// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2015-2018 Jason A. Donenfeld . All Rights Reserved. */ #include "queueing.h" #include "socket.h" #include "timers.h" #include "device.h" #include "ratelimiter.h" #include "peer.h" #include "messages.h" #include #include #include #include #include #include #include #include #include #include #include #include static LIST_HEAD(device_list); static int wg_open(struct net_device *dev) { struct in_device *dev_v4 = __in_dev_get_rtnl(dev); struct wireguard_device *wg = netdev_priv(dev); #ifndef COMPAT_CANNOT_USE_IN6_DEV_GET struct inet6_dev *dev_v6 = __in6_dev_get(dev); #endif struct wireguard_peer *peer; int ret; if (dev_v4) { /* At some point we might put this check near the ip_rt_send_ * redirect call of ip_forward in net/ipv4/ip_forward.c, similar * to the current secpath check. */ IN_DEV_CONF_SET(dev_v4, SEND_REDIRECTS, false); IPV4_DEVCONF_ALL(dev_net(dev), SEND_REDIRECTS) = false; } #ifndef COMPAT_CANNOT_USE_IN6_DEV_GET if (dev_v6) #ifndef COMPAT_CANNOT_USE_DEV_CNF dev_v6->cnf.addr_gen_mode = IN6_ADDR_GEN_MODE_NONE; #else dev_v6->addr_gen_mode = IN6_ADDR_GEN_MODE_NONE; #endif #endif ret = wg_socket_init(wg, wg->incoming_port); if (ret < 0) return ret; mutex_lock(&wg->device_update_lock); list_for_each_entry (peer, &wg->peer_list, peer_list) { wg_packet_send_staged_packets(peer); if (peer->persistent_keepalive_interval) wg_packet_send_keepalive(peer); } mutex_unlock(&wg->device_update_lock); return 0; } #if defined(CONFIG_PM_SLEEP) && !defined(CONFIG_ANDROID) static int wg_pm_notification(struct notifier_block *nb, unsigned long action, void *data) { struct wireguard_device *wg; struct wireguard_peer *peer; if (action != PM_HIBERNATION_PREPARE && action != PM_SUSPEND_PREPARE) return 0; rtnl_lock(); list_for_each_entry (wg, &device_list, device_list) { mutex_lock(&wg->device_update_lock); list_for_each_entry (peer, &wg->peer_list, peer_list) { wg_noise_handshake_clear(&peer->handshake); wg_noise_keypairs_clear(&peer->keypairs); if (peer->timers_enabled) del_timer(&peer->timer_zero_key_material); } mutex_unlock(&wg->device_update_lock); } rtnl_unlock(); rcu_barrier_bh(); return 0; } static struct notifier_block pm_notifier = { .notifier_call = wg_pm_notification }; #endif static int wg_stop(struct net_device *dev) { struct wireguard_device *wg = netdev_priv(dev); struct wireguard_peer *peer; mutex_lock(&wg->device_update_lock); list_for_each_entry (peer, &wg->peer_list, peer_list) { skb_queue_purge(&peer->staged_packet_queue); wg_timers_stop(peer); wg_noise_handshake_clear(&peer->handshake); wg_noise_keypairs_clear(&peer->keypairs); atomic64_set(&peer->last_sent_handshake, ktime_get_boot_fast_ns() - (u64)(REKEY_TIMEOUT + 1) * NSEC_PER_SEC); } mutex_unlock(&wg->device_update_lock); skb_queue_purge(&wg->incoming_handshakes); wg_socket_reinit(wg, NULL, NULL); return 0; } static netdev_tx_t wg_xmit(struct sk_buff *skb, struct net_device *dev) { struct wireguard_device *wg = netdev_priv(dev); struct wireguard_peer *peer; struct sk_buff *next; struct sk_buff_head packets; sa_family_t family; u32 mtu; int ret; if (unlikely(wg_skb_examine_untrusted_ip_hdr(skb) != skb->protocol)) { ret = -EPROTONOSUPPORT; net_dbg_ratelimited("%s: Invalid IP packet\n", dev->name); goto err; } peer = wg_allowedips_lookup_dst(&wg->peer_allowedips, skb); if (unlikely(!peer)) { ret = -ENOKEY; if (skb->protocol == htons(ETH_P_IP)) net_dbg_ratelimited("%s: No peer has allowed IPs matching %pI4\n", dev->name, &ip_hdr(skb)->daddr); else if (skb->protocol == htons(ETH_P_IPV6)) net_dbg_ratelimited("%s: No peer has allowed IPs matching %pI6\n", dev->name, &ipv6_hdr(skb)->daddr); goto err; } family = READ_ONCE(peer->endpoint.addr.sa_family); if (unlikely(family != AF_INET && family != AF_INET6)) { ret = -EDESTADDRREQ; net_dbg_ratelimited("%s: No valid endpoint has been configured or discovered for peer %llu\n", dev->name, peer->internal_id); goto err_peer; } mtu = skb_dst(skb) ? dst_mtu(skb_dst(skb)) : dev->mtu; __skb_queue_head_init(&packets); if (!skb_is_gso(skb)) skb->next = NULL; else { struct sk_buff *segs = skb_gso_segment(skb, 0); if (unlikely(IS_ERR(segs))) { ret = PTR_ERR(segs); goto err_peer; } dev_kfree_skb(skb); skb = segs; } do { next = skb->next; skb->next = skb->prev = NULL; skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) continue; /* We only need to keep the original dst around for icmp, * so at this point we're in a position to drop it. */ skb_dst_drop(skb); PACKET_CB(skb)->mtu = mtu; __skb_queue_tail(&packets, skb); } while ((skb = next) != NULL); spin_lock_bh(&peer->staged_packet_queue.lock); /* If the queue is getting too big, we start removing the oldest packets * until it's small again. We do this before adding the new packet, so * we don't remove GSO segments that are in excess. */ while (skb_queue_len(&peer->staged_packet_queue) > MAX_STAGED_PACKETS) dev_kfree_skb(__skb_dequeue(&peer->staged_packet_queue)); skb_queue_splice_tail(&packets, &peer->staged_packet_queue); spin_unlock_bh(&peer->staged_packet_queue.lock); wg_packet_send_staged_packets(peer); wg_peer_put(peer); return NETDEV_TX_OK; err_peer: wg_peer_put(peer); err: ++dev->stats.tx_errors; if (skb->protocol == htons(ETH_P_IP)) icmp_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0); else if (skb->protocol == htons(ETH_P_IPV6)) icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); kfree_skb(skb); return ret; } static const struct net_device_ops netdev_ops = { .ndo_open = wg_open, .ndo_stop = wg_stop, .ndo_start_xmit = wg_xmit, .ndo_get_stats64 = ip_tunnel_get_stats64 }; static void wg_destruct(struct net_device *dev) { struct wireguard_device *wg = netdev_priv(dev); rtnl_lock(); list_del(&wg->device_list); rtnl_unlock(); mutex_lock(&wg->device_update_lock); wg->incoming_port = 0; wg_socket_reinit(wg, NULL, NULL); wg_allowedips_free(&wg->peer_allowedips, &wg->device_update_lock); /* The final references are cleared in the below calls to destroy_workqueue. */ wg_peer_remove_all(wg); destroy_workqueue(wg->handshake_receive_wq); destroy_workqueue(wg->handshake_send_wq); destroy_workqueue(wg->packet_crypt_wq); wg_packet_queue_free(&wg->decrypt_queue, true); wg_packet_queue_free(&wg->encrypt_queue, true); rcu_barrier_bh(); /* Wait for all the peers to be actually freed. */ wg_ratelimiter_uninit(); memzero_explicit(&wg->static_identity, sizeof(wg->static_identity)); skb_queue_purge(&wg->incoming_handshakes); free_percpu(dev->tstats); free_percpu(wg->incoming_handshakes_worker); if (wg->have_creating_net_ref) put_net(wg->creating_net); mutex_unlock(&wg->device_update_lock); pr_debug("%s: Interface deleted\n", dev->name); free_netdev(dev); } static const struct device_type device_type = { .name = KBUILD_MODNAME }; static void wg_setup(struct net_device *dev) { struct wireguard_device *wg = netdev_priv(dev); enum { WG_NETDEV_FEATURES = NETIF_F_HW_CSUM | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | NETIF_F_GSO_SOFTWARE | NETIF_F_HIGHDMA }; dev->netdev_ops = &netdev_ops; dev->hard_header_len = 0; dev->addr_len = 0; dev->needed_headroom = DATA_PACKET_HEAD_ROOM; dev->needed_tailroom = noise_encrypted_len(MESSAGE_PADDING_MULTIPLE); dev->type = ARPHRD_NONE; dev->flags = IFF_POINTOPOINT | IFF_NOARP; #ifndef COMPAT_CANNOT_USE_IFF_NO_QUEUE dev->priv_flags |= IFF_NO_QUEUE; #else dev->tx_queue_len = 0; #endif dev->features |= NETIF_F_LLTX; dev->features |= WG_NETDEV_FEATURES; dev->hw_features |= WG_NETDEV_FEATURES; dev->hw_enc_features |= WG_NETDEV_FEATURES; dev->mtu = ETH_DATA_LEN - MESSAGE_MINIMUM_LENGTH - sizeof(struct udphdr) - max(sizeof(struct ipv6hdr), sizeof(struct iphdr)); SET_NETDEV_DEVTYPE(dev, &device_type); /* We need to keep the dst around in case of icmp replies. */ netif_keep_dst(dev); memset(wg, 0, sizeof(*wg)); wg->dev = dev; } static int wg_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { int ret = -ENOMEM; struct wireguard_device *wg = netdev_priv(dev); wg->creating_net = src_net; init_rwsem(&wg->static_identity.lock); mutex_init(&wg->socket_update_lock); mutex_init(&wg->device_update_lock); skb_queue_head_init(&wg->incoming_handshakes); wg_pubkey_hashtable_init(&wg->peer_hashtable); wg_index_hashtable_init(&wg->index_hashtable); wg_allowedips_init(&wg->peer_allowedips); wg_cookie_checker_init(&wg->cookie_checker, wg); INIT_LIST_HEAD(&wg->peer_list); wg->device_update_gen = 1; dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); if (!dev->tstats) goto error_1; wg->incoming_handshakes_worker = wg_packet_alloc_percpu_multicore_worker( wg_packet_handshake_receive_worker, wg); if (!wg->incoming_handshakes_worker) goto error_2; wg->handshake_receive_wq = alloc_workqueue("wg-kex-%s", WQ_CPU_INTENSIVE | WQ_FREEZABLE, 0, dev->name); if (!wg->handshake_receive_wq) goto error_3; wg->handshake_send_wq = alloc_workqueue("wg-kex-%s", WQ_UNBOUND | WQ_FREEZABLE, 0, dev->name); if (!wg->handshake_send_wq) goto error_4; wg->packet_crypt_wq = alloc_workqueue("wg-crypt-%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 0, dev->name); if (!wg->packet_crypt_wq) goto error_5; if (wg_packet_queue_init(&wg->encrypt_queue, wg_packet_encrypt_worker, true, MAX_QUEUED_PACKETS) < 0) goto error_6; if (wg_packet_queue_init(&wg->decrypt_queue, wg_packet_decrypt_worker, true, MAX_QUEUED_PACKETS) < 0) goto error_7; ret = wg_ratelimiter_init(); if (ret < 0) goto error_8; ret = register_netdevice(dev); if (ret < 0) goto error_9; list_add(&wg->device_list, &device_list); /* We wait until the end to assign priv_destructor, so that * register_netdevice doesn't call it for us if it fails. */ dev->priv_destructor = wg_destruct; pr_debug("%s: Interface created\n", dev->name); return ret; error_9: wg_ratelimiter_uninit(); error_8: wg_packet_queue_free(&wg->decrypt_queue, true); error_7: wg_packet_queue_free(&wg->encrypt_queue, true); error_6: destroy_workqueue(wg->packet_crypt_wq); error_5: destroy_workqueue(wg->handshake_send_wq); error_4: destroy_workqueue(wg->handshake_receive_wq); error_3: free_percpu(wg->incoming_handshakes_worker); error_2: free_percpu(dev->tstats); error_1: return ret; } static struct rtnl_link_ops link_ops __read_mostly = { .kind = KBUILD_MODNAME, .priv_size = sizeof(struct wireguard_device), .setup = wg_setup, .newlink = wg_newlink, }; static int wg_netdevice_notification(struct notifier_block *nb, unsigned long action, void *data) { struct net_device *dev = ((struct netdev_notifier_info *)data)->dev; struct wireguard_device *wg = netdev_priv(dev); ASSERT_RTNL(); if (action != NETDEV_REGISTER || dev->netdev_ops != &netdev_ops) return 0; if (dev_net(dev) == wg->creating_net && wg->have_creating_net_ref) { put_net(wg->creating_net); wg->have_creating_net_ref = false; } else if (dev_net(dev) != wg->creating_net && !wg->have_creating_net_ref) { wg->have_creating_net_ref = true; get_net(wg->creating_net); } return 0; } static struct notifier_block netdevice_notifier = { .notifier_call = wg_netdevice_notification }; int __init wg_device_init(void) { int ret; #if defined(CONFIG_PM_SLEEP) && !defined(CONFIG_ANDROID) ret = register_pm_notifier(&pm_notifier); if (ret) return ret; #endif ret = register_netdevice_notifier(&netdevice_notifier); if (ret) goto error_pm; ret = rtnl_link_register(&link_ops); if (ret) goto error_netdevice; return 0; error_netdevice: unregister_netdevice_notifier(&netdevice_notifier); error_pm: #if defined(CONFIG_PM_SLEEP) && !defined(CONFIG_ANDROID) unregister_pm_notifier(&pm_notifier); #endif return ret; } void wg_device_uninit(void) { rtnl_link_unregister(&link_ops); unregister_netdevice_notifier(&netdevice_notifier); #if defined(CONFIG_PM_SLEEP) && !defined(CONFIG_ANDROID) unregister_pm_notifier(&pm_notifier); #endif rcu_barrier_bh(); }