diff options
author | Jason A. Donenfeld <Jason@zx2c4.com> | 2018-09-21 19:52:42 +0200 |
---|---|---|
committer | Jason A. Donenfeld <Jason@zx2c4.com> | 2018-09-23 17:05:23 +0200 |
commit | a2ade5f157ed59c012b4d66438a496529e030411 (patch) | |
tree | 896c89a84c8687139c02ae62c3686aa404c03444 /src/crypto | |
parent | 97df8918f17323fb3f8c653243e637824b5e353a (diff) |
chacha20-arm: use new scalar implementation
It turns out this is faster than NEON on some chips, so it's nice to
have.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Diffstat (limited to 'src/crypto')
-rw-r--r-- | src/crypto/zinc/chacha20/chacha20-arm-glue.h | 94 | ||||
-rw-r--r-- | src/crypto/zinc/chacha20/chacha20-arm.S | 1683 |
2 files changed, 1208 insertions, 569 deletions
diff --git a/src/crypto/zinc/chacha20/chacha20-arm-glue.h b/src/crypto/zinc/chacha20/chacha20-arm-glue.h index 4a123c9..26fa4f2 100644 --- a/src/crypto/zinc/chacha20/chacha20-arm-glue.h +++ b/src/crypto/zinc/chacha20/chacha20-arm-glue.h @@ -5,20 +5,25 @@ #include <asm/hwcap.h> #include <asm/neon.h> +#if defined(CONFIG_ARM) +#include <asm/system_info.h> +#include <asm/cputype.h> +#endif + +#define ARM_USE_NEON (defined(CONFIG_KERNEL_MODE_NEON) && \ + (defined(CONFIG_ARM64) || \ + (defined(__LINUX_ARM_ARCH__) && \ + __LINUX_ARM_ARCH__ == 7))) asmlinkage void chacha20_arm(u8 *out, const u8 *in, const size_t len, const u32 key[8], const u32 counter[4]); -#if IS_ENABLED(CONFIG_KERNEL_MODE_NEON) -#if defined(__LINUX_ARM_ARCH__) && __LINUX_ARM_ARCH__ == 7 -#define ARM_USE_NEONv7 -asmlinkage void chacha20_neon_1block(const u32 *state, u8 *dst, const u8 *src); -asmlinkage void chacha20_neon_4block(const u32 *state, u8 *dst, const u8 *src); -#elif defined(CONFIG_64BIT) -#define ARM_USE_NEONv8 +#if defined(CONFIG_ARM) +asmlinkage void hchacha20_arm(const u32 state[16], u32 out[8]); +#endif +#if ARM_USE_NEON asmlinkage void chacha20_neon(u8 *out, const u8 *in, const size_t len, const u32 key[8], const u32 counter[4]); #endif -#endif static bool chacha20_use_neon __ro_after_init; @@ -27,7 +32,17 @@ static void __init chacha20_fpu_init(void) #if defined(CONFIG_ARM64) chacha20_use_neon = elf_hwcap & HWCAP_ASIMD; #elif defined(CONFIG_ARM) - chacha20_use_neon = elf_hwcap & HWCAP_NEON; + switch (read_cpuid_part()) { + case ARM_CPU_PART_CORTEX_A7: + case ARM_CPU_PART_CORTEX_A5: + /* The Cortex-A7 and Cortex-A5 do not perform well with the NEON + * implementation but do incredibly with the scalar one and use + * less power. + */ + break; + default: + chacha20_use_neon = elf_hwcap & HWCAP_NEON; + } #endif } @@ -35,43 +50,14 @@ static inline bool chacha20_arch(struct chacha20_ctx *state, u8 *dst, const u8 *src, size_t len, simd_context_t *simd_context) { -#if defined(ARM_USE_NEONv7) - if (chacha20_use_neon && simd_use(simd_context)) { - u8 buf[CHACHA20_BLOCK_SIZE]; - - while (len >= CHACHA20_BLOCK_SIZE * 4) { - chacha20_neon_4block((u32 *)state, dst, src); - len -= CHACHA20_BLOCK_SIZE * 4; - src += CHACHA20_BLOCK_SIZE * 4; - dst += CHACHA20_BLOCK_SIZE * 4; - state->counter[0] += 4; - } - while (len >= CHACHA20_BLOCK_SIZE) { - chacha20_neon_1block((u32 *)state, dst, src); - len -= CHACHA20_BLOCK_SIZE; - src += CHACHA20_BLOCK_SIZE; - dst += CHACHA20_BLOCK_SIZE; - state->counter[0] += 1; - } - if (len) { - memcpy(buf, src, len); - chacha20_neon_1block((u32 *)state, buf, buf); - state->counter[0] += 1; - memcpy(dst, buf, len); - } - return true; - } -#elif defined(ARM_USE_NEONv8) - if (chacha20_use_neon && simd_use(simd_context)) { +#if ARM_USE_NEON + if (chacha20_use_neon && len >= CHACHA20_BLOCK_SIZE * 3 && + simd_use(simd_context)) chacha20_neon(dst, src, len, state->key, state->counter); - goto success; - } + else #endif + chacha20_arm(dst, src, len, state->key, state->counter); - chacha20_arm(dst, src, len, state->key, state->counter); - goto success; - -success: state->counter[0] += (len + 63) / 64; return true; } @@ -79,5 +65,27 @@ success: static inline bool hchacha20_arch(u8 *derived_key, const u8 *nonce, const u8 *key, simd_context_t *simd_context) { +#if defined(CONFIG_ARM) + u32 x[] = { CHACHA20_CONSTANT_EXPA, + CHACHA20_CONSTANT_ND_3, + CHACHA20_CONSTANT_2_BY, + CHACHA20_CONSTANT_TE_K, + get_unaligned_le32(key + 0), + get_unaligned_le32(key + 4), + get_unaligned_le32(key + 8), + get_unaligned_le32(key + 12), + get_unaligned_le32(key + 16), + get_unaligned_le32(key + 20), + get_unaligned_le32(key + 24), + get_unaligned_le32(key + 28), + get_unaligned_le32(nonce + 0), + get_unaligned_le32(nonce + 4), + get_unaligned_le32(nonce + 8), + get_unaligned_le32(nonce + 12) + }; + hchacha20_arm(x, (u32 *)derived_key); + return true; +#else return false; +#endif } diff --git a/src/crypto/zinc/chacha20/chacha20-arm.S b/src/crypto/zinc/chacha20/chacha20-arm.S index 96cb4f3..dec2eb6 100644 --- a/src/crypto/zinc/chacha20/chacha20-arm.S +++ b/src/crypto/zinc/chacha20/chacha20-arm.S @@ -1,18 +1,477 @@ /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ /* - * Copyright (C) 2016 Linaro, Ltd. <ard.biesheuvel@linaro.org> - * Copyright (C) 2015 Martin Willi + * Copyright (C) 2018 Google, Inc. * Copyright (C) 2015-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * Copyright (C) 2006-2017 CRYPTOGAMS by <appro@openssl.org>. All Rights Reserved. - * - * The scalar code is based on Andy Polyakov's implementation from CRYPTOGAMS, while - * the NEON code was written by Ard Bieshuvel and Eric Biggers. The CRYPTOGAMS NEON - * code performs best on nearly all processors except the Cortex-A7, which is where - * Ard's implementation shines, and so the NEON implementation thus comes from Ard. */ #include <linux/linkage.h> +/* + * The following scalar routine was written by Eric Biggers. + * + * Design notes: + * + * 16 registers would be needed to hold the state matrix, but only 14 are + * available because 'sp' and 'pc' cannot be used. So we spill the elements + * (x8, x9) to the stack and swap them out with (x10, x11). This adds one + * 'ldrd' and one 'strd' instruction per round. + * + * All rotates are performed using the implicit rotate operand accepted by the + * 'add' and 'eor' instructions. This is faster than using explicit rotate + * instructions. To make this work, we allow the values in the second and last + * rows of the ChaCha state matrix (rows 'b' and 'd') to temporarily have the + * wrong rotation amount. The rotation amount is then fixed up just in time + * when the values are used. 'brot' is the number of bits the values in row 'b' + * need to be rotated right to arrive at the correct values, and 'drot' + * similarly for row 'd'. (brot, drot) start out as (0, 0) but we make it such + * that they end up as (25, 24) after every round. + */ + + // ChaCha state registers + X0 .req r0 + X1 .req r1 + X2 .req r2 + X3 .req r3 + X4 .req r4 + X5 .req r5 + X6 .req r6 + X7 .req r7 + X8_X10 .req r8 // shared by x8 and x10 + X9_X11 .req r9 // shared by x9 and x11 + X12 .req r10 + X13 .req r11 + X14 .req r12 + X15 .req r14 + +.Lexpand_32byte_k: + // "expand 32-byte k" + .word 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574 + +#ifdef __thumb2__ +# define adrl adr +#endif + +.macro __rev out, in, t0, t1, t2 +.if __LINUX_ARM_ARCH__ >= 6 + rev \out, \in +.else + lsl \t0, \in, #24 + and \t1, \in, #0xff00 + and \t2, \in, #0xff0000 + orr \out, \t0, \in, lsr #24 + orr \out, \out, \t1, lsl #8 + orr \out, \out, \t2, lsr #8 +.endif +.endm + +.macro _le32_bswap x, t0, t1, t2 +#ifdef __ARMEB__ + __rev \x, \x, \t0, \t1, \t2 +#endif +.endm + +.macro _le32_bswap_4x a, b, c, d, t0, t1, t2 + _le32_bswap \a, \t0, \t1, \t2 + _le32_bswap \b, \t0, \t1, \t2 + _le32_bswap \c, \t0, \t1, \t2 + _le32_bswap \d, \t0, \t1, \t2 +.endm + +.macro __ldrd a, b, src, offset +#if __LINUX_ARM_ARCH__ >= 6 + ldrd \a, \b, [\src, #\offset] +#else + ldr \a, [\src, #\offset] + ldr \b, [\src, #\offset + 4] +#endif +.endm + +.macro __strd a, b, dst, offset +#if __LINUX_ARM_ARCH__ >= 6 + strd \a, \b, [\dst, #\offset] +#else + str \a, [\dst, #\offset] + str \b, [\dst, #\offset + 4] +#endif +.endm + +.macro _halfround a1, b1, c1, d1, a2, b2, c2, d2 + + // a += b; d ^= a; d = rol(d, 16); + add \a1, \a1, \b1, ror #brot + add \a2, \a2, \b2, ror #brot + eor \d1, \a1, \d1, ror #drot + eor \d2, \a2, \d2, ror #drot + // drot == 32 - 16 == 16 + + // c += d; b ^= c; b = rol(b, 12); + add \c1, \c1, \d1, ror #16 + add \c2, \c2, \d2, ror #16 + eor \b1, \c1, \b1, ror #brot + eor \b2, \c2, \b2, ror #brot + // brot == 32 - 12 == 20 + + // a += b; d ^= a; d = rol(d, 8); + add \a1, \a1, \b1, ror #20 + add \a2, \a2, \b2, ror #20 + eor \d1, \a1, \d1, ror #16 + eor \d2, \a2, \d2, ror #16 + // drot == 32 - 8 == 24 + + // c += d; b ^= c; b = rol(b, 7); + add \c1, \c1, \d1, ror #24 + add \c2, \c2, \d2, ror #24 + eor \b1, \c1, \b1, ror #20 + eor \b2, \c2, \b2, ror #20 + // brot == 32 - 7 == 25 +.endm + +.macro _doubleround + + // column round + + // quarterrounds: (x0, x4, x8, x12) and (x1, x5, x9, x13) + _halfround X0, X4, X8_X10, X12, X1, X5, X9_X11, X13 + + // save (x8, x9); restore (x10, x11) + __strd X8_X10, X9_X11, sp, 0 + __ldrd X8_X10, X9_X11, sp, 8 + + // quarterrounds: (x2, x6, x10, x14) and (x3, x7, x11, x15) + _halfround X2, X6, X8_X10, X14, X3, X7, X9_X11, X15 + + .set brot, 25 + .set drot, 24 + + // diagonal round + + // quarterrounds: (x0, x5, x10, x15) and (x1, x6, x11, x12) + _halfround X0, X5, X8_X10, X15, X1, X6, X9_X11, X12 + + // save (x10, x11); restore (x8, x9) + __strd X8_X10, X9_X11, sp, 8 + __ldrd X8_X10, X9_X11, sp, 0 + + // quarterrounds: (x2, x7, x8, x13) and (x3, x4, x9, x14) + _halfround X2, X7, X8_X10, X13, X3, X4, X9_X11, X14 +.endm + +.macro _chacha_permute nrounds + .set brot, 0 + .set drot, 0 + .rept \nrounds / 2 + _doubleround + .endr +.endm + +.macro _chacha nrounds + +.Lnext_block\@: + // Stack: unused0-unused1 x10-x11 x0-x15 OUT IN LEN + // Registers contain x0-x9,x12-x15. + + // Do the core ChaCha permutation to update x0-x15. + _chacha_permute \nrounds + + add sp, #8 + // Stack: x10-x11 orig_x0-orig_x15 OUT IN LEN + // Registers contain x0-x9,x12-x15. + // x4-x7 are rotated by 'brot'; x12-x15 are rotated by 'drot'. + + // Free up some registers (r8-r12,r14) by pushing (x8-x9,x12-x15). + push {X8_X10, X9_X11, X12, X13, X14, X15} + + // Load (OUT, IN, LEN). + ldr r14, [sp, #96] + ldr r12, [sp, #100] + ldr r11, [sp, #104] + + orr r10, r14, r12 + + // Use slow path if fewer than 64 bytes remain. + cmp r11, #64 + blt .Lxor_slowpath\@ + + // Use slow path if IN and/or OUT isn't 4-byte aligned. Needed even on + // ARMv6+, since ldmia and stmia (used below) still require alignment. + tst r10, #3 + bne .Lxor_slowpath\@ + + // Fast path: XOR 64 bytes of aligned data. + + // Stack: x8-x9 x12-x15 x10-x11 orig_x0-orig_x15 OUT IN LEN + // Registers: r0-r7 are x0-x7; r8-r11 are free; r12 is IN; r14 is OUT. + // x4-x7 are rotated by 'brot'; x12-x15 are rotated by 'drot'. + + // x0-x3 + __ldrd r8, r9, sp, 32 + __ldrd r10, r11, sp, 40 + add X0, X0, r8 + add X1, X1, r9 + add X2, X2, r10 + add X3, X3, r11 + _le32_bswap_4x X0, X1, X2, X3, r8, r9, r10 + ldmia r12!, {r8-r11} + eor X0, X0, r8 + eor X1, X1, r9 + eor X2, X2, r10 + eor X3, X3, r11 + stmia r14!, {X0-X3} + + // x4-x7 + __ldrd r8, r9, sp, 48 + __ldrd r10, r11, sp, 56 + add X4, r8, X4, ror #brot + add X5, r9, X5, ror #brot + ldmia r12!, {X0-X3} + add X6, r10, X6, ror #brot + add X7, r11, X7, ror #brot + _le32_bswap_4x X4, X5, X6, X7, r8, r9, r10 + eor X4, X4, X0 + eor X5, X5, X1 + eor X6, X6, X2 + eor X7, X7, X3 + stmia r14!, {X4-X7} + + // x8-x15 + pop {r0-r7} // (x8-x9,x12-x15,x10-x11) + __ldrd r8, r9, sp, 32 + __ldrd r10, r11, sp, 40 + add r0, r0, r8 // x8 + add r1, r1, r9 // x9 + add r6, r6, r10 // x10 + add r7, r7, r11 // x11 + _le32_bswap_4x r0, r1, r6, r7, r8, r9, r10 + ldmia r12!, {r8-r11} + eor r0, r0, r8 // x8 + eor r1, r1, r9 // x9 + eor r6, r6, r10 // x10 + eor r7, r7, r11 // x11 + stmia r14!, {r0,r1,r6,r7} + ldmia r12!, {r0,r1,r6,r7} + __ldrd r8, r9, sp, 48 + __ldrd r10, r11, sp, 56 + add r2, r8, r2, ror #drot // x12 + add r3, r9, r3, ror #drot // x13 + add r4, r10, r4, ror #drot // x14 + add r5, r11, r5, ror #drot // x15 + _le32_bswap_4x r2, r3, r4, r5, r9, r10, r11 + ldr r9, [sp, #72] // load LEN + eor r2, r2, r0 // x12 + eor r3, r3, r1 // x13 + eor r4, r4, r6 // x14 + eor r5, r5, r7 // x15 + subs r9, #64 // decrement and check LEN + stmia r14!, {r2-r5} + + beq .Ldone\@ + +.Lprepare_for_next_block\@: + + // Stack: x0-x15 OUT IN LEN + + // Increment block counter (x12) + add r8, #1 + + // Store updated (OUT, IN, LEN) + str r14, [sp, #64] + str r12, [sp, #68] + str r9, [sp, #72] + + mov r14, sp + + // Store updated block counter (x12) + str r8, [sp, #48] + + sub sp, #16 + + // Reload state and do next block + ldmia r14!, {r0-r11} // load x0-x11 + __strd r10, r11, sp, 8 // store x10-x11 before state + ldmia r14, {r10-r12,r14} // load x12-x15 + b .Lnext_block\@ + +.Lxor_slowpath\@: + // Slow path: < 64 bytes remaining, or unaligned input or output buffer. + // We handle it by storing the 64 bytes of keystream to the stack, then + // XOR-ing the needed portion with the data. + + // Allocate keystream buffer + sub sp, #64 + mov r14, sp + + // Stack: ks0-ks15 x8-x9 x12-x15 x10-x11 orig_x0-orig_x15 OUT IN LEN + // Registers: r0-r7 are x0-x7; r8-r11 are free; r12 is IN; r14 is &ks0. + // x4-x7 are rotated by 'brot'; x12-x15 are rotated by 'drot'. + + // Save keystream for x0-x3 + __ldrd r8, r9, sp, 96 + __ldrd r10, r11, sp, 104 + add X0, X0, r8 + add X1, X1, r9 + add X2, X2, r10 + add X3, X3, r11 + _le32_bswap_4x X0, X1, X2, X3, r8, r9, r10 + stmia r14!, {X0-X3} + + // Save keystream for x4-x7 + __ldrd r8, r9, sp, 112 + __ldrd r10, r11, sp, 120 + add X4, r8, X4, ror #brot + add X5, r9, X5, ror #brot + add X6, r10, X6, ror #brot + add X7, r11, X7, ror #brot + _le32_bswap_4x X4, X5, X6, X7, r8, r9, r10 + add r8, sp, #64 + stmia r14!, {X4-X7} + + // Save keystream for x8-x15 + ldm r8, {r0-r7} // (x8-x9,x12-x15,x10-x11) + __ldrd r8, r9, sp, 128 + __ldrd r10, r11, sp, 136 + add r0, r0, r8 // x8 + add r1, r1, r9 // x9 + add r6, r6, r10 // x10 + add r7, r7, r11 // x11 + _le32_bswap_4x r0, r1, r6, r7, r8, r9, r10 + stmia r14!, {r0,r1,r6,r7} + __ldrd r8, r9, sp, 144 + __ldrd r10, r11, sp, 152 + add r2, r8, r2, ror #drot // x12 + add r3, r9, r3, ror #drot // x13 + add r4, r10, r4, ror #drot // x14 + add r5, r11, r5, ror #drot // x15 + _le32_bswap_4x r2, r3, r4, r5, r9, r10, r11 + stmia r14, {r2-r5} + + // Stack: ks0-ks15 unused0-unused7 x0-x15 OUT IN LEN + // Registers: r8 is block counter, r12 is IN. + + ldr r9, [sp, #168] // LEN + ldr r14, [sp, #160] // OUT + cmp r9, #64 + mov r0, sp + movle r1, r9 + movgt r1, #64 + // r1 is number of bytes to XOR, in range [1, 64] + +.if __LINUX_ARM_ARCH__ < 6 + orr r2, r12, r14 + tst r2, #3 // IN or OUT misaligned? + bne .Lxor_next_byte\@ +.endif + + // XOR a word at a time +.rept 16 + subs r1, #4 + blt .Lxor_words_done\@ + ldr r2, [r12], #4 + ldr r3, [r0], #4 + eor r2, r2, r3 + str r2, [r14], #4 +.endr + b .Lxor_slowpath_done\@ +.Lxor_words_done\@: + ands r1, r1, #3 + beq .Lxor_slowpath_done\@ + + // XOR a byte at a time +.Lxor_next_byte\@: + ldrb r2, [r12], #1 + ldrb r3, [r0], #1 + eor r2, r2, r3 + strb r2, [r14], #1 + subs r1, #1 + bne .Lxor_next_byte\@ + +.Lxor_slowpath_done\@: + subs r9, #64 + add sp, #96 + bgt .Lprepare_for_next_block\@ + +.Ldone\@: +.endm // _chacha + +/* + * void chacha20_arm(u8 *out, const u8 *in, size_t len, const u32 key[8], + * const u32 iv[4]); + */ +ENTRY(chacha20_arm) + cmp r2, #0 // len == 0? + bxeq lr + + push {r0-r2,r4-r11,lr} + + // Push state x0-x15 onto stack. + // Also store an extra copy of x10-x11 just before the state. + + ldr r4, [sp, #48] // iv + mov r0, sp + sub sp, #80 + + // iv: x12-x15 + ldm r4, {X12,X13,X14,X15} + stmdb r0!, {X12,X13,X14,X15} + + // key: x4-x11 + __ldrd X8_X10, X9_X11, r3, 24 + __strd X8_X10, X9_X11, sp, 8 + stmdb r0!, {X8_X10, X9_X11} + ldm r3, {X4-X9_X11} + stmdb r0!, {X4-X9_X11} + + // constants: x0-x3 + adrl X3, .Lexpand_32byte_k + ldm X3, {X0-X3} + __strd X0, X1, sp, 16 + __strd X2, X3, sp, 24 + + _chacha 20 + + add sp, #76 + pop {r4-r11, pc} +ENDPROC(chacha20_arm) + +/* + * void hchacha20_arm(const u32 state[16], u32 out[8]); + */ +ENTRY(hchacha20_arm) + push {r1,r4-r11,lr} + + mov r14, r0 + ldmia r14!, {r0-r11} // load x0-x11 + push {r10-r11} // store x10-x11 to stack + ldm r14, {r10-r12,r14} // load x12-x15 + sub sp, #8 + + _chacha_permute 20 + + // Skip over (unused0-unused1, x10-x11) + add sp, #16 + + // Fix up rotations of x12-x15 + ror X12, X12, #drot + ror X13, X13, #drot + pop {r4} // load 'out' + ror X14, X14, #drot + ror X15, X15, #drot + + // Store (x0-x3,x12-x15) to 'out' after byte swapping + _le32_bswap_4x X0, X1, X2, X3, X4, X5, X6 + _le32_bswap_4x X12, X13, X14, X15, X4, X5, X6 + stm r4, {X0,X1,X2,X3,X12,X13,X14,X15} + + pop {r4-r11,pc} +ENDPROC(hchacha20_arm) + +#if __LINUX_ARM_ARCH__ >= 7 && IS_ENABLED(CONFIG_KERNEL_MODE_NEON) +/* + * This following NEON routine was ported from Andy Polyakov's implementation + * from CRYPTOGAMS. It begins with parts of the CRYPTOGAMS scalar routine, + * since certain NEON code paths actually branch to it. + */ + .text #if defined(__thumb2__) || defined(__clang__) .syntax unified @@ -35,15 +494,6 @@ .word -1 .align 5 -ENTRY(chacha20_arm) - ldr r12,[sp,#0] @ pull pointer to counter and nonce - stmdb sp!,{r0-r2,r4-r11,lr} - cmp r2,#0 @ len==0? -#ifdef __thumb2__ - itt eq -#endif - addeq sp,sp,#4*3 - beq .Lno_data_arm .Lshort: ldmia r12,{r4-r7} @ load counter and nonce sub sp,sp,#4*(16) @ off-load area @@ -778,517 +1228,698 @@ ENTRY(chacha20_arm) .Ldone: add sp,sp,#4*(32+3) -.Lno_data_arm: ldmia sp!,{r4-r11,pc} -ENDPROC(chacha20_arm) -#if __LINUX_ARM_ARCH__ >= 7 && IS_ENABLED(CONFIG_KERNEL_MODE_NEON) -/* - * NEON doesn't have a rotate instruction. The alternatives are, more or less: - * - * (a) vshl.u32 + vsri.u32 (needs temporary register) - * (b) vshl.u32 + vshr.u32 + vorr (needs temporary register) - * (c) vrev32.16 (16-bit rotations only) - * (d) vtbl.8 + vtbl.8 (multiple of 8 bits rotations only, - * needs index vector) - * - * ChaCha20 has 16, 12, 8, and 7-bit rotations. For the 12 and 7-bit - * rotations, the only choices are (a) and (b). We use (a) since it takes - * two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53. - * - * For the 16-bit rotation, we use vrev32.16 since it's consistently fastest - * and doesn't need a temporary register. - * - * For the 8-bit rotation, we use vtbl.8 + vtbl.8. On Cortex-A7, this sequence - * is twice as fast as (a), even when doing (a) on multiple registers - * simultaneously to eliminate the stall between vshl and vsri. Also, it - * parallelizes better when temporary registers are scarce. - * - * A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as - * (a), so the need to load the rotation table actually makes the vtbl method - * slightly slower overall on that CPU (~1.3% slower ChaCha20). Still, it - * seems to be a good compromise to get a more significant speed boost on some - * CPUs, e.g. ~4.8% faster ChaCha20 on Cortex-A7. - */ +.align 5 +.Lsigma2: +.long 0x61707865,0x3320646e,0x79622d32,0x6b206574 @ endian-neutral +.Lone2: +.long 1,0,0,0 +.word -1 + +.arch armv7-a +.fpu neon + +.align 5 +ENTRY(chacha20_neon) + ldr r12,[sp,#0] @ pull pointer to counter and nonce + stmdb sp!,{r0-r2,r4-r11,lr} + cmp r2,#0 @ len==0? +#ifdef __thumb2__ + itt eq +#endif + addeq sp,sp,#4*3 + beq .Lno_data_neon + cmp r2,#192 @ test len + bls .Lshort +.Lchacha20_neon_begin: + adr r14,.Lsigma2 + vstmdb sp!,{d8-d15} @ ABI spec says so + stmdb sp!,{r0-r3} + + vld1.32 {q1-q2},[r3] @ load key + ldmia r3,{r4-r11} @ load key + + sub sp,sp,#4*(16+16) + vld1.32 {q3},[r12] @ load counter and nonce + add r12,sp,#4*8 + ldmia r14,{r0-r3} @ load sigma + vld1.32 {q0},[r14]! @ load sigma + vld1.32 {q12},[r14] @ one + vst1.32 {q2-q3},[r12] @ copy 1/2key|counter|nonce + vst1.32 {q0-q1},[sp] @ copy sigma|1/2key + + str r10,[sp,#4*(16+10)] @ off-load "rx" + str r11,[sp,#4*(16+11)] @ off-load "rx" + vshl.i32 d26,d24,#1 @ two + vstr d24,[sp,#4*(16+0)] + vshl.i32 d28,d24,#2 @ four + vstr d26,[sp,#4*(16+2)] + vmov q4,q0 + vstr d28,[sp,#4*(16+4)] + vmov q8,q0 + vmov q5,q1 + vmov q9,q1 + b .Loop_neon_enter + +.align 4 +.Loop_neon_outer: + ldmia sp,{r0-r9} @ load key material + cmp r11,#64*2 @ if len<=64*2 + bls .Lbreak_neon @ switch to integer-only + vmov q4,q0 + str r11,[sp,#4*(32+2)] @ save len + vmov q8,q0 + str r12, [sp,#4*(32+1)] @ save inp + vmov q5,q1 + str r14, [sp,#4*(32+0)] @ save out + vmov q9,q1 +.Loop_neon_enter: + ldr r11, [sp,#4*(15)] + vadd.i32 q7,q3,q12 @ counter+1 + ldr r12,[sp,#4*(12)] @ modulo-scheduled load + vmov q6,q2 + ldr r10, [sp,#4*(13)] + vmov q10,q2 + ldr r14,[sp,#4*(14)] + vadd.i32 q11,q7,q12 @ counter+2 + str r11, [sp,#4*(16+15)] + mov r11,#10 + add r12,r12,#3 @ counter+3 + b .Loop_neon + +.align 4 +.Loop_neon: + subs r11,r11,#1 + vadd.i32 q0,q0,q1 + add r0,r0,r4 + vadd.i32 q4,q4,q5 + mov r12,r12,ror#16 + vadd.i32 q8,q8,q9 + add r1,r1,r5 + veor q3,q3,q0 + mov r10,r10,ror#16 + veor q7,q7,q4 + eor r12,r12,r0,ror#16 + veor q11,q11,q8 + eor r10,r10,r1,ror#16 + vrev32.16 q3,q3 + add r8,r8,r12 + vrev32.16 q7,q7 + mov r4,r4,ror#20 + vrev32.16 q11,q11 + add r9,r9,r10 + vadd.i32 q2,q2,q3 + mov r5,r5,ror#20 + vadd.i32 q6,q6,q7 + eor r4,r4,r8,ror#20 + vadd.i32 q10,q10,q11 + eor r5,r5,r9,ror#20 + veor q12,q1,q2 + add r0,r0,r4 + veor q13,q5,q6 + mov r12,r12,ror#24 + veor q14,q9,q10 + add r1,r1,r5 + vshr.u32 q1,q12,#20 + mov r10,r10,ror#24 + vshr.u32 q5,q13,#20 + eor r12,r12,r0,ror#24 + vshr.u32 q9,q14,#20 + eor r10,r10,r1,ror#24 + vsli.32 q1,q12,#12 + add r8,r8,r12 + vsli.32 q5,q13,#12 + mov r4,r4,ror#25 + vsli.32 q9,q14,#12 + add r9,r9,r10 + vadd.i32 q0,q0,q1 + mov r5,r5,ror#25 + vadd.i32 q4,q4,q5 + str r10,[sp,#4*(16+13)] + vadd.i32 q8,q8,q9 + ldr r10,[sp,#4*(16+15)] + veor q12,q3,q0 + eor r4,r4,r8,ror#25 + veor q13,q7,q4 + eor r5,r5,r9,ror#25 + veor q14,q11,q8 + str r8,[sp,#4*(16+8)] + vshr.u32 q3,q12,#24 + ldr r8,[sp,#4*(16+10)] + vshr.u32 q7,q13,#24 + add r2,r2,r6 + vshr.u32 q11,q14,#24 + mov r14,r14,ror#16 + vsli.32 q3,q12,#8 + str r9,[sp,#4*(16+9)] + vsli.32 q7,q13,#8 + ldr r9,[sp,#4*(16+11)] + vsli.32 q11,q14,#8 + add r3,r3,r7 + vadd.i32 q2,q2,q3 + mov r10,r10,ror#16 + vadd.i32 q6,q6,q7 + eor r14,r14,r2,ror#16 + vadd.i32 q10,q10,q11 + eor r10,r10,r3,ror#16 + veor q12,q1,q2 + add r8,r8,r14 + veor q13,q5,q6 + mov r6,r6,ror#20 + veor q14,q9,q10 + add r9,r9,r10 + vshr.u32 q1,q12,#25 + mov r7,r7,ror#20 + vshr.u32 q5,q13,#25 + eor r6,r6,r8,ror#20 + vshr.u32 q9,q14,#25 + eor r7,r7,r9,ror#20 + vsli.32 q1,q12,#7 + add r2,r2,r6 + vsli.32 q5,q13,#7 + mov r14,r14,ror#24 + vsli.32 q9,q14,#7 + add r3,r3,r7 + vext.8 q2,q2,q2,#8 + mov r10,r10,ror#24 + vext.8 q6,q6,q6,#8 + eor r14,r14,r2,ror#24 + vext.8 q10,q10,q10,#8 + eor r10,r10,r3,ror#24 + vext.8 q1,q1,q1,#4 + add r8,r8,r14 + vext.8 q5,q5,q5,#4 + mov r6,r6,ror#25 + vext.8 q9,q9,q9,#4 + add r9,r9,r10 + vext.8 q3,q3,q3,#12 + mov r7,r7,ror#25 + vext.8 q7,q7,q7,#12 + eor r6,r6,r8,ror#25 + vext.8 q11,q11,q11,#12 + eor r7,r7,r9,ror#25 + vadd.i32 q0,q0,q1 + add r0,r0,r5 + vadd.i32 q4,q4,q5 + mov r10,r10,ror#16 + vadd.i32 q8,q8,q9 + add r1,r1,r6 + veor q3,q3,q0 + mov r12,r12,ror#16 + veor q7,q7,q4 + eor r10,r10,r0,ror#16 + veor q11,q11,q8 + eor r12,r12,r1,ror#16 + vrev32.16 q3,q3 + add r8,r8,r10 + vrev32.16 q7,q7 + mov r5,r5,ror#20 + vrev32.16 q11,q11 + add r9,r9,r12 + vadd.i32 q2,q2,q3 + mov r6,r6,ror#20 + vadd.i32 q6,q6,q7 + eor r5,r5,r8,ror#20 + vadd.i32 q10,q10,q11 + eor r6,r6,r9,ror#20 + veor q12,q1,q2 + add r0,r0,r5 + veor q13,q5,q6 + mov r10,r10,ror#24 + veor q14,q9,q10 + add r1,r1,r6 + vshr.u32 q1,q12,#20 + mov r12,r12,ror#24 + vshr.u32 q5,q13,#20 + eor r10,r10,r0,ror#24 + vshr.u32 q9,q14,#20 + eor r12,r12,r1,ror#24 + vsli.32 q1,q12,#12 + add r8,r8,r10 + vsli.32 q5,q13,#12 + mov r5,r5,ror#25 + vsli.32 q9,q14,#12 + str r10,[sp,#4*(16+15)] + vadd.i32 q0,q0,q1 + ldr r10,[sp,#4*(16+13)] + vadd.i32 q4,q4,q5 + add r9,r9,r12 + vadd.i32 q8,q8,q9 + mov r6,r6,ror#25 + veor q12,q3,q0 + eor r5,r5,r8,ror#25 + veor q13,q7,q4 + eor r6,r6,r9,ror#25 + veor q14,q11,q8 + str r8,[sp,#4*(16+10)] + vshr.u32 q3,q12,#24 + ldr r8,[sp,#4*(16+8)] + vshr.u32 q7,q13,#24 + add r2,r2,r7 + vshr.u32 q11,q14,#24 + mov r10,r10,ror#16 + vsli.32 q3,q12,#8 + str r9,[sp,#4*(16+11)] + vsli.32 q7,q13,#8 + ldr r9,[sp,#4*(16+9)] + vsli.32 q11,q14,#8 + add r3,r3,r4 + vadd.i32 q2,q2,q3 + mov r14,r14,ror#16 + vadd.i32 q6,q6,q7 + eor r10,r10,r2,ror#16 + vadd.i32 q10,q10,q11 + eor r14,r14,r3,ror#16 + veor q12,q1,q2 + add r8,r8,r10 + veor q13,q5,q6 + mov r7,r7,ror#20 + veor q14,q9,q10 + add r9,r9,r14 + vshr.u32 q1,q12,#25 + mov r4,r4,ror#20 + vshr.u32 q5,q13,#25 + eor r7,r7,r8,ror#20 + vshr.u32 q9,q14,#25 + eor r4,r4,r9,ror#20 + vsli.32 q1,q12,#7 + add r2,r2,r7 + vsli.32 q5,q13,#7 + mov r10,r10,ror#24 + vsli.32 q9,q14,#7 + add r3,r3,r4 + vext.8 q2,q2,q2,#8 + mov r14,r14,ror#24 + vext.8 q6,q6,q6,#8 + eor r10,r10,r2,ror#24 + vext.8 q10,q10,q10,#8 + eor r14,r14,r3,ror#24 + vext.8 q1,q1,q1,#12 + add r8,r8,r10 + vext.8 q5,q5,q5,#12 + mov r7,r7,ror#25 + vext.8 q9,q9,q9,#12 + add r9,r9,r14 + vext.8 q3,q3,q3,#4 + mov r4,r4,ror#25 + vext.8 q7,q7,q7,#4 + eor r7,r7,r8,ror#25 + vext.8 q11,q11,q11,#4 + eor r4,r4,r9,ror#25 + bne .Loop_neon + + add r11,sp,#32 + vld1.32 {q12-q13},[sp] @ load key material + vld1.32 {q14-q15},[r11] + + ldr r11,[sp,#4*(32+2)] @ load len + + str r8, [sp,#4*(16+8)] @ modulo-scheduled store + str r9, [sp,#4*(16+9)] + str r12,[sp,#4*(16+12)] + str r10, [sp,#4*(16+13)] + str r14,[sp,#4*(16+14)] + + @ at this point we have first half of 512-bit result in + @ rx and second half at sp+4*(16+8) + + ldr r12,[sp,#4*(32+1)] @ load inp + ldr r14,[sp,#4*(32+0)] @ load out + + vadd.i32 q0,q0,q12 @ accumulate key material + vadd.i32 q4,q4,q12 + vadd.i32 q8,q8,q12 + vldr d24,[sp,#4*(16+0)] @ one + + vadd.i32 q1,q1,q13 + vadd.i32 q5,q5,q13 + vadd.i32 q9,q9,q13 + vldr d26,[sp,#4*(16+2)] @ two + + vadd.i32 q2,q2,q14 + vadd.i32 q6,q6,q14 + vadd.i32 q10,q10,q14 + vadd.i32 d14,d14,d24 @ counter+1 + vadd.i32 d22,d22,d26 @ counter+2 + + vadd.i32 q3,q3,q15 + vadd.i32 q7,q7,q15 + vadd.i32 q11,q11,q15 + + cmp r11,#64*4 + blo .Ltail_neon + + vld1.8 {q12-q13},[r12]! @ load input + mov r11,sp + vld1.8 {q14-q15},[r12]! + veor q0,q0,q12 @ xor with input + veor q1,q1,q13 + vld1.8 {q12-q13},[r12]! + veor q2,q2,q14 + veor q3,q3,q15 + vld1.8 {q14-q15},[r12]! + + veor q4,q4,q12 + vst1.8 {q0-q1},[r14]! @ store output + veor q5,q5,q13 + vld1.8 {q12-q13},[r12]! + veor q6,q6,q14 + vst1.8 {q2-q3},[r14]! + veor q7,q7,q15 + vld1.8 {q14-q15},[r12]! + + veor q8,q8,q12 + vld1.32 {q0-q1},[r11]! @ load for next iteration + veor d25,d25,d25 + vldr d24,[sp,#4*(16+4)] @ four + veor q9,q9,q13 + vld1.32 {q2-q3},[r11] + veor q10,q10,q14 + vst1.8 {q4-q5},[r14]! + veor q11,q11,q15 + vst1.8 {q6-q7},[r14]! + + vadd.i32 d6,d6,d24 @ next counter value + vldr d24,[sp,#4*(16+0)] @ one + + ldmia sp,{r8-r11} @ load key material + add r0,r0,r8 @ accumulate key material + ldr r8,[r12],#16 @ load input + vst1.8 {q8-q9},[r14]! + add r1,r1,r9 + ldr r9,[r12,#-12] + vst1.8 {q10-q11},[r14]! + add r2,r2,r10 + ldr r10,[r12,#-8] + add r3,r3,r11 + ldr r11,[r12,#-4] +#ifdef __ARMEB__ + rev r0,r0 + rev r1,r1 + rev r2,r2 + rev r3,r3 +#endif + eor r0,r0,r8 @ xor with input + add r8,sp,#4*(4) + eor r1,r1,r9 + str r0,[r14],#16 @ store output + eor r2,r2,r10 + str r1,[r14,#-12] + eor r3,r3,r11 + ldmia r8,{r8-r11} @ load key material + str r2,[r14,#-8] + str r3,[r14,#-4] + + add r4,r4,r8 @ accumulate key material + ldr r8,[r12],#16 @ load input + add r5,r5,r9 + ldr r9,[r12,#-12] + add r6,r6,r10 + ldr r10,[r12,#-8] + add r7,r7,r11 + ldr r11,[r12,#-4] +#ifdef __ARMEB__ + rev r4,r4 + rev r5,r5 + rev r6,r6 + rev r7,r7 +#endif + eor r4,r4,r8 + add r8,sp,#4*(8) + eor r5,r5,r9 + str r4,[r14],#16 @ store output + eor r6,r6,r10 + str r5,[r14,#-12] + eor r7,r7,r11 + ldmia r8,{r8-r11} @ load key material + str r6,[r14,#-8] + add r0,sp,#4*(16+8) + str r7,[r14,#-4] + + ldmia r0,{r0-r7} @ load second half + + add r0,r0,r8 @ accumulate key material + ldr r8,[r12],#16 @ load input + add r1,r1,r9 + ldr r9,[r12,#-12] +#ifdef __thumb2__ + it hi +#endif + strhi r10,[sp,#4*(16+10)] @ copy "rx" while at it + add r2,r2,r10 + ldr r10,[r12,#-8] +#ifdef __thumb2__ + it hi +#endif + strhi r11,[sp,#4*(16+11)] @ copy "rx" while at it + add r3,r3,r11 + ldr r11,[r12,#-4] +#ifdef __ARMEB__ + rev r0,r0 + rev r1,r1 + rev r2,r2 + rev r3,r3 +#endif + eor r0,r0,r8 + add r8,sp,#4*(12) + eor r1,r1,r9 + str r0,[r14],#16 @ store output + eor r2,r2,r10 + str r1,[r14,#-12] + eor r3,r3,r11 + ldmia r8,{r8-r11} @ load key material + str r2,[r14,#-8] + str r3,[r14,#-4] + + add r4,r4,r8 @ accumulate key material + add r8,r8,#4 @ next counter value + add r5,r5,r9 + str r8,[sp,#4*(12)] @ save next counter value + ldr r8,[r12],#16 @ load input + add r6,r6,r10 + add r4,r4,#3 @ counter+3 + ldr r9,[r12,#-12] + add r7,r7,r11 + ldr r10,[r12,#-8] + ldr r11,[r12,#-4] +#ifdef __ARMEB__ + rev r4,r4 + rev r5,r5 + rev r6,r6 + rev r7,r7 +#endif + eor r4,r4,r8 +#ifdef __thumb2__ + it hi +#endif + ldrhi r8,[sp,#4*(32+2)] @ re-load len + eor r5,r5,r9 + eor r6,r6,r10 + str r4,[r14],#16 @ store output + eor r7,r7,r11 + str r5,[r14,#-12] + sub r11,r8,#64*4 @ len-=64*4 + str r6,[r14,#-8] + str r7,[r14,#-4] + bhi .Loop_neon_outer + + b .Ldone_neon + +.align 4 +.Lbreak_neon: + @ harmonize NEON and integer-only stack frames: load data + @ from NEON frame, but save to integer-only one; distance + @ between the two is 4*(32+4+16-32)=4*(20). + + str r11, [sp,#4*(20+32+2)] @ save len + add r11,sp,#4*(32+4) + str r12, [sp,#4*(20+32+1)] @ save inp + str r14, [sp,#4*(20+32+0)] @ save out + + ldr r12,[sp,#4*(16+10)] + ldr r14,[sp,#4*(16+11)] + vldmia r11,{d8-d15} @ fulfill ABI requirement + str r12,[sp,#4*(20+16+10)] @ copy "rx" + str r14,[sp,#4*(20+16+11)] @ copy "rx" + + ldr r11, [sp,#4*(15)] + ldr r12,[sp,#4*(12)] @ modulo-scheduled load + ldr r10, [sp,#4*(13)] + ldr r14,[sp,#4*(14)] + str r11, [sp,#4*(20+16+15)] + add r11,sp,#4*(20) + vst1.32 {q0-q1},[r11]! @ copy key + add sp,sp,#4*(20) @ switch frame + vst1.32 {q2-q3},[r11] + mov r11,#10 + b .Loop @ go integer-only + +.align 4 +.Ltail_neon: + cmp r11,#64*3 + bhs .L192_or_more_neon + cmp r11,#64*2 + bhs .L128_or_more_neon + cmp r11,#64*1 + bhs .L64_or_more_neon + + add r8,sp,#4*(8) + vst1.8 {q0-q1},[sp] + add r10,sp,#4*(0) + vst1.8 {q2-q3},[r8] + b .Loop_tail_neon + +.align 4 +.L64_or_more_neon: + vld1.8 {q12-q13},[r12]! + vld1.8 {q14-q15},[r12]! + veor q0,q0,q12 + veor q1,q1,q13 + veor q2,q2,q14 + veor q3,q3,q15 + vst1.8 {q0-q1},[r14]! + vst1.8 {q2-q3},[r14]! + + beq .Ldone_neon + + add r8,sp,#4*(8) + vst1.8 {q4-q5},[sp] + add r10,sp,#4*(0) + vst1.8 {q6-q7},[r8] + sub r11,r11,#64*1 @ len-=64*1 + b .Loop_tail_neon - .text - .fpu neon - .align 5 - -ENTRY(chacha20_neon_1block) - // r0: Input state matrix, s - // r1: 1 data block output, o - // r2: 1 data block input, i - - // - // This function encrypts one ChaCha20 block by loading the state matrix - // in four NEON registers. It performs matrix operation on four words in - // parallel, but requireds shuffling to rearrange the words after each - // round. - // - - // x0..3 = s0..3 - add ip, r0, #0x20 - vld1.32 {q0-q1}, [r0] - vld1.32 {q2-q3}, [ip] - - vmov q8, q0 - vmov q9, q1 - vmov q10, q2 - vmov q11, q3 - - adr ip, .Lrol8_table - mov r3, #10 - vld1.8 {d10}, [ip, :64] - -.Ldoubleround: - // x0 += x1, x3 = rotl32(x3 ^ x0, 16) - vadd.i32 q0, q0, q1 - veor q3, q3, q0 - vrev32.16 q3, q3 - - // x2 += x3, x1 = rotl32(x1 ^ x2, 12) - vadd.i32 q2, q2, q3 - veor q4, q1, q2 - vshl.u32 q1, q4, #12 - vsri.u32 q1, q4, #20 - - // x0 += x1, x3 = rotl32(x3 ^ x0, 8) - vadd.i32 q0, q0, q1 - veor q3, q3, q0 - vtbl.8 d6, {d6}, d10 - vtbl.8 d7, {d7}, d10 - - // x2 += x3, x1 = rotl32(x1 ^ x2, 7) - vadd.i32 q2, q2, q3 - veor q4, q1, q2 - vshl.u32 q1, q4, #7 - vsri.u32 q1, q4, #25 - - // x1 = shuffle32(x1, MASK(0, 3, 2, 1)) - vext.8 q1, q1, q1, #4 - // x2 = shuffle32(x2, MASK(1, 0, 3, 2)) - vext.8 q2, q2, q2, #8 - // x3 = shuffle32(x3, MASK(2, 1, 0, 3)) - vext.8 q3, q3, q3, #12 - - // x0 += x1, x3 = rotl32(x3 ^ x0, 16) - vadd.i32 q0, q0, q1 - veor q3, q3, q0 - vrev32.16 q3, q3 - - // x2 += x3, x1 = rotl32(x1 ^ x2, 12) - vadd.i32 q2, q2, q3 - veor q4, q1, q2 - vshl.u32 q1, q4, #12 - vsri.u32 q1, q4, #20 - - // x0 += x1, x3 = rotl32(x3 ^ x0, 8) - vadd.i32 q0, q0, q1 - veor q3, q3, q0 - vtbl.8 d6, {d6}, d10 - vtbl.8 d7, {d7}, d10 - - // x2 += x3, x1 = rotl32(x1 ^ x2, 7) - vadd.i32 q2, q2, q3 - veor q4, q1, q2 - vshl.u32 q1, q4, #7 - vsri.u32 q1, q4, #25 - - // x1 = shuffle32(x1, MASK(2, 1, 0, 3)) - vext.8 q1, q1, q1, #12 - // x2 = shuffle32(x2, MASK(1, 0, 3, 2)) - vext.8 q2, q2, q2, #8 - // x3 = shuffle32(x3, MASK(0, 3, 2, 1)) - vext.8 q3, q3, q3, #4 - - subs r3, r3, #1 - bne .Ldoubleround - - add ip, r2, #0x20 - vld1.8 {q4-q5}, [r2] - vld1.8 {q6-q7}, [ip] - - // o0 = i0 ^ (x0 + s0) - vadd.i32 q0, q0, q8 - veor q0, q0, q4 - - // o1 = i1 ^ (x1 + s1) - vadd.i32 q1, q1, q9 - veor q1, q1, q5 - - // o2 = i2 ^ (x2 + s2) - vadd.i32 q2, q2, q10 - veor q2, q2, q6 - - // o3 = i3 ^ (x3 + s3) - vadd.i32 q3, q3, q11 - veor q3, q3, q7 - - add ip, r1, #0x20 - vst1.8 {q0-q1}, [r1] - vst1.8 {q2-q3}, [ip] - - bx lr -ENDPROC(chacha20_neon_1block) - - .align 4 -.Lctrinc: .word 0, 1, 2, 3 -.Lrol8_table: .byte 3, 0, 1, 2, 7, 4, 5, 6 - - .align 5 -ENTRY(chacha20_neon_4block) - push {r4-r5} - mov r4, sp // preserve the stack pointer - sub ip, sp, #0x20 // allocate a 32 byte buffer - bic ip, ip, #0x1f // aligned to 32 bytes - mov sp, ip - - // r0: Input state matrix, s - // r1: 4 data blocks output, o - // r2: 4 data blocks input, i - - // - // This function encrypts four consecutive ChaCha20 blocks by loading - // the state matrix in NEON registers four times. The algorithm performs - // each operation on the corresponding word of each state matrix, hence - // requires no word shuffling. The words are re-interleaved before the - // final addition of the original state and the XORing step. - // - - // x0..15[0-3] = s0..15[0-3] - add ip, r0, #0x20 - vld1.32 {q0-q1}, [r0] - vld1.32 {q2-q3}, [ip] - - adr r5, .Lctrinc - vdup.32 q15, d7[1] - vdup.32 q14, d7[0] - vld1.32 {q4}, [r5, :128] - vdup.32 q13, d6[1] - vdup.32 q12, d6[0] - vdup.32 q11, d5[1] - vdup.32 q10, d5[0] - vadd.u32 q12, q12, q4 // x12 += counter values 0-3 - vdup.32 q9, d4[1] - vdup.32 q8, d4[0] - vdup.32 q7, d3[1] - vdup.32 q6, d3[0] - vdup.32 q5, d2[1] - vdup.32 q4, d2[0] - vdup.32 q3, d1[1] - vdup.32 q2, d1[0] - vdup.32 q1, d0[1] - vdup.32 q0, d0[0] - - adr ip, .Lrol8_table - mov r3, #10 - b 1f - -.Ldoubleround4: - vld1.32 {q8-q9}, [sp, :256] -1: - // x0 += x4, x12 = rotl32(x12 ^ x0, 16) - // x1 += x5, x13 = rotl32(x13 ^ x1, 16) - // x2 += x6, x14 = rotl32(x14 ^ x2, 16) - // x3 += x7, x15 = rotl32(x15 ^ x3, 16) - vadd.i32 q0, q0, q4 - vadd.i32 q1, q1, q5 - vadd.i32 q2, q2, q6 - vadd.i32 q3, q3, q7 - - veor q12, q12, q0 - veor q13, q13, q1 - veor q14, q14, q2 - veor q15, q15, q3 - - vrev32.16 q12, q12 - vrev32.16 q13, q13 - vrev32.16 q14, q14 - vrev32.16 q15, q15 - - // x8 += x12, x4 = rotl32(x4 ^ x8, 12) - // x9 += x13, x5 = rotl32(x5 ^ x9, 12) - // x10 += x14, x6 = rotl32(x6 ^ x10, 12) - // x11 += x15, x7 = rotl32(x7 ^ x11, 12) - vadd.i32 q8, q8, q12 - vadd.i32 q9, q9, q13 - vadd.i32 q10, q10, q14 - vadd.i32 q11, q11, q15 - - vst1.32 {q8-q9}, [sp, :256] - - veor q8, q4, q8 - veor q9, q5, q9 - vshl.u32 q4, q8, #12 - vshl.u32 q5, q9, #12 - vsri.u32 q4, q8, #20 - vsri.u32 q5, q9, #20 - - veor q8, q6, q10 - veor q9, q7, q11 - vshl.u32 q6, q8, #12 - vshl.u32 q7, q9, #12 - vsri.u32 q6, q8, #20 - vsri.u32 q7, q9, #20 - - // x0 += x4, x12 = rotl32(x12 ^ x0, 8) - // x1 += x5, x13 = rotl32(x13 ^ x1, 8) - // x2 += x6, x14 = rotl32(x14 ^ x2, 8) - // x3 += x7, x15 = rotl32(x15 ^ x3, 8) - vld1.8 {d16}, [ip, :64] - vadd.i32 q0, q0, q4 - vadd.i32 q1, q1, q5 - vadd.i32 q2, q2, q6 - vadd.i32 q3, q3, q7 - - veor q12, q12, q0 - veor q13, q13, q1 - veor q14, q14, q2 - veor q15, q15, q3 - - vtbl.8 d24, {d24}, d16 - vtbl.8 d25, {d25}, d16 - vtbl.8 d26, {d26}, d16 - vtbl.8 d27, {d27}, d16 - vtbl.8 d28, {d28}, d16 - vtbl.8 d29, {d29}, d16 - vtbl.8 d30, {d30}, d16 - vtbl.8 d31, {d31}, d16 - - vld1.32 {q8-q9}, [sp, :256] - - // x8 += x12, x4 = rotl32(x4 ^ x8, 7) - // x9 += x13, x5 = rotl32(x5 ^ x9, 7) - // x10 += x14, x6 = rotl32(x6 ^ x10, 7) - // x11 += x15, x7 = rotl32(x7 ^ x11, 7) - vadd.i32 q8, q8, q12 - vadd.i32 q9, q9, q13 - vadd.i32 q10, q10, q14 - vadd.i32 q11, q11, q15 - - vst1.32 {q8-q9}, [sp, :256] - - veor q8, q4, q8 - veor q9, q5, q9 - vshl.u32 q4, q8, #7 - vshl.u32 q5, q9, #7 - vsri.u32 q4, q8, #25 - vsri.u32 q5, q9, #25 - - veor q8, q6, q10 - veor q9, q7, q11 - vshl.u32 q6, q8, #7 - vshl.u32 q7, q9, #7 - vsri.u32 q6, q8, #25 - vsri.u32 q7, q9, #25 - - vld1.32 {q8-q9}, [sp, :256] - - // x0 += x5, x15 = rotl32(x15 ^ x0, 16) - // x1 += x6, x12 = rotl32(x12 ^ x1, 16) - // x2 += x7, x13 = rotl32(x13 ^ x2, 16) - // x3 += x4, x14 = rotl32(x14 ^ x3, 16) - vadd.i32 q0, q0, q5 - vadd.i32 q1, q1, q6 - vadd.i32 q2, q2, q7 - vadd.i32 q3, q3, q4 - - veor q15, q15, q0 - veor q12, q12, q1 - veor q13, q13, q2 - veor q14, q14, q3 - - vrev32.16 q15, q15 - vrev32.16 q12, q12 - vrev32.16 q13, q13 - vrev32.16 q14, q14 - - // x10 += x15, x5 = rotl32(x5 ^ x10, 12) - // x11 += x12, x6 = rotl32(x6 ^ x11, 12) - // x8 += x13, x7 = rotl32(x7 ^ x8, 12) - // x9 += x14, x4 = rotl32(x4 ^ x9, 12) - vadd.i32 q10, q10, q15 - vadd.i32 q11, q11, q12 - vadd.i32 q8, q8, q13 - vadd.i32 q9, q9, q14 - - vst1.32 {q8-q9}, [sp, :256] - - veor q8, q7, q8 - veor q9, q4, q9 - vshl.u32 q7, q8, #12 - vshl.u32 q4, q9, #12 - vsri.u32 q7, q8, #20 - vsri.u32 q4, q9, #20 - - veor q8, q5, q10 - veor q9, q6, q11 - vshl.u32 q5, q8, #12 - vshl.u32 q6, q9, #12 - vsri.u32 q5, q8, #20 - vsri.u32 q6, q9, #20 - - // x0 += x5, x15 = rotl32(x15 ^ x0, 8) - // x1 += x6, x12 = rotl32(x12 ^ x1, 8) - // x2 += x7, x13 = rotl32(x13 ^ x2, 8) - // x3 += x4, x14 = rotl32(x14 ^ x3, 8) - vld1.8 {d16}, [ip, :64] - vadd.i32 q0, q0, q5 - vadd.i32 q1, q1, q6 - vadd.i32 q2, q2, q7 - vadd.i32 q3, q3, q4 - - veor q15, q15, q0 - veor q12, q12, q1 - veor q13, q13, q2 - veor q14, q14, q3 - - vtbl.8 d30, {d30}, d16 - vtbl.8 d31, {d31}, d16 - vtbl.8 d24, {d24}, d16 - vtbl.8 d25, {d25}, d16 - vtbl.8 d26, {d26}, d16 - vtbl.8 d27, {d27}, d16 - vtbl.8 d28, {d28}, d16 - vtbl.8 d29, {d29}, d16 - - vld1.32 {q8-q9}, [sp, :256] - - // x10 += x15, x5 = rotl32(x5 ^ x10, 7) - // x11 += x12, x6 = rotl32(x6 ^ x11, 7) - // x8 += x13, x7 = rotl32(x7 ^ x8, 7) - // x9 += x14, x4 = rotl32(x4 ^ x9, 7) - vadd.i32 q10, q10, q15 - vadd.i32 q11, q11, q12 - vadd.i32 q8, q8, q13 - vadd.i32 q9, q9, q14 - - vst1.32 {q8-q9}, [sp, :256] - - veor q8, q7, q8 - veor q9, q4, q9 - vshl.u32 q7, q8, #7 - vshl.u32 q4, q9, #7 - vsri.u32 q7, q8, #25 - vsri.u32 q4, q9, #25 - - veor q8, q5, q10 - veor q9, q6, q11 - vshl.u32 q5, q8, #7 - vshl.u32 q6, q9, #7 - vsri.u32 q5, q8, #25 - vsri.u32 q6, q9, #25 - - subs r3, r3, #1 - bne .Ldoubleround4 - - // x0..7[0-3] are in q0-q7, x10..15[0-3] are in q10-q15. - // x8..9[0-3] are on the stack. - - // Re-interleave the words in the first two rows of each block (x0..7). - // Also add the counter values 0-3 to x12[0-3]. - vld1.32 {q8}, [r5, :128] // load counter values 0-3 - vzip.32 q0, q1 // => (0 1 0 1) (0 1 0 1) - vzip.32 q2, q3 // => (2 3 2 3) (2 3 2 3) - vzip.32 q4, q5 // => (4 5 4 5) (4 5 4 5) - vzip.32 q6, q7 // => (6 7 6 7) (6 7 6 7) - vadd.u32 q12, q8 // x12 += counter values 0-3 - vswp d1, d4 - vswp d3, d6 - vld1.32 {q8-q9}, [r0]! // load s0..7 - vswp d9, d12 - vswp d11, d14 - - // Swap q1 and q4 so that we'll free up consecutive registers (q0-q1) - // after XORing the first 32 bytes. - vswp q1, q4 - - // First two rows of each block are (q0 q1) (q2 q6) (q4 q5) (q3 q7) - - // x0..3[0-3] += s0..3[0-3] (add orig state to 1st row of each block) - vadd.u32 q0, q0, q8 - vadd.u32 q2, q2, q8 - vadd.u32 q4, q4, q8 - vadd.u32 q3, q3, q8 - - // x4..7[0-3] += s4..7[0-3] (add orig state to 2nd row of each block) - vadd.u32 q1, q1, q9 - vadd.u32 q6, q6, q9 - vadd.u32 q5, q5, q9 - vadd.u32 q7, q7, q9 - - // XOR first 32 bytes using keystream from first two rows of first block - vld1.8 {q8-q9}, [r2]! - veor q8, q8, q0 - veor q9, q9, q1 - vst1.8 {q8-q9}, [r1]! - - // Re-interleave the words in the last two rows of each block (x8..15). - vld1.32 {q8-q9}, [sp, :256] - vzip.32 q12, q13 // => (12 13 12 13) (12 13 12 13) - vzip.32 q14, q15 // => (14 15 14 15) (14 15 14 15) - vzip.32 q8, q9 // => (8 9 8 9) (8 9 8 9) - vzip.32 q10, q11 // => (10 11 10 11) (10 11 10 11) - vld1.32 {q0-q1}, [r0] // load s8..15 - vswp d25, d28 - vswp d27, d30 - vswp d17, d20 - vswp d19, d22 - - // Last two rows of each block are (q8 q12) (q10 q14) (q9 q13) (q11 q15) - - // x8..11[0-3] += s8..11[0-3] (add orig state to 3rd row of each block) - vadd.u32 q8, q8, q0 - vadd.u32 q10, q10, q0 - vadd.u32 q9, q9, q0 - vadd.u32 q11, q11, q0 - - // x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block) - vadd.u32 q12, q12, q1 - vadd.u32 q14, q14, q1 - vadd.u32 q13, q13, q1 - vadd.u32 q15, q15, q1 - - // XOR the rest of the data with the keystream - - vld1.8 {q0-q1}, [r2]! - veor q0, q0, q8 - veor q1, q1, q12 - vst1.8 {q0-q1}, [r1]! - - vld1.8 {q0-q1}, [r2]! - veor q0, q0, q2 - veor q1, q1, q6 - vst1.8 {q0-q1}, [r1]! - - vld1.8 {q0-q1}, [r2]! - veor q0, q0, q10 - veor q1, q1, q14 - vst1.8 {q0-q1}, [r1]! - - vld1.8 {q0-q1}, [r2]! - veor q0, q0, q4 - veor q1, q1, q5 - vst1.8 {q0-q1}, [r1]! - - vld1.8 {q0-q1}, [r2]! - veor q0, q0, q9 - veor q1, q1, q13 - vst1.8 {q0-q1}, [r1]! - - vld1.8 {q0-q1}, [r2]! - veor q0, q0, q3 - veor q1, q1, q7 - vst1.8 {q0-q1}, [r1]! - - vld1.8 {q0-q1}, [r2] - mov sp, r4 // restore original stack pointer - veor q0, q0, q11 - veor q1, q1, q15 - vst1.8 {q0-q1}, [r1] - - pop {r4-r5} - bx lr -ENDPROC(chacha20_neon_4block) +.align 4 +.L128_or_more_neon: + vld1.8 {q12-q13},[r12]! + vld1.8 {q14-q15},[r12]! + veor q0,q0,q12 + veor q1,q1,q13 + vld1.8 {q12-q13},[r12]! + veor q2,q2,q14 + veor q3,q3,q15 + vld1.8 {q14-q15},[r12]! + + veor q4,q4,q12 + veor q5,q5,q13 + vst1.8 {q0-q1},[r14]! + veor q6,q6,q14 + vst1.8 {q2-q3},[r14]! + veor q7,q7,q15 + vst1.8 {q4-q5},[r14]! + vst1.8 {q6-q7},[r14]! + + beq .Ldone_neon + + add r8,sp,#4*(8) + vst1.8 {q8-q9},[sp] + add r10,sp,#4*(0) + vst1.8 {q10-q11},[r8] + sub r11,r11,#64*2 @ len-=64*2 + b .Loop_tail_neon + +.align 4 +.L192_or_more_neon: + vld1.8 {q12-q13},[r12]! + vld1.8 {q14-q15},[r12]! + veor q0,q0,q12 + veor q1,q1,q13 + vld1.8 {q12-q13},[r12]! + veor q2,q2,q14 + veor q3,q3,q15 + vld1.8 {q14-q15},[r12]! + + veor q4,q4,q12 + veor q5,q5,q13 + vld1.8 {q12-q13},[r12]! + veor q6,q6,q14 + vst1.8 {q0-q1},[r14]! + veor q7,q7,q15 + vld1.8 {q14-q15},[r12]! + + veor q8,q8,q12 + vst1.8 {q2-q3},[r14]! + veor q9,q9,q13 + vst1.8 {q4-q5},[r14]! + veor q10,q10,q14 + vst1.8 {q6-q7},[r14]! + veor q11,q11,q15 + vst1.8 {q8-q9},[r14]! + vst1.8 {q10-q11},[r14]! + + beq .Ldone_neon + + ldmia sp,{r8-r11} @ load key material + add r0,r0,r8 @ accumulate key material + add r8,sp,#4*(4) + add r1,r1,r9 + add r2,r2,r10 + add r3,r3,r11 + ldmia r8,{r8-r11} @ load key material + + add r4,r4,r8 @ accumulate key material + add r8,sp,#4*(8) + add r5,r5,r9 + add r6,r6,r10 + add r7,r7,r11 + ldmia r8,{r8-r11} @ load key material +#ifdef __ARMEB__ + rev r0,r0 + rev r1,r1 + rev r2,r2 + rev r3,r3 + rev r4,r4 + rev r5,r5 + rev r6,r6 + rev r7,r7 +#endif + stmia sp,{r0-r7} + add r0,sp,#4*(16+8) + + ldmia r0,{r0-r7} @ load second half + + add r0,r0,r8 @ accumulate key material + add r8,sp,#4*(12) + add r1,r1,r9 + add r2,r2,r10 + add r3,r3,r11 + ldmia r8,{r8-r11} @ load key material + + add r4,r4,r8 @ accumulate key material + add r8,sp,#4*(8) + add r5,r5,r9 + add r4,r4,#3 @ counter+3 + add r6,r6,r10 + add r7,r7,r11 + ldr r11,[sp,#4*(32+2)] @ re-load len +#ifdef __ARMEB__ + rev r0,r0 + rev r1,r1 + rev r2,r2 + rev r3,r3 + rev r4,r4 + rev r5,r5 + rev r6,r6 + rev r7,r7 +#endif + stmia r8,{r0-r7} + add r10,sp,#4*(0) + sub r11,r11,#64*3 @ len-=64*3 + +.Loop_tail_neon: + ldrb r8,[r10],#1 @ read buffer on stack + ldrb r9,[r12],#1 @ read input + subs r11,r11,#1 + eor r8,r8,r9 + strb r8,[r14],#1 @ store output + bne .Loop_tail_neon + +.Ldone_neon: + add sp,sp,#4*(32+4) + vldmia sp,{d8-d15} + add sp,sp,#4*(16+3) +.Lno_data_neon: + ldmia sp!,{r4-r11,pc} +ENDPROC(chacha20_neon) #endif |