->previous_keypair, NULL); noise_keypair_put(old); old = rcu_dereference_protected(keypairs->next_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); rcu_assign_pointer(keypairs->next_keypair, NULL); noise_keypair_put(old); old = rcu_dereference_protected(keypairs->current_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); rcu_assign_pointer(keypairs->current_keypair, NULL); noise_keypair_put(old); mutex_unlock(&keypairs->keypair_update_lock); } static void add_new_keypair(struct noise_keypairs *keypairs, struct noise_keypair *new_keypair) { struct noise_keypair *previous_keypair, *next_keypair, *current_keypair; mutex_lock(&keypairs->keypair_update_lock); previous_keypair = rcu_dereference_protected(keypairs->previous_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); next_keypair = rcu_dereference_protected(keypairs->next_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); current_keypair = rcu_dereference_protected(keypairs->current_keypair, lockdep_is_held(&keypairs->keypair_update_lock)); if (new_keypair->i_am_the_initiator) { /* If we're the initiator, it means we've sent a handshake, and received * a confirmation response, which means this new keypair can now be used. */ if (next_keypair) { /* If there already was a next keypair pending, we demote it to be * the previous keypair, and free the existing current. * TODO: note that this means KCI can result in this transition. It * would perhaps be more sound to always just get rid of the unused * next keypair instead of putting it in the previous slot, but this * might be a bit less robust. Something to think about and decide on. */ rcu_assign_pointer(keypairs->next_keypair, NULL); rcu_assign_pointer(keypairs->previous_keypair, next_keypair); noise_keypair_put(current_keypair); } else /* If there wasn't an existing next keypair, we replace the * previous with the current one. */ rcu_assign_pointer(keypairs->previous_keypair, current_keypair); /* At this point we can get rid of the old previous keypair, and set up * the new keypair. */ noise_keypair_put(previous_keypair); rcu_assign_pointer(keypairs->current_keypair, new_keypair); } else { /* If we're the responder, it means we can't use the new keypair until * we receive confirmation via the first data packet, so we get rid of * the existing previous one, the possibly existing next one, and slide * in the new next one. */ rcu_assign_pointer(keypairs->next_keypair, new_keypair); noise_keypair_put(next_keypair); rcu_assign_pointer(keypairs->previous_keypair, NULL); noise_keypair_put(previous_keypair); } mutex_unlock(&keypairs->keypair_update_lock); } bool noise_received_with_keypair(struct noise_keypairs *keypairs, struct noise_keypair *received_keypair) { bool ret = false; struct noise_keypair *old_keypair; /* TODO: probably this needs the actual mutex, but we're in atomic context, * so we can't take it here. Instead we just rely on RCU for the lookups. */ rcu_read_lock_bh(); if (unlikely(received_keypair == rcu_dereference_bh(keypairs->next_keypair))) { ret = true; /* When we've finally received the confirmation, we slide the next * into the current, the current into the previous, and get rid of * the old previous. */ old_keypair = rcu_dereference_bh(keypairs->previous_keypair); rcu_assign_pointer(keypairs->previous_keypair, rcu_dereference_bh(keypairs->current_keypair)); noise_keypair_put(old_keypair); rcu_assign_pointer(keypairs->current_keypair, received_keypair); rcu_assign_pointer(keypairs->next_keypair, NULL); } rcu_read_unlock_bh(); return ret; } void noise_set_static_identity_private_key(struct noise_static_identity *static_identity, const u8 private_key[NOISE_PUBLIC_KEY_LEN]) { down_write(&static_identity->lock); if (private_key) { memcpy(static_identity->static_private, private_key, NOISE_PUBLIC_KEY_LEN); static_identity->has_identity = curve25519_generate_public(static_identity->static_public, private_key); } else { memset(static_identity->static_private, 0, NOISE_PUBLIC_KEY_LEN); memset(static_identity->static_public, 0, NOISE_PUBLIC_KEY_LEN); static_identity->has_identity = false; } up_write(&static_identity->lock); } /* This is Hugo Krawczyk's HKDF: * - https://eprint.iacr.org/2010/264.pdf * - https://tools.ietf.org/html/rfc5869 */ static void kdf(u8 *first_dst, u8 *second_dst, u8 *third_dst, const u8 *data, size_t first_len, size_t second_len, size_t third_len, size_t data_len, const u8 chaining_key[NOISE_HASH_LEN]) { u8 secret[BLAKE2S_OUTBYTES]; u8 output[BLAKE2S_OUTBYTES + 1]; BUG_ON(first_len > BLAKE2S_OUTBYTES || second_len > BLAKE2S_OUTBYTES || third_len > BLAKE2S_OUTBYTES || ((second_len || second_dst || third_len || third_dst) && (!first_len || !first_dst)) || ((third_len || third_dst) && (!second_len || !second_dst))); /* Extract entropy from data into secret */ blake2s_hmac(secret, data, chaining_key, BLAKE2S_OUTBYTES, data_len, NOISE_HASH_LEN); if (!first_dst || !first_len) goto out; /* Expand first key: key = secret, data = 0x1 */ output[0] = 1; blake2s_hmac(output, output, secret, BLAKE2S_OUTBYTES, 1, BLAKE2S_OUTBYTES); memcpy(first_dst, output, first_len); if (!second_dst || !second_len) goto out; /* Expand second key: key = secret, data = first-key || 0x2 */ output[BLAKE2S_OUTBYTES] = 2; blake2s_hmac(output, output, secret, BLAKE2S_OUTBYTES, BLAKE2S_OUTBYTES + 1, BLAKE2S_OUTBYTES); memcpy(second_dst, output, second_len); if (!third_dst || !third_len) goto out; /* Expand third key: key = secret, data = second-key || 0x3 */ output[BLAKE2S_OUTBYTES] = 3; blake2s_hmac(output, output, secret, BLAKE2S_OUTBYTES, BLAKE2S_OUTBYTES + 1, BLAKE2S_OUTBYTES); memcpy(third_dst, output, third_len); out: /* Clear sensitive data from stack */ memzero_explicit(secret, BLAKE2S_OUTBYTES); memzero_explicit(output, BLAKE2S_OUTBYTES + 1); } static void symmetric_key_init(struct noise_symmetric_key *key) { spin_lock_init(&key->counter.receive.lock); atomic64_set(&key->counter.counter, 0); memset(key->counter.receive.backtrack, 0, sizeof(key->counter.receive.backtrack)); key->birthdate = get_jiffies_64(); key->is_valid = true; } static void derive_keys(struct noise_symmetric_key *first_dst, struct noise_symmetric_key *second_dst, const u8 chaining_key[NOISE_HASH_LEN]) { kdf(first_dst->key, second_dst->key, NULL, NULL, NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0, chaining_key); symmetric_key_init(first_dst); symmetric_key_init(second_dst); } static bool __must_check mix_dh(u8 chaining_key[NOISE_HASH_LEN], u8 key[NOISE_SYMMETRIC_KEY_LEN], const u8 private[NOISE_PUBLIC_KEY_LEN], const u8 public[NOISE_PUBLIC_KEY_LEN]) { u8 dh_calculation[NOISE_PUBLIC_KEY_LEN]; if (unlikely(!curve25519(dh_calculation, private, public))) return false; kdf(chaining_key, key, NULL, dh_calculation, NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN, chaining_key); memzero_explicit(dh_calculation, NOISE_PUBLIC_KEY_LEN); return true; } static void mix_hash(u8 hash[NOISE_HASH_LEN], const u8 *src, size_t src_len) { struct blake2s_state blake; blake2s_init(&blake, NOISE_HASH_LEN); blake2s_update(&blake, hash, NOISE_HASH_LEN); blake2s_update(&blake, src, src_len); blake2s_final(&blake, hash, NOISE_HASH_LEN); } static void mix_psk(u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN], u8 key[NOISE_SYMMETRIC_KEY_LEN], const u8 psk[NOISE_SYMMETRIC_KEY_LEN]) { u8 temp_hash[NOISE_HASH_LEN]; kdf(chaining_key, temp_hash, key, psk, NOISE_HASH_LEN, NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, chaining_key); mix_hash(hash, temp_hash, NOISE_HASH_LEN); memzero_explicit(temp_hash, NOISE_HASH_LEN); } static void handshake_init(u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN], const u8 remote_static[NOISE_PUBLIC_KEY_LEN]) { memcpy(hash, handshake_init_hash, NOISE_HASH_LEN); memcpy(chaining_key, handshake_init_chaining_key, NOISE_HASH_LEN); mix_hash(hash, remote_static, NOISE_PUBLIC_KEY_LEN); } static void message_encrypt(u8 *dst_ciphertext, const u8 *src_plaintext, size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN], u8 hash[NOISE_HASH_LEN]) { chacha20poly1305_encrypt(dst_ciphertext, src_plaintext, src_len, hash, NOISE_HASH_LEN, 0 /* Always zero for Noise_IK */, key); mix_hash(hash, dst_ciphertext, noise_encrypted_len(src_len)); } static bool message_decrypt(u8 *dst_plaintext, const u8 *src_ciphertext, size_t src_len, u8 key[NOISE_SYMMETRIC_KEY_LEN], u8 hash[NOISE_HASH_LEN]) { if (!chacha20poly1305_decrypt(dst_plaintext, src_ciphertext, src_len, hash, NOISE_HASH_LEN, 0 /* Always zero for Noise_IK */, key)) return false; mix_hash(hash, src_ciphertext, src_len); return true; } static void message_ephemeral(u8 ephemeral_dst[NOISE_PUBLIC_KEY_LEN], const u8 ephemeral_src[NOISE_PUBLIC_KEY_LEN], u8 chaining_key[NOISE_HASH_LEN], u8 hash[NOISE_HASH_LEN]) { if (ephemeral_dst != ephemeral_src) memcpy(ephemeral_dst, ephemeral_src, NOISE_PUBLIC_KEY_LEN); mix_hash(hash, ephemeral_src, NOISE_PUBLIC_KEY_LEN); kdf(chaining_key, NULL, NULL, ephemeral_src, NOISE_HASH_LEN, 0, 0, NOISE_PUBLIC_KEY_LEN, chaining_key); } static void tai64n_now(u8 output[NOISE_TIMESTAMP_LEN]) { struct timeval now; do_gettimeofday(&now); /* https://cr.yp.to/libtai/tai64.html */ *(__be64 *)output = cpu_to_be64(4611686018427387914ULL + now.tv_sec); *(__be32 *)(output + sizeof(__be64)) = cpu_to_be32(1000 * now.tv_usec + 500); } bool noise_handshake_create_initiation(struct message_handshake_initiation *dst, struct noise_handshake *handshake) { u8 timestamp[NOISE_TIMESTAMP_LEN]; u8 key[NOISE_SYMMETRIC_KEY_LEN]; bool ret = false; down_read(&handshake->static_identity->lock); down_write(&handshake->lock); if (unlikely(!handshake->static_identity->has_identity)) goto out; dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_INITIATION); handshake_init(handshake->chaining_key, handshake->hash, handshake->remote_static); /* e */ curve25519_generate_secret(handshake->ephemeral_private); if (!curve25519_generate_public(dst->unencrypted_ephemeral, handshake->ephemeral_private)) goto out; message_ephemeral(dst->unencrypted_ephemeral, dst->unencrypted_ephemeral, handshake->chaining_key, handshake->hash); /* es */ if (!mix_dh(handshake->chaining_key, key, handshake->ephemeral_private, handshake->remote_static)) goto out; /* s */ message_encrypt(dst->encrypted_static, handshake->static_identity->static_public, NOISE_PUBLIC_KEY_LEN, key, handshake->hash); /* ss */ if (!mix_dh(handshake->chaining_key, key, handshake->static_identity->static_private, handshake->remote_static)) goto out; /* {t} */ tai64n_now(timestamp); message_encrypt(dst->encrypted_timestamp, timestamp, NOISE_TIMESTAMP_LEN, key, handshake->hash); dst->sender_index = index_hashtable_insert(&handshake->entry.peer->device->index_hashtable, &handshake->entry); ret = true; handshake->state = HANDSHAKE_CREATED_INITIATION; out: up_write(&handshake->lock); up_read(&handshake->static_identity->lock); memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); return ret; } struct wireguard_peer *noise_handshake_consume_initiation(struct message_handshake_initiation *src, struct wireguard_device *wg) { bool replay_attack, flood_attack; u8 s[NOISE_PUBLIC_KEY_LEN]; u8 e[NOISE_PUBLIC_KEY_LEN]; u8 t[NOISE_TIMESTAMP_LEN]; struct noise_handshake *handshake; struct wireguard_peer *wg_peer = NULL; u8 key[NOISE_SYMMETRIC_KEY_LEN]; u8 hash[NOISE_HASH_LEN]; u8 chaining_key[NOISE_HASH_LEN]; down_read(&wg->static_identity.lock); if (unlikely(!wg->static_identity.has_identity)) goto out; handshake_init(chaining_key, hash, wg->static_identity.static_public); /* e */ message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash); /* es */ if (!mix_dh(chaining_key, key, wg->static_identity.static_private, e)) goto out; /* s */ if (!message_decrypt(s, src->encrypted_static, sizeof(src->encrypted_static), key, hash)) goto out; /* ss */ if (!mix_dh(chaining_key, key, wg->static_identity.static_private, s)) goto out; /* {t} */ if (!message_decrypt(t, src->encrypted_timestamp, sizeof(src->encrypted_timestamp), key, hash)) goto out; /* Lookup which peer we're actually talking to */ wg_peer = pubkey_hashtable_lookup(&wg->peer_hashtable, s); if (!wg_peer) goto out; handshake = &wg_peer->handshake; down_read(&handshake->lock); replay_attack = memcmp(t, handshake->latest_timestamp, NOISE_TIMESTAMP_LEN) <= 0; flood_attack = !time_is_before_jiffies64(handshake->last_initiation_consumption + INITIATIONS_PER_SECOND); up_read(&handshake->lock); if (replay_attack || flood_attack) { peer_put(wg_peer); wg_peer = NULL; goto out; } /* Success! Copy everything to peer */ down_write(&handshake->lock); memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN); memcpy(handshake->latest_timestamp, t, NOISE_TIMESTAMP_LEN); memcpy(handshake->hash, hash, NOISE_HASH_LEN); memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN); handshake->remote_index = src->sender_index; handshake->last_initiation_consumption = get_jiffies_64(); handshake->state = HANDSHAKE_CONSUMED_INITIATION; up_write(&handshake->lock); out: memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); memzero_explicit(hash, NOISE_HASH_LEN); memzero_explicit(chaining_key, NOISE_HASH_LEN); up_read(&wg->static_identity.lock); return wg_peer; } bool noise_handshake_create_response(struct message_handshake_response *dst, struct noise_handshake *handshake) { bool ret = false; u8 key[NOISE_SYMMETRIC_KEY_LEN]; down_read(&handshake->static_identity->lock); down_write(&handshake->lock); if (handshake->state != HANDSHAKE_CONSUMED_INITIATION) goto out; dst->header.type = cpu_to_le32(MESSAGE_HANDSHAKE_RESPONSE); dst->receiver_index = handshake->remote_index; /* e */ curve25519_generate_secret(handshake->ephemeral_private); if (!curve25519_generate_public(dst->unencrypted_ephemeral, handshake->ephemeral_private)) goto out; message_ephemeral(dst->unencrypted_ephemeral, dst->unencrypted_ephemeral, handshake->chaining_key, handshake->hash); /* ee */ if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private, handshake->remote_ephemeral)) goto out; /* se */ if (!mix_dh(handshake->chaining_key, NULL, handshake->ephemeral_private, handshake->remote_static)) goto out; /* psk */ mix_psk(handshake->chaining_key, handshake->hash, key, handshake->preshared_key); /* {} */ message_encrypt(dst->encrypted_nothing, NULL, 0, key, handshake->hash); dst->sender_index = index_hashtable_insert(&handshake->entry.peer->device->index_hashtable, &handshake->entry); handshake->state = HANDSHAKE_CREATED_RESPONSE; ret = true; out: up_write(&handshake->lock); up_read(&handshake->static_identity->lock); memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); return ret; } struct wireguard_peer *noise_handshake_consume_response(struct message_handshake_response *src, struct wireguard_device *wg) { struct noise_handshake *handshake; struct wireguard_peer *ret_peer = NULL; u8 key[NOISE_SYMMETRIC_KEY_LEN]; u8 hash[NOISE_HASH_LEN]; u8 chaining_key[NOISE_HASH_LEN]; u8 e[NOISE_PUBLIC_KEY_LEN]; u8 ephemeral_private[NOISE_PUBLIC_KEY_LEN]; u8 static_private[NOISE_PUBLIC_KEY_LEN]; enum noise_handshake_state state = HANDSHAKE_ZEROED; down_read(&wg->static_identity.lock); if (unlikely(!wg->static_identity.has_identity)) goto out; handshake = (struct noise_handshake *)index_hashtable_lookup(&wg->index_hashtable, INDEX_HASHTABLE_HANDSHAKE, src->receiver_index); if (unlikely(!handshake)) goto out; down_read(&handshake->lock); state = handshake->state; memcpy(hash, handshake->hash, NOISE_HASH_LEN); memcpy(chaining_key, handshake->chaining_key, NOISE_HASH_LEN); memcpy(ephemeral_private, handshake->ephemeral_private, NOISE_PUBLIC_KEY_LEN); up_read(&handshake->lock); if (state != HANDSHAKE_CREATED_INITIATION) goto fail; /* e */ message_ephemeral(e, src->unencrypted_ephemeral, chaining_key, hash); /* ee */ if (!mix_dh(chaining_key, NULL, ephemeral_private, e)) goto out; /* se */ if (!mix_dh(chaining_key, NULL, wg->static_identity.static_private, e)) goto out; /* psk */ mix_psk(chaining_key, hash, key, handshake->preshared_key); /* {} */ if (!message_decrypt(NULL, src->encrypted_nothing, sizeof(src->encrypted_nothing), key, hash)) goto fail; /* Success! Copy everything to peer */ down_write(&handshake->lock); memcpy(handshake->remote_ephemeral, e, NOISE_PUBLIC_KEY_LEN); memcpy(handshake->hash, hash, NOISE_HASH_LEN); memcpy(handshake->chaining_key, chaining_key, NOISE_HASH_LEN); handshake->remote_index = src->sender_index; handshake->state = HANDSHAKE_CONSUMED_RESPONSE; up_write(&handshake->lock); ret_peer = handshake->entry.peer; goto out; fail: peer_put(handshake->entry.peer); out: memzero_explicit(key, NOISE_SYMMETRIC_KEY_LEN); memzero_explicit(hash, NOISE_HASH_LEN); memzero_explicit(chaining_key, NOISE_HASH_LEN); memzero_explicit(ephemeral_private, NOISE_PUBLIC_KEY_LEN); memzero_explicit(static_private, NOISE_PUBLIC_KEY_LEN); up_read(&wg->static_identity.lock); return ret_peer; } bool noise_handshake_begin_session(struct noise_handshake *handshake, struct noise_keypairs *keypairs, bool i_am_the_initiator) { struct noise_keypair *new_keypair; down_read(&handshake->lock); if (handshake->state != HANDSHAKE_CREATED_RESPONSE && handshake->state != HANDSHAKE_CONSUMED_RESPONSE) goto fail; new_keypair = keypair_create(handshake->entry.peer); if (!new_keypair) goto fail; new_keypair->i_am_the_initiator = i_am_the_initiator; new_keypair->remote_index = handshake->remote_index; if (i_am_the_initiator) derive_keys(&new_keypair->sending, &new_keypair->receiving, handshake->chaining_key); else derive_keys(&new_keypair->receiving, &new_keypair->sending, handshake->chaining_key); up_read(&handshake->lock); add_new_keypair(keypairs, new_keypair); index_hashtable_replace(&handshake->entry.peer->device->index_hashtable, &handshake->entry, &new_keypair->entry); noise_handshake_clear(handshake); net_dbg_ratelimited("Keypair %Lu created for peer %Lu\n", new_keypair->internal_id, new_keypair->entry.peer->internal_id); return true; fail: up_read(&handshake->lock); return false; }