summaryrefslogtreecommitdiffhomepage
path: root/src/crypto
diff options
context:
space:
mode:
authorJason A. Donenfeld <Jason@zx2c4.com>2018-09-21 19:52:42 +0200
committerJason A. Donenfeld <Jason@zx2c4.com>2018-09-23 17:05:23 +0200
commita2ade5f157ed59c012b4d66438a496529e030411 (patch)
tree896c89a84c8687139c02ae62c3686aa404c03444 /src/crypto
parent97df8918f17323fb3f8c653243e637824b5e353a (diff)
chacha20-arm: use new scalar implementation
It turns out this is faster than NEON on some chips, so it's nice to have. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Diffstat (limited to 'src/crypto')
-rw-r--r--src/crypto/zinc/chacha20/chacha20-arm-glue.h94
-rw-r--r--src/crypto/zinc/chacha20/chacha20-arm.S1683
2 files changed, 1208 insertions, 569 deletions
diff --git a/src/crypto/zinc/chacha20/chacha20-arm-glue.h b/src/crypto/zinc/chacha20/chacha20-arm-glue.h
index 4a123c9..26fa4f2 100644
--- a/src/crypto/zinc/chacha20/chacha20-arm-glue.h
+++ b/src/crypto/zinc/chacha20/chacha20-arm-glue.h
@@ -5,20 +5,25 @@
#include <asm/hwcap.h>
#include <asm/neon.h>
+#if defined(CONFIG_ARM)
+#include <asm/system_info.h>
+#include <asm/cputype.h>
+#endif
+
+#define ARM_USE_NEON (defined(CONFIG_KERNEL_MODE_NEON) && \
+ (defined(CONFIG_ARM64) || \
+ (defined(__LINUX_ARM_ARCH__) && \
+ __LINUX_ARM_ARCH__ == 7)))
asmlinkage void chacha20_arm(u8 *out, const u8 *in, const size_t len,
const u32 key[8], const u32 counter[4]);
-#if IS_ENABLED(CONFIG_KERNEL_MODE_NEON)
-#if defined(__LINUX_ARM_ARCH__) && __LINUX_ARM_ARCH__ == 7
-#define ARM_USE_NEONv7
-asmlinkage void chacha20_neon_1block(const u32 *state, u8 *dst, const u8 *src);
-asmlinkage void chacha20_neon_4block(const u32 *state, u8 *dst, const u8 *src);
-#elif defined(CONFIG_64BIT)
-#define ARM_USE_NEONv8
+#if defined(CONFIG_ARM)
+asmlinkage void hchacha20_arm(const u32 state[16], u32 out[8]);
+#endif
+#if ARM_USE_NEON
asmlinkage void chacha20_neon(u8 *out, const u8 *in, const size_t len,
const u32 key[8], const u32 counter[4]);
#endif
-#endif
static bool chacha20_use_neon __ro_after_init;
@@ -27,7 +32,17 @@ static void __init chacha20_fpu_init(void)
#if defined(CONFIG_ARM64)
chacha20_use_neon = elf_hwcap & HWCAP_ASIMD;
#elif defined(CONFIG_ARM)
- chacha20_use_neon = elf_hwcap & HWCAP_NEON;
+ switch (read_cpuid_part()) {
+ case ARM_CPU_PART_CORTEX_A7:
+ case ARM_CPU_PART_CORTEX_A5:
+ /* The Cortex-A7 and Cortex-A5 do not perform well with the NEON
+ * implementation but do incredibly with the scalar one and use
+ * less power.
+ */
+ break;
+ default:
+ chacha20_use_neon = elf_hwcap & HWCAP_NEON;
+ }
#endif
}
@@ -35,43 +50,14 @@ static inline bool chacha20_arch(struct chacha20_ctx *state, u8 *dst,
const u8 *src, size_t len,
simd_context_t *simd_context)
{
-#if defined(ARM_USE_NEONv7)
- if (chacha20_use_neon && simd_use(simd_context)) {
- u8 buf[CHACHA20_BLOCK_SIZE];
-
- while (len >= CHACHA20_BLOCK_SIZE * 4) {
- chacha20_neon_4block((u32 *)state, dst, src);
- len -= CHACHA20_BLOCK_SIZE * 4;
- src += CHACHA20_BLOCK_SIZE * 4;
- dst += CHACHA20_BLOCK_SIZE * 4;
- state->counter[0] += 4;
- }
- while (len >= CHACHA20_BLOCK_SIZE) {
- chacha20_neon_1block((u32 *)state, dst, src);
- len -= CHACHA20_BLOCK_SIZE;
- src += CHACHA20_BLOCK_SIZE;
- dst += CHACHA20_BLOCK_SIZE;
- state->counter[0] += 1;
- }
- if (len) {
- memcpy(buf, src, len);
- chacha20_neon_1block((u32 *)state, buf, buf);
- state->counter[0] += 1;
- memcpy(dst, buf, len);
- }
- return true;
- }
-#elif defined(ARM_USE_NEONv8)
- if (chacha20_use_neon && simd_use(simd_context)) {
+#if ARM_USE_NEON
+ if (chacha20_use_neon && len >= CHACHA20_BLOCK_SIZE * 3 &&
+ simd_use(simd_context))
chacha20_neon(dst, src, len, state->key, state->counter);
- goto success;
- }
+ else
#endif
+ chacha20_arm(dst, src, len, state->key, state->counter);
- chacha20_arm(dst, src, len, state->key, state->counter);
- goto success;
-
-success:
state->counter[0] += (len + 63) / 64;
return true;
}
@@ -79,5 +65,27 @@ success:
static inline bool hchacha20_arch(u8 *derived_key, const u8 *nonce,
const u8 *key, simd_context_t *simd_context)
{
+#if defined(CONFIG_ARM)
+ u32 x[] = { CHACHA20_CONSTANT_EXPA,
+ CHACHA20_CONSTANT_ND_3,
+ CHACHA20_CONSTANT_2_BY,
+ CHACHA20_CONSTANT_TE_K,
+ get_unaligned_le32(key + 0),
+ get_unaligned_le32(key + 4),
+ get_unaligned_le32(key + 8),
+ get_unaligned_le32(key + 12),
+ get_unaligned_le32(key + 16),
+ get_unaligned_le32(key + 20),
+ get_unaligned_le32(key + 24),
+ get_unaligned_le32(key + 28),
+ get_unaligned_le32(nonce + 0),
+ get_unaligned_le32(nonce + 4),
+ get_unaligned_le32(nonce + 8),
+ get_unaligned_le32(nonce + 12)
+ };
+ hchacha20_arm(x, (u32 *)derived_key);
+ return true;
+#else
return false;
+#endif
}
diff --git a/src/crypto/zinc/chacha20/chacha20-arm.S b/src/crypto/zinc/chacha20/chacha20-arm.S
index 96cb4f3..dec2eb6 100644
--- a/src/crypto/zinc/chacha20/chacha20-arm.S
+++ b/src/crypto/zinc/chacha20/chacha20-arm.S
@@ -1,18 +1,477 @@
/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
/*
- * Copyright (C) 2016 Linaro, Ltd. <ard.biesheuvel@linaro.org>
- * Copyright (C) 2015 Martin Willi
+ * Copyright (C) 2018 Google, Inc.
* Copyright (C) 2015-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright (C) 2006-2017 CRYPTOGAMS by <appro@openssl.org>. All Rights Reserved.
- *
- * The scalar code is based on Andy Polyakov's implementation from CRYPTOGAMS, while
- * the NEON code was written by Ard Bieshuvel and Eric Biggers. The CRYPTOGAMS NEON
- * code performs best on nearly all processors except the Cortex-A7, which is where
- * Ard's implementation shines, and so the NEON implementation thus comes from Ard.
*/
#include <linux/linkage.h>
+/*
+ * The following scalar routine was written by Eric Biggers.
+ *
+ * Design notes:
+ *
+ * 16 registers would be needed to hold the state matrix, but only 14 are
+ * available because 'sp' and 'pc' cannot be used. So we spill the elements
+ * (x8, x9) to the stack and swap them out with (x10, x11). This adds one
+ * 'ldrd' and one 'strd' instruction per round.
+ *
+ * All rotates are performed using the implicit rotate operand accepted by the
+ * 'add' and 'eor' instructions. This is faster than using explicit rotate
+ * instructions. To make this work, we allow the values in the second and last
+ * rows of the ChaCha state matrix (rows 'b' and 'd') to temporarily have the
+ * wrong rotation amount. The rotation amount is then fixed up just in time
+ * when the values are used. 'brot' is the number of bits the values in row 'b'
+ * need to be rotated right to arrive at the correct values, and 'drot'
+ * similarly for row 'd'. (brot, drot) start out as (0, 0) but we make it such
+ * that they end up as (25, 24) after every round.
+ */
+
+ // ChaCha state registers
+ X0 .req r0
+ X1 .req r1
+ X2 .req r2
+ X3 .req r3
+ X4 .req r4
+ X5 .req r5
+ X6 .req r6
+ X7 .req r7
+ X8_X10 .req r8 // shared by x8 and x10
+ X9_X11 .req r9 // shared by x9 and x11
+ X12 .req r10
+ X13 .req r11
+ X14 .req r12
+ X15 .req r14
+
+.Lexpand_32byte_k:
+ // "expand 32-byte k"
+ .word 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574
+
+#ifdef __thumb2__
+# define adrl adr
+#endif
+
+.macro __rev out, in, t0, t1, t2
+.if __LINUX_ARM_ARCH__ >= 6
+ rev \out, \in
+.else
+ lsl \t0, \in, #24
+ and \t1, \in, #0xff00
+ and \t2, \in, #0xff0000
+ orr \out, \t0, \in, lsr #24
+ orr \out, \out, \t1, lsl #8
+ orr \out, \out, \t2, lsr #8
+.endif
+.endm
+
+.macro _le32_bswap x, t0, t1, t2
+#ifdef __ARMEB__
+ __rev \x, \x, \t0, \t1, \t2
+#endif
+.endm
+
+.macro _le32_bswap_4x a, b, c, d, t0, t1, t2
+ _le32_bswap \a, \t0, \t1, \t2
+ _le32_bswap \b, \t0, \t1, \t2
+ _le32_bswap \c, \t0, \t1, \t2
+ _le32_bswap \d, \t0, \t1, \t2
+.endm
+
+.macro __ldrd a, b, src, offset
+#if __LINUX_ARM_ARCH__ >= 6
+ ldrd \a, \b, [\src, #\offset]
+#else
+ ldr \a, [\src, #\offset]
+ ldr \b, [\src, #\offset + 4]
+#endif
+.endm
+
+.macro __strd a, b, dst, offset
+#if __LINUX_ARM_ARCH__ >= 6
+ strd \a, \b, [\dst, #\offset]
+#else
+ str \a, [\dst, #\offset]
+ str \b, [\dst, #\offset + 4]
+#endif
+.endm
+
+.macro _halfround a1, b1, c1, d1, a2, b2, c2, d2
+
+ // a += b; d ^= a; d = rol(d, 16);
+ add \a1, \a1, \b1, ror #brot
+ add \a2, \a2, \b2, ror #brot
+ eor \d1, \a1, \d1, ror #drot
+ eor \d2, \a2, \d2, ror #drot
+ // drot == 32 - 16 == 16
+
+ // c += d; b ^= c; b = rol(b, 12);
+ add \c1, \c1, \d1, ror #16
+ add \c2, \c2, \d2, ror #16
+ eor \b1, \c1, \b1, ror #brot
+ eor \b2, \c2, \b2, ror #brot
+ // brot == 32 - 12 == 20
+
+ // a += b; d ^= a; d = rol(d, 8);
+ add \a1, \a1, \b1, ror #20
+ add \a2, \a2, \b2, ror #20
+ eor \d1, \a1, \d1, ror #16
+ eor \d2, \a2, \d2, ror #16
+ // drot == 32 - 8 == 24
+
+ // c += d; b ^= c; b = rol(b, 7);
+ add \c1, \c1, \d1, ror #24
+ add \c2, \c2, \d2, ror #24
+ eor \b1, \c1, \b1, ror #20
+ eor \b2, \c2, \b2, ror #20
+ // brot == 32 - 7 == 25
+.endm
+
+.macro _doubleround
+
+ // column round
+
+ // quarterrounds: (x0, x4, x8, x12) and (x1, x5, x9, x13)
+ _halfround X0, X4, X8_X10, X12, X1, X5, X9_X11, X13
+
+ // save (x8, x9); restore (x10, x11)
+ __strd X8_X10, X9_X11, sp, 0
+ __ldrd X8_X10, X9_X11, sp, 8
+
+ // quarterrounds: (x2, x6, x10, x14) and (x3, x7, x11, x15)
+ _halfround X2, X6, X8_X10, X14, X3, X7, X9_X11, X15
+
+ .set brot, 25
+ .set drot, 24
+
+ // diagonal round
+
+ // quarterrounds: (x0, x5, x10, x15) and (x1, x6, x11, x12)
+ _halfround X0, X5, X8_X10, X15, X1, X6, X9_X11, X12
+
+ // save (x10, x11); restore (x8, x9)
+ __strd X8_X10, X9_X11, sp, 8
+ __ldrd X8_X10, X9_X11, sp, 0
+
+ // quarterrounds: (x2, x7, x8, x13) and (x3, x4, x9, x14)
+ _halfround X2, X7, X8_X10, X13, X3, X4, X9_X11, X14
+.endm
+
+.macro _chacha_permute nrounds
+ .set brot, 0
+ .set drot, 0
+ .rept \nrounds / 2
+ _doubleround
+ .endr
+.endm
+
+.macro _chacha nrounds
+
+.Lnext_block\@:
+ // Stack: unused0-unused1 x10-x11 x0-x15 OUT IN LEN
+ // Registers contain x0-x9,x12-x15.
+
+ // Do the core ChaCha permutation to update x0-x15.
+ _chacha_permute \nrounds
+
+ add sp, #8
+ // Stack: x10-x11 orig_x0-orig_x15 OUT IN LEN
+ // Registers contain x0-x9,x12-x15.
+ // x4-x7 are rotated by 'brot'; x12-x15 are rotated by 'drot'.
+
+ // Free up some registers (r8-r12,r14) by pushing (x8-x9,x12-x15).
+ push {X8_X10, X9_X11, X12, X13, X14, X15}
+
+ // Load (OUT, IN, LEN).
+ ldr r14, [sp, #96]
+ ldr r12, [sp, #100]
+ ldr r11, [sp, #104]
+
+ orr r10, r14, r12
+
+ // Use slow path if fewer than 64 bytes remain.
+ cmp r11, #64
+ blt .Lxor_slowpath\@
+
+ // Use slow path if IN and/or OUT isn't 4-byte aligned. Needed even on
+ // ARMv6+, since ldmia and stmia (used below) still require alignment.
+ tst r10, #3
+ bne .Lxor_slowpath\@
+
+ // Fast path: XOR 64 bytes of aligned data.
+
+ // Stack: x8-x9 x12-x15 x10-x11 orig_x0-orig_x15 OUT IN LEN
+ // Registers: r0-r7 are x0-x7; r8-r11 are free; r12 is IN; r14 is OUT.
+ // x4-x7 are rotated by 'brot'; x12-x15 are rotated by 'drot'.
+
+ // x0-x3
+ __ldrd r8, r9, sp, 32
+ __ldrd r10, r11, sp, 40
+ add X0, X0, r8
+ add X1, X1, r9
+ add X2, X2, r10
+ add X3, X3, r11
+ _le32_bswap_4x X0, X1, X2, X3, r8, r9, r10
+ ldmia r12!, {r8-r11}
+ eor X0, X0, r8
+ eor X1, X1, r9
+ eor X2, X2, r10
+ eor X3, X3, r11
+ stmia r14!, {X0-X3}
+
+ // x4-x7
+ __ldrd r8, r9, sp, 48
+ __ldrd r10, r11, sp, 56
+ add X4, r8, X4, ror #brot
+ add X5, r9, X5, ror #brot
+ ldmia r12!, {X0-X3}
+ add X6, r10, X6, ror #brot
+ add X7, r11, X7, ror #brot
+ _le32_bswap_4x X4, X5, X6, X7, r8, r9, r10
+ eor X4, X4, X0
+ eor X5, X5, X1
+ eor X6, X6, X2
+ eor X7, X7, X3
+ stmia r14!, {X4-X7}
+
+ // x8-x15
+ pop {r0-r7} // (x8-x9,x12-x15,x10-x11)
+ __ldrd r8, r9, sp, 32
+ __ldrd r10, r11, sp, 40
+ add r0, r0, r8 // x8
+ add r1, r1, r9 // x9
+ add r6, r6, r10 // x10
+ add r7, r7, r11 // x11
+ _le32_bswap_4x r0, r1, r6, r7, r8, r9, r10
+ ldmia r12!, {r8-r11}
+ eor r0, r0, r8 // x8
+ eor r1, r1, r9 // x9
+ eor r6, r6, r10 // x10
+ eor r7, r7, r11 // x11
+ stmia r14!, {r0,r1,r6,r7}
+ ldmia r12!, {r0,r1,r6,r7}
+ __ldrd r8, r9, sp, 48
+ __ldrd r10, r11, sp, 56
+ add r2, r8, r2, ror #drot // x12
+ add r3, r9, r3, ror #drot // x13
+ add r4, r10, r4, ror #drot // x14
+ add r5, r11, r5, ror #drot // x15
+ _le32_bswap_4x r2, r3, r4, r5, r9, r10, r11
+ ldr r9, [sp, #72] // load LEN
+ eor r2, r2, r0 // x12
+ eor r3, r3, r1 // x13
+ eor r4, r4, r6 // x14
+ eor r5, r5, r7 // x15
+ subs r9, #64 // decrement and check LEN
+ stmia r14!, {r2-r5}
+
+ beq .Ldone\@
+
+.Lprepare_for_next_block\@:
+
+ // Stack: x0-x15 OUT IN LEN
+
+ // Increment block counter (x12)
+ add r8, #1
+
+ // Store updated (OUT, IN, LEN)
+ str r14, [sp, #64]
+ str r12, [sp, #68]
+ str r9, [sp, #72]
+
+ mov r14, sp
+
+ // Store updated block counter (x12)
+ str r8, [sp, #48]
+
+ sub sp, #16
+
+ // Reload state and do next block
+ ldmia r14!, {r0-r11} // load x0-x11
+ __strd r10, r11, sp, 8 // store x10-x11 before state
+ ldmia r14, {r10-r12,r14} // load x12-x15
+ b .Lnext_block\@
+
+.Lxor_slowpath\@:
+ // Slow path: < 64 bytes remaining, or unaligned input or output buffer.
+ // We handle it by storing the 64 bytes of keystream to the stack, then
+ // XOR-ing the needed portion with the data.
+
+ // Allocate keystream buffer
+ sub sp, #64
+ mov r14, sp
+
+ // Stack: ks0-ks15 x8-x9 x12-x15 x10-x11 orig_x0-orig_x15 OUT IN LEN
+ // Registers: r0-r7 are x0-x7; r8-r11 are free; r12 is IN; r14 is &ks0.
+ // x4-x7 are rotated by 'brot'; x12-x15 are rotated by 'drot'.
+
+ // Save keystream for x0-x3
+ __ldrd r8, r9, sp, 96
+ __ldrd r10, r11, sp, 104
+ add X0, X0, r8
+ add X1, X1, r9
+ add X2, X2, r10
+ add X3, X3, r11
+ _le32_bswap_4x X0, X1, X2, X3, r8, r9, r10
+ stmia r14!, {X0-X3}
+
+ // Save keystream for x4-x7
+ __ldrd r8, r9, sp, 112
+ __ldrd r10, r11, sp, 120
+ add X4, r8, X4, ror #brot
+ add X5, r9, X5, ror #brot
+ add X6, r10, X6, ror #brot
+ add X7, r11, X7, ror #brot
+ _le32_bswap_4x X4, X5, X6, X7, r8, r9, r10
+ add r8, sp, #64
+ stmia r14!, {X4-X7}
+
+ // Save keystream for x8-x15
+ ldm r8, {r0-r7} // (x8-x9,x12-x15,x10-x11)
+ __ldrd r8, r9, sp, 128
+ __ldrd r10, r11, sp, 136
+ add r0, r0, r8 // x8
+ add r1, r1, r9 // x9
+ add r6, r6, r10 // x10
+ add r7, r7, r11 // x11
+ _le32_bswap_4x r0, r1, r6, r7, r8, r9, r10
+ stmia r14!, {r0,r1,r6,r7}
+ __ldrd r8, r9, sp, 144
+ __ldrd r10, r11, sp, 152
+ add r2, r8, r2, ror #drot // x12
+ add r3, r9, r3, ror #drot // x13
+ add r4, r10, r4, ror #drot // x14
+ add r5, r11, r5, ror #drot // x15
+ _le32_bswap_4x r2, r3, r4, r5, r9, r10, r11
+ stmia r14, {r2-r5}
+
+ // Stack: ks0-ks15 unused0-unused7 x0-x15 OUT IN LEN
+ // Registers: r8 is block counter, r12 is IN.
+
+ ldr r9, [sp, #168] // LEN
+ ldr r14, [sp, #160] // OUT
+ cmp r9, #64
+ mov r0, sp
+ movle r1, r9
+ movgt r1, #64
+ // r1 is number of bytes to XOR, in range [1, 64]
+
+.if __LINUX_ARM_ARCH__ < 6
+ orr r2, r12, r14
+ tst r2, #3 // IN or OUT misaligned?
+ bne .Lxor_next_byte\@
+.endif
+
+ // XOR a word at a time
+.rept 16
+ subs r1, #4
+ blt .Lxor_words_done\@
+ ldr r2, [r12], #4
+ ldr r3, [r0], #4
+ eor r2, r2, r3
+ str r2, [r14], #4
+.endr
+ b .Lxor_slowpath_done\@
+.Lxor_words_done\@:
+ ands r1, r1, #3
+ beq .Lxor_slowpath_done\@
+
+ // XOR a byte at a time
+.Lxor_next_byte\@:
+ ldrb r2, [r12], #1
+ ldrb r3, [r0], #1
+ eor r2, r2, r3
+ strb r2, [r14], #1
+ subs r1, #1
+ bne .Lxor_next_byte\@
+
+.Lxor_slowpath_done\@:
+ subs r9, #64
+ add sp, #96
+ bgt .Lprepare_for_next_block\@
+
+.Ldone\@:
+.endm // _chacha
+
+/*
+ * void chacha20_arm(u8 *out, const u8 *in, size_t len, const u32 key[8],
+ * const u32 iv[4]);
+ */
+ENTRY(chacha20_arm)
+ cmp r2, #0 // len == 0?
+ bxeq lr
+
+ push {r0-r2,r4-r11,lr}
+
+ // Push state x0-x15 onto stack.
+ // Also store an extra copy of x10-x11 just before the state.
+
+ ldr r4, [sp, #48] // iv
+ mov r0, sp
+ sub sp, #80
+
+ // iv: x12-x15
+ ldm r4, {X12,X13,X14,X15}
+ stmdb r0!, {X12,X13,X14,X15}
+
+ // key: x4-x11
+ __ldrd X8_X10, X9_X11, r3, 24
+ __strd X8_X10, X9_X11, sp, 8
+ stmdb r0!, {X8_X10, X9_X11}
+ ldm r3, {X4-X9_X11}
+ stmdb r0!, {X4-X9_X11}
+
+ // constants: x0-x3
+ adrl X3, .Lexpand_32byte_k
+ ldm X3, {X0-X3}
+ __strd X0, X1, sp, 16
+ __strd X2, X3, sp, 24
+
+ _chacha 20
+
+ add sp, #76
+ pop {r4-r11, pc}
+ENDPROC(chacha20_arm)
+
+/*
+ * void hchacha20_arm(const u32 state[16], u32 out[8]);
+ */
+ENTRY(hchacha20_arm)
+ push {r1,r4-r11,lr}
+
+ mov r14, r0
+ ldmia r14!, {r0-r11} // load x0-x11
+ push {r10-r11} // store x10-x11 to stack
+ ldm r14, {r10-r12,r14} // load x12-x15
+ sub sp, #8
+
+ _chacha_permute 20
+
+ // Skip over (unused0-unused1, x10-x11)
+ add sp, #16
+
+ // Fix up rotations of x12-x15
+ ror X12, X12, #drot
+ ror X13, X13, #drot
+ pop {r4} // load 'out'
+ ror X14, X14, #drot
+ ror X15, X15, #drot
+
+ // Store (x0-x3,x12-x15) to 'out' after byte swapping
+ _le32_bswap_4x X0, X1, X2, X3, X4, X5, X6
+ _le32_bswap_4x X12, X13, X14, X15, X4, X5, X6
+ stm r4, {X0,X1,X2,X3,X12,X13,X14,X15}
+
+ pop {r4-r11,pc}
+ENDPROC(hchacha20_arm)
+
+#if __LINUX_ARM_ARCH__ >= 7 && IS_ENABLED(CONFIG_KERNEL_MODE_NEON)
+/*
+ * This following NEON routine was ported from Andy Polyakov's implementation
+ * from CRYPTOGAMS. It begins with parts of the CRYPTOGAMS scalar routine,
+ * since certain NEON code paths actually branch to it.
+ */
+
.text
#if defined(__thumb2__) || defined(__clang__)
.syntax unified
@@ -35,15 +494,6 @@
.word -1
.align 5
-ENTRY(chacha20_arm)
- ldr r12,[sp,#0] @ pull pointer to counter and nonce
- stmdb sp!,{r0-r2,r4-r11,lr}
- cmp r2,#0 @ len==0?
-#ifdef __thumb2__
- itt eq
-#endif
- addeq sp,sp,#4*3
- beq .Lno_data_arm
.Lshort:
ldmia r12,{r4-r7} @ load counter and nonce
sub sp,sp,#4*(16) @ off-load area
@@ -778,517 +1228,698 @@ ENTRY(chacha20_arm)
.Ldone:
add sp,sp,#4*(32+3)
-.Lno_data_arm:
ldmia sp!,{r4-r11,pc}
-ENDPROC(chacha20_arm)
-#if __LINUX_ARM_ARCH__ >= 7 && IS_ENABLED(CONFIG_KERNEL_MODE_NEON)
-/*
- * NEON doesn't have a rotate instruction. The alternatives are, more or less:
- *
- * (a) vshl.u32 + vsri.u32 (needs temporary register)
- * (b) vshl.u32 + vshr.u32 + vorr (needs temporary register)
- * (c) vrev32.16 (16-bit rotations only)
- * (d) vtbl.8 + vtbl.8 (multiple of 8 bits rotations only,
- * needs index vector)
- *
- * ChaCha20 has 16, 12, 8, and 7-bit rotations. For the 12 and 7-bit
- * rotations, the only choices are (a) and (b). We use (a) since it takes
- * two-thirds the cycles of (b) on both Cortex-A7 and Cortex-A53.
- *
- * For the 16-bit rotation, we use vrev32.16 since it's consistently fastest
- * and doesn't need a temporary register.
- *
- * For the 8-bit rotation, we use vtbl.8 + vtbl.8. On Cortex-A7, this sequence
- * is twice as fast as (a), even when doing (a) on multiple registers
- * simultaneously to eliminate the stall between vshl and vsri. Also, it
- * parallelizes better when temporary registers are scarce.
- *
- * A disadvantage is that on Cortex-A53, the vtbl sequence is the same speed as
- * (a), so the need to load the rotation table actually makes the vtbl method
- * slightly slower overall on that CPU (~1.3% slower ChaCha20). Still, it
- * seems to be a good compromise to get a more significant speed boost on some
- * CPUs, e.g. ~4.8% faster ChaCha20 on Cortex-A7.
- */
+.align 5
+.Lsigma2:
+.long 0x61707865,0x3320646e,0x79622d32,0x6b206574 @ endian-neutral
+.Lone2:
+.long 1,0,0,0
+.word -1
+
+.arch armv7-a
+.fpu neon
+
+.align 5
+ENTRY(chacha20_neon)
+ ldr r12,[sp,#0] @ pull pointer to counter and nonce
+ stmdb sp!,{r0-r2,r4-r11,lr}
+ cmp r2,#0 @ len==0?
+#ifdef __thumb2__
+ itt eq
+#endif
+ addeq sp,sp,#4*3
+ beq .Lno_data_neon
+ cmp r2,#192 @ test len
+ bls .Lshort
+.Lchacha20_neon_begin:
+ adr r14,.Lsigma2
+ vstmdb sp!,{d8-d15} @ ABI spec says so
+ stmdb sp!,{r0-r3}
+
+ vld1.32 {q1-q2},[r3] @ load key
+ ldmia r3,{r4-r11} @ load key
+
+ sub sp,sp,#4*(16+16)
+ vld1.32 {q3},[r12] @ load counter and nonce
+ add r12,sp,#4*8
+ ldmia r14,{r0-r3} @ load sigma
+ vld1.32 {q0},[r14]! @ load sigma
+ vld1.32 {q12},[r14] @ one
+ vst1.32 {q2-q3},[r12] @ copy 1/2key|counter|nonce
+ vst1.32 {q0-q1},[sp] @ copy sigma|1/2key
+
+ str r10,[sp,#4*(16+10)] @ off-load "rx"
+ str r11,[sp,#4*(16+11)] @ off-load "rx"
+ vshl.i32 d26,d24,#1 @ two
+ vstr d24,[sp,#4*(16+0)]
+ vshl.i32 d28,d24,#2 @ four
+ vstr d26,[sp,#4*(16+2)]
+ vmov q4,q0
+ vstr d28,[sp,#4*(16+4)]
+ vmov q8,q0
+ vmov q5,q1
+ vmov q9,q1
+ b .Loop_neon_enter
+
+.align 4
+.Loop_neon_outer:
+ ldmia sp,{r0-r9} @ load key material
+ cmp r11,#64*2 @ if len<=64*2
+ bls .Lbreak_neon @ switch to integer-only
+ vmov q4,q0
+ str r11,[sp,#4*(32+2)] @ save len
+ vmov q8,q0
+ str r12, [sp,#4*(32+1)] @ save inp
+ vmov q5,q1
+ str r14, [sp,#4*(32+0)] @ save out
+ vmov q9,q1
+.Loop_neon_enter:
+ ldr r11, [sp,#4*(15)]
+ vadd.i32 q7,q3,q12 @ counter+1
+ ldr r12,[sp,#4*(12)] @ modulo-scheduled load
+ vmov q6,q2
+ ldr r10, [sp,#4*(13)]
+ vmov q10,q2
+ ldr r14,[sp,#4*(14)]
+ vadd.i32 q11,q7,q12 @ counter+2
+ str r11, [sp,#4*(16+15)]
+ mov r11,#10
+ add r12,r12,#3 @ counter+3
+ b .Loop_neon
+
+.align 4
+.Loop_neon:
+ subs r11,r11,#1
+ vadd.i32 q0,q0,q1
+ add r0,r0,r4
+ vadd.i32 q4,q4,q5
+ mov r12,r12,ror#16
+ vadd.i32 q8,q8,q9
+ add r1,r1,r5
+ veor q3,q3,q0
+ mov r10,r10,ror#16
+ veor q7,q7,q4
+ eor r12,r12,r0,ror#16
+ veor q11,q11,q8
+ eor r10,r10,r1,ror#16
+ vrev32.16 q3,q3
+ add r8,r8,r12
+ vrev32.16 q7,q7
+ mov r4,r4,ror#20
+ vrev32.16 q11,q11
+ add r9,r9,r10
+ vadd.i32 q2,q2,q3
+ mov r5,r5,ror#20
+ vadd.i32 q6,q6,q7
+ eor r4,r4,r8,ror#20
+ vadd.i32 q10,q10,q11
+ eor r5,r5,r9,ror#20
+ veor q12,q1,q2
+ add r0,r0,r4
+ veor q13,q5,q6
+ mov r12,r12,ror#24
+ veor q14,q9,q10
+ add r1,r1,r5
+ vshr.u32 q1,q12,#20
+ mov r10,r10,ror#24
+ vshr.u32 q5,q13,#20
+ eor r12,r12,r0,ror#24
+ vshr.u32 q9,q14,#20
+ eor r10,r10,r1,ror#24
+ vsli.32 q1,q12,#12
+ add r8,r8,r12
+ vsli.32 q5,q13,#12
+ mov r4,r4,ror#25
+ vsli.32 q9,q14,#12
+ add r9,r9,r10
+ vadd.i32 q0,q0,q1
+ mov r5,r5,ror#25
+ vadd.i32 q4,q4,q5
+ str r10,[sp,#4*(16+13)]
+ vadd.i32 q8,q8,q9
+ ldr r10,[sp,#4*(16+15)]
+ veor q12,q3,q0
+ eor r4,r4,r8,ror#25
+ veor q13,q7,q4
+ eor r5,r5,r9,ror#25
+ veor q14,q11,q8
+ str r8,[sp,#4*(16+8)]
+ vshr.u32 q3,q12,#24
+ ldr r8,[sp,#4*(16+10)]
+ vshr.u32 q7,q13,#24
+ add r2,r2,r6
+ vshr.u32 q11,q14,#24
+ mov r14,r14,ror#16
+ vsli.32 q3,q12,#8
+ str r9,[sp,#4*(16+9)]
+ vsli.32 q7,q13,#8
+ ldr r9,[sp,#4*(16+11)]
+ vsli.32 q11,q14,#8
+ add r3,r3,r7
+ vadd.i32 q2,q2,q3
+ mov r10,r10,ror#16
+ vadd.i32 q6,q6,q7
+ eor r14,r14,r2,ror#16
+ vadd.i32 q10,q10,q11
+ eor r10,r10,r3,ror#16
+ veor q12,q1,q2
+ add r8,r8,r14
+ veor q13,q5,q6
+ mov r6,r6,ror#20
+ veor q14,q9,q10
+ add r9,r9,r10
+ vshr.u32 q1,q12,#25
+ mov r7,r7,ror#20
+ vshr.u32 q5,q13,#25
+ eor r6,r6,r8,ror#20
+ vshr.u32 q9,q14,#25
+ eor r7,r7,r9,ror#20
+ vsli.32 q1,q12,#7
+ add r2,r2,r6
+ vsli.32 q5,q13,#7
+ mov r14,r14,ror#24
+ vsli.32 q9,q14,#7
+ add r3,r3,r7
+ vext.8 q2,q2,q2,#8
+ mov r10,r10,ror#24
+ vext.8 q6,q6,q6,#8
+ eor r14,r14,r2,ror#24
+ vext.8 q10,q10,q10,#8
+ eor r10,r10,r3,ror#24
+ vext.8 q1,q1,q1,#4
+ add r8,r8,r14
+ vext.8 q5,q5,q5,#4
+ mov r6,r6,ror#25
+ vext.8 q9,q9,q9,#4
+ add r9,r9,r10
+ vext.8 q3,q3,q3,#12
+ mov r7,r7,ror#25
+ vext.8 q7,q7,q7,#12
+ eor r6,r6,r8,ror#25
+ vext.8 q11,q11,q11,#12
+ eor r7,r7,r9,ror#25
+ vadd.i32 q0,q0,q1
+ add r0,r0,r5
+ vadd.i32 q4,q4,q5
+ mov r10,r10,ror#16
+ vadd.i32 q8,q8,q9
+ add r1,r1,r6
+ veor q3,q3,q0
+ mov r12,r12,ror#16
+ veor q7,q7,q4
+ eor r10,r10,r0,ror#16
+ veor q11,q11,q8
+ eor r12,r12,r1,ror#16
+ vrev32.16 q3,q3
+ add r8,r8,r10
+ vrev32.16 q7,q7
+ mov r5,r5,ror#20
+ vrev32.16 q11,q11
+ add r9,r9,r12
+ vadd.i32 q2,q2,q3
+ mov r6,r6,ror#20
+ vadd.i32 q6,q6,q7
+ eor r5,r5,r8,ror#20
+ vadd.i32 q10,q10,q11
+ eor r6,r6,r9,ror#20
+ veor q12,q1,q2
+ add r0,r0,r5
+ veor q13,q5,q6
+ mov r10,r10,ror#24
+ veor q14,q9,q10
+ add r1,r1,r6
+ vshr.u32 q1,q12,#20
+ mov r12,r12,ror#24
+ vshr.u32 q5,q13,#20
+ eor r10,r10,r0,ror#24
+ vshr.u32 q9,q14,#20
+ eor r12,r12,r1,ror#24
+ vsli.32 q1,q12,#12
+ add r8,r8,r10
+ vsli.32 q5,q13,#12
+ mov r5,r5,ror#25
+ vsli.32 q9,q14,#12
+ str r10,[sp,#4*(16+15)]
+ vadd.i32 q0,q0,q1
+ ldr r10,[sp,#4*(16+13)]
+ vadd.i32 q4,q4,q5
+ add r9,r9,r12
+ vadd.i32 q8,q8,q9
+ mov r6,r6,ror#25
+ veor q12,q3,q0
+ eor r5,r5,r8,ror#25
+ veor q13,q7,q4
+ eor r6,r6,r9,ror#25
+ veor q14,q11,q8
+ str r8,[sp,#4*(16+10)]
+ vshr.u32 q3,q12,#24
+ ldr r8,[sp,#4*(16+8)]
+ vshr.u32 q7,q13,#24
+ add r2,r2,r7
+ vshr.u32 q11,q14,#24
+ mov r10,r10,ror#16
+ vsli.32 q3,q12,#8
+ str r9,[sp,#4*(16+11)]
+ vsli.32 q7,q13,#8
+ ldr r9,[sp,#4*(16+9)]
+ vsli.32 q11,q14,#8
+ add r3,r3,r4
+ vadd.i32 q2,q2,q3
+ mov r14,r14,ror#16
+ vadd.i32 q6,q6,q7
+ eor r10,r10,r2,ror#16
+ vadd.i32 q10,q10,q11
+ eor r14,r14,r3,ror#16
+ veor q12,q1,q2
+ add r8,r8,r10
+ veor q13,q5,q6
+ mov r7,r7,ror#20
+ veor q14,q9,q10
+ add r9,r9,r14
+ vshr.u32 q1,q12,#25
+ mov r4,r4,ror#20
+ vshr.u32 q5,q13,#25
+ eor r7,r7,r8,ror#20
+ vshr.u32 q9,q14,#25
+ eor r4,r4,r9,ror#20
+ vsli.32 q1,q12,#7
+ add r2,r2,r7
+ vsli.32 q5,q13,#7
+ mov r10,r10,ror#24
+ vsli.32 q9,q14,#7
+ add r3,r3,r4
+ vext.8 q2,q2,q2,#8
+ mov r14,r14,ror#24
+ vext.8 q6,q6,q6,#8
+ eor r10,r10,r2,ror#24
+ vext.8 q10,q10,q10,#8
+ eor r14,r14,r3,ror#24
+ vext.8 q1,q1,q1,#12
+ add r8,r8,r10
+ vext.8 q5,q5,q5,#12
+ mov r7,r7,ror#25
+ vext.8 q9,q9,q9,#12
+ add r9,r9,r14
+ vext.8 q3,q3,q3,#4
+ mov r4,r4,ror#25
+ vext.8 q7,q7,q7,#4
+ eor r7,r7,r8,ror#25
+ vext.8 q11,q11,q11,#4
+ eor r4,r4,r9,ror#25
+ bne .Loop_neon
+
+ add r11,sp,#32
+ vld1.32 {q12-q13},[sp] @ load key material
+ vld1.32 {q14-q15},[r11]
+
+ ldr r11,[sp,#4*(32+2)] @ load len
+
+ str r8, [sp,#4*(16+8)] @ modulo-scheduled store
+ str r9, [sp,#4*(16+9)]
+ str r12,[sp,#4*(16+12)]
+ str r10, [sp,#4*(16+13)]
+ str r14,[sp,#4*(16+14)]
+
+ @ at this point we have first half of 512-bit result in
+ @ rx and second half at sp+4*(16+8)
+
+ ldr r12,[sp,#4*(32+1)] @ load inp
+ ldr r14,[sp,#4*(32+0)] @ load out
+
+ vadd.i32 q0,q0,q12 @ accumulate key material
+ vadd.i32 q4,q4,q12
+ vadd.i32 q8,q8,q12
+ vldr d24,[sp,#4*(16+0)] @ one
+
+ vadd.i32 q1,q1,q13
+ vadd.i32 q5,q5,q13
+ vadd.i32 q9,q9,q13
+ vldr d26,[sp,#4*(16+2)] @ two
+
+ vadd.i32 q2,q2,q14
+ vadd.i32 q6,q6,q14
+ vadd.i32 q10,q10,q14
+ vadd.i32 d14,d14,d24 @ counter+1
+ vadd.i32 d22,d22,d26 @ counter+2
+
+ vadd.i32 q3,q3,q15
+ vadd.i32 q7,q7,q15
+ vadd.i32 q11,q11,q15
+
+ cmp r11,#64*4
+ blo .Ltail_neon
+
+ vld1.8 {q12-q13},[r12]! @ load input
+ mov r11,sp
+ vld1.8 {q14-q15},[r12]!
+ veor q0,q0,q12 @ xor with input
+ veor q1,q1,q13
+ vld1.8 {q12-q13},[r12]!
+ veor q2,q2,q14
+ veor q3,q3,q15
+ vld1.8 {q14-q15},[r12]!
+
+ veor q4,q4,q12
+ vst1.8 {q0-q1},[r14]! @ store output
+ veor q5,q5,q13
+ vld1.8 {q12-q13},[r12]!
+ veor q6,q6,q14
+ vst1.8 {q2-q3},[r14]!
+ veor q7,q7,q15
+ vld1.8 {q14-q15},[r12]!
+
+ veor q8,q8,q12
+ vld1.32 {q0-q1},[r11]! @ load for next iteration
+ veor d25,d25,d25
+ vldr d24,[sp,#4*(16+4)] @ four
+ veor q9,q9,q13
+ vld1.32 {q2-q3},[r11]
+ veor q10,q10,q14
+ vst1.8 {q4-q5},[r14]!
+ veor q11,q11,q15
+ vst1.8 {q6-q7},[r14]!
+
+ vadd.i32 d6,d6,d24 @ next counter value
+ vldr d24,[sp,#4*(16+0)] @ one
+
+ ldmia sp,{r8-r11} @ load key material
+ add r0,r0,r8 @ accumulate key material
+ ldr r8,[r12],#16 @ load input
+ vst1.8 {q8-q9},[r14]!
+ add r1,r1,r9
+ ldr r9,[r12,#-12]
+ vst1.8 {q10-q11},[r14]!
+ add r2,r2,r10
+ ldr r10,[r12,#-8]
+ add r3,r3,r11
+ ldr r11,[r12,#-4]
+#ifdef __ARMEB__
+ rev r0,r0
+ rev r1,r1
+ rev r2,r2
+ rev r3,r3
+#endif
+ eor r0,r0,r8 @ xor with input
+ add r8,sp,#4*(4)
+ eor r1,r1,r9
+ str r0,[r14],#16 @ store output
+ eor r2,r2,r10
+ str r1,[r14,#-12]
+ eor r3,r3,r11
+ ldmia r8,{r8-r11} @ load key material
+ str r2,[r14,#-8]
+ str r3,[r14,#-4]
+
+ add r4,r4,r8 @ accumulate key material
+ ldr r8,[r12],#16 @ load input
+ add r5,r5,r9
+ ldr r9,[r12,#-12]
+ add r6,r6,r10
+ ldr r10,[r12,#-8]
+ add r7,r7,r11
+ ldr r11,[r12,#-4]
+#ifdef __ARMEB__
+ rev r4,r4
+ rev r5,r5
+ rev r6,r6
+ rev r7,r7
+#endif
+ eor r4,r4,r8
+ add r8,sp,#4*(8)
+ eor r5,r5,r9
+ str r4,[r14],#16 @ store output
+ eor r6,r6,r10
+ str r5,[r14,#-12]
+ eor r7,r7,r11
+ ldmia r8,{r8-r11} @ load key material
+ str r6,[r14,#-8]
+ add r0,sp,#4*(16+8)
+ str r7,[r14,#-4]
+
+ ldmia r0,{r0-r7} @ load second half
+
+ add r0,r0,r8 @ accumulate key material
+ ldr r8,[r12],#16 @ load input
+ add r1,r1,r9
+ ldr r9,[r12,#-12]
+#ifdef __thumb2__
+ it hi
+#endif
+ strhi r10,[sp,#4*(16+10)] @ copy "rx" while at it
+ add r2,r2,r10
+ ldr r10,[r12,#-8]
+#ifdef __thumb2__
+ it hi
+#endif
+ strhi r11,[sp,#4*(16+11)] @ copy "rx" while at it
+ add r3,r3,r11
+ ldr r11,[r12,#-4]
+#ifdef __ARMEB__
+ rev r0,r0
+ rev r1,r1
+ rev r2,r2
+ rev r3,r3
+#endif
+ eor r0,r0,r8
+ add r8,sp,#4*(12)
+ eor r1,r1,r9
+ str r0,[r14],#16 @ store output
+ eor r2,r2,r10
+ str r1,[r14,#-12]
+ eor r3,r3,r11
+ ldmia r8,{r8-r11} @ load key material
+ str r2,[r14,#-8]
+ str r3,[r14,#-4]
+
+ add r4,r4,r8 @ accumulate key material
+ add r8,r8,#4 @ next counter value
+ add r5,r5,r9
+ str r8,[sp,#4*(12)] @ save next counter value
+ ldr r8,[r12],#16 @ load input
+ add r6,r6,r10
+ add r4,r4,#3 @ counter+3
+ ldr r9,[r12,#-12]
+ add r7,r7,r11
+ ldr r10,[r12,#-8]
+ ldr r11,[r12,#-4]
+#ifdef __ARMEB__
+ rev r4,r4
+ rev r5,r5
+ rev r6,r6
+ rev r7,r7
+#endif
+ eor r4,r4,r8
+#ifdef __thumb2__
+ it hi
+#endif
+ ldrhi r8,[sp,#4*(32+2)] @ re-load len
+ eor r5,r5,r9
+ eor r6,r6,r10
+ str r4,[r14],#16 @ store output
+ eor r7,r7,r11
+ str r5,[r14,#-12]
+ sub r11,r8,#64*4 @ len-=64*4
+ str r6,[r14,#-8]
+ str r7,[r14,#-4]
+ bhi .Loop_neon_outer
+
+ b .Ldone_neon
+
+.align 4
+.Lbreak_neon:
+ @ harmonize NEON and integer-only stack frames: load data
+ @ from NEON frame, but save to integer-only one; distance
+ @ between the two is 4*(32+4+16-32)=4*(20).
+
+ str r11, [sp,#4*(20+32+2)] @ save len
+ add r11,sp,#4*(32+4)
+ str r12, [sp,#4*(20+32+1)] @ save inp
+ str r14, [sp,#4*(20+32+0)] @ save out
+
+ ldr r12,[sp,#4*(16+10)]
+ ldr r14,[sp,#4*(16+11)]
+ vldmia r11,{d8-d15} @ fulfill ABI requirement
+ str r12,[sp,#4*(20+16+10)] @ copy "rx"
+ str r14,[sp,#4*(20+16+11)] @ copy "rx"
+
+ ldr r11, [sp,#4*(15)]
+ ldr r12,[sp,#4*(12)] @ modulo-scheduled load
+ ldr r10, [sp,#4*(13)]
+ ldr r14,[sp,#4*(14)]
+ str r11, [sp,#4*(20+16+15)]
+ add r11,sp,#4*(20)
+ vst1.32 {q0-q1},[r11]! @ copy key
+ add sp,sp,#4*(20) @ switch frame
+ vst1.32 {q2-q3},[r11]
+ mov r11,#10
+ b .Loop @ go integer-only
+
+.align 4
+.Ltail_neon:
+ cmp r11,#64*3
+ bhs .L192_or_more_neon
+ cmp r11,#64*2
+ bhs .L128_or_more_neon
+ cmp r11,#64*1
+ bhs .L64_or_more_neon
+
+ add r8,sp,#4*(8)
+ vst1.8 {q0-q1},[sp]
+ add r10,sp,#4*(0)
+ vst1.8 {q2-q3},[r8]
+ b .Loop_tail_neon
+
+.align 4
+.L64_or_more_neon:
+ vld1.8 {q12-q13},[r12]!
+ vld1.8 {q14-q15},[r12]!
+ veor q0,q0,q12
+ veor q1,q1,q13
+ veor q2,q2,q14
+ veor q3,q3,q15
+ vst1.8 {q0-q1},[r14]!
+ vst1.8 {q2-q3},[r14]!
+
+ beq .Ldone_neon
+
+ add r8,sp,#4*(8)
+ vst1.8 {q4-q5},[sp]
+ add r10,sp,#4*(0)
+ vst1.8 {q6-q7},[r8]
+ sub r11,r11,#64*1 @ len-=64*1
+ b .Loop_tail_neon
- .text
- .fpu neon
- .align 5
-
-ENTRY(chacha20_neon_1block)
- // r0: Input state matrix, s
- // r1: 1 data block output, o
- // r2: 1 data block input, i
-
- //
- // This function encrypts one ChaCha20 block by loading the state matrix
- // in four NEON registers. It performs matrix operation on four words in
- // parallel, but requireds shuffling to rearrange the words after each
- // round.
- //
-
- // x0..3 = s0..3
- add ip, r0, #0x20
- vld1.32 {q0-q1}, [r0]
- vld1.32 {q2-q3}, [ip]
-
- vmov q8, q0
- vmov q9, q1
- vmov q10, q2
- vmov q11, q3
-
- adr ip, .Lrol8_table
- mov r3, #10
- vld1.8 {d10}, [ip, :64]
-
-.Ldoubleround:
- // x0 += x1, x3 = rotl32(x3 ^ x0, 16)
- vadd.i32 q0, q0, q1
- veor q3, q3, q0
- vrev32.16 q3, q3
-
- // x2 += x3, x1 = rotl32(x1 ^ x2, 12)
- vadd.i32 q2, q2, q3
- veor q4, q1, q2
- vshl.u32 q1, q4, #12
- vsri.u32 q1, q4, #20
-
- // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
- vadd.i32 q0, q0, q1
- veor q3, q3, q0
- vtbl.8 d6, {d6}, d10
- vtbl.8 d7, {d7}, d10
-
- // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
- vadd.i32 q2, q2, q3
- veor q4, q1, q2
- vshl.u32 q1, q4, #7
- vsri.u32 q1, q4, #25
-
- // x1 = shuffle32(x1, MASK(0, 3, 2, 1))
- vext.8 q1, q1, q1, #4
- // x2 = shuffle32(x2, MASK(1, 0, 3, 2))
- vext.8 q2, q2, q2, #8
- // x3 = shuffle32(x3, MASK(2, 1, 0, 3))
- vext.8 q3, q3, q3, #12
-
- // x0 += x1, x3 = rotl32(x3 ^ x0, 16)
- vadd.i32 q0, q0, q1
- veor q3, q3, q0
- vrev32.16 q3, q3
-
- // x2 += x3, x1 = rotl32(x1 ^ x2, 12)
- vadd.i32 q2, q2, q3
- veor q4, q1, q2
- vshl.u32 q1, q4, #12
- vsri.u32 q1, q4, #20
-
- // x0 += x1, x3 = rotl32(x3 ^ x0, 8)
- vadd.i32 q0, q0, q1
- veor q3, q3, q0
- vtbl.8 d6, {d6}, d10
- vtbl.8 d7, {d7}, d10
-
- // x2 += x3, x1 = rotl32(x1 ^ x2, 7)
- vadd.i32 q2, q2, q3
- veor q4, q1, q2
- vshl.u32 q1, q4, #7
- vsri.u32 q1, q4, #25
-
- // x1 = shuffle32(x1, MASK(2, 1, 0, 3))
- vext.8 q1, q1, q1, #12
- // x2 = shuffle32(x2, MASK(1, 0, 3, 2))
- vext.8 q2, q2, q2, #8
- // x3 = shuffle32(x3, MASK(0, 3, 2, 1))
- vext.8 q3, q3, q3, #4
-
- subs r3, r3, #1
- bne .Ldoubleround
-
- add ip, r2, #0x20
- vld1.8 {q4-q5}, [r2]
- vld1.8 {q6-q7}, [ip]
-
- // o0 = i0 ^ (x0 + s0)
- vadd.i32 q0, q0, q8
- veor q0, q0, q4
-
- // o1 = i1 ^ (x1 + s1)
- vadd.i32 q1, q1, q9
- veor q1, q1, q5
-
- // o2 = i2 ^ (x2 + s2)
- vadd.i32 q2, q2, q10
- veor q2, q2, q6
-
- // o3 = i3 ^ (x3 + s3)
- vadd.i32 q3, q3, q11
- veor q3, q3, q7
-
- add ip, r1, #0x20
- vst1.8 {q0-q1}, [r1]
- vst1.8 {q2-q3}, [ip]
-
- bx lr
-ENDPROC(chacha20_neon_1block)
-
- .align 4
-.Lctrinc: .word 0, 1, 2, 3
-.Lrol8_table: .byte 3, 0, 1, 2, 7, 4, 5, 6
-
- .align 5
-ENTRY(chacha20_neon_4block)
- push {r4-r5}
- mov r4, sp // preserve the stack pointer
- sub ip, sp, #0x20 // allocate a 32 byte buffer
- bic ip, ip, #0x1f // aligned to 32 bytes
- mov sp, ip
-
- // r0: Input state matrix, s
- // r1: 4 data blocks output, o
- // r2: 4 data blocks input, i
-
- //
- // This function encrypts four consecutive ChaCha20 blocks by loading
- // the state matrix in NEON registers four times. The algorithm performs
- // each operation on the corresponding word of each state matrix, hence
- // requires no word shuffling. The words are re-interleaved before the
- // final addition of the original state and the XORing step.
- //
-
- // x0..15[0-3] = s0..15[0-3]
- add ip, r0, #0x20
- vld1.32 {q0-q1}, [r0]
- vld1.32 {q2-q3}, [ip]
-
- adr r5, .Lctrinc
- vdup.32 q15, d7[1]
- vdup.32 q14, d7[0]
- vld1.32 {q4}, [r5, :128]
- vdup.32 q13, d6[1]
- vdup.32 q12, d6[0]
- vdup.32 q11, d5[1]
- vdup.32 q10, d5[0]
- vadd.u32 q12, q12, q4 // x12 += counter values 0-3
- vdup.32 q9, d4[1]
- vdup.32 q8, d4[0]
- vdup.32 q7, d3[1]
- vdup.32 q6, d3[0]
- vdup.32 q5, d2[1]
- vdup.32 q4, d2[0]
- vdup.32 q3, d1[1]
- vdup.32 q2, d1[0]
- vdup.32 q1, d0[1]
- vdup.32 q0, d0[0]
-
- adr ip, .Lrol8_table
- mov r3, #10
- b 1f
-
-.Ldoubleround4:
- vld1.32 {q8-q9}, [sp, :256]
-1:
- // x0 += x4, x12 = rotl32(x12 ^ x0, 16)
- // x1 += x5, x13 = rotl32(x13 ^ x1, 16)
- // x2 += x6, x14 = rotl32(x14 ^ x2, 16)
- // x3 += x7, x15 = rotl32(x15 ^ x3, 16)
- vadd.i32 q0, q0, q4
- vadd.i32 q1, q1, q5
- vadd.i32 q2, q2, q6
- vadd.i32 q3, q3, q7
-
- veor q12, q12, q0
- veor q13, q13, q1
- veor q14, q14, q2
- veor q15, q15, q3
-
- vrev32.16 q12, q12
- vrev32.16 q13, q13
- vrev32.16 q14, q14
- vrev32.16 q15, q15
-
- // x8 += x12, x4 = rotl32(x4 ^ x8, 12)
- // x9 += x13, x5 = rotl32(x5 ^ x9, 12)
- // x10 += x14, x6 = rotl32(x6 ^ x10, 12)
- // x11 += x15, x7 = rotl32(x7 ^ x11, 12)
- vadd.i32 q8, q8, q12
- vadd.i32 q9, q9, q13
- vadd.i32 q10, q10, q14
- vadd.i32 q11, q11, q15
-
- vst1.32 {q8-q9}, [sp, :256]
-
- veor q8, q4, q8
- veor q9, q5, q9
- vshl.u32 q4, q8, #12
- vshl.u32 q5, q9, #12
- vsri.u32 q4, q8, #20
- vsri.u32 q5, q9, #20
-
- veor q8, q6, q10
- veor q9, q7, q11
- vshl.u32 q6, q8, #12
- vshl.u32 q7, q9, #12
- vsri.u32 q6, q8, #20
- vsri.u32 q7, q9, #20
-
- // x0 += x4, x12 = rotl32(x12 ^ x0, 8)
- // x1 += x5, x13 = rotl32(x13 ^ x1, 8)
- // x2 += x6, x14 = rotl32(x14 ^ x2, 8)
- // x3 += x7, x15 = rotl32(x15 ^ x3, 8)
- vld1.8 {d16}, [ip, :64]
- vadd.i32 q0, q0, q4
- vadd.i32 q1, q1, q5
- vadd.i32 q2, q2, q6
- vadd.i32 q3, q3, q7
-
- veor q12, q12, q0
- veor q13, q13, q1
- veor q14, q14, q2
- veor q15, q15, q3
-
- vtbl.8 d24, {d24}, d16
- vtbl.8 d25, {d25}, d16
- vtbl.8 d26, {d26}, d16
- vtbl.8 d27, {d27}, d16
- vtbl.8 d28, {d28}, d16
- vtbl.8 d29, {d29}, d16
- vtbl.8 d30, {d30}, d16
- vtbl.8 d31, {d31}, d16
-
- vld1.32 {q8-q9}, [sp, :256]
-
- // x8 += x12, x4 = rotl32(x4 ^ x8, 7)
- // x9 += x13, x5 = rotl32(x5 ^ x9, 7)
- // x10 += x14, x6 = rotl32(x6 ^ x10, 7)
- // x11 += x15, x7 = rotl32(x7 ^ x11, 7)
- vadd.i32 q8, q8, q12
- vadd.i32 q9, q9, q13
- vadd.i32 q10, q10, q14
- vadd.i32 q11, q11, q15
-
- vst1.32 {q8-q9}, [sp, :256]
-
- veor q8, q4, q8
- veor q9, q5, q9
- vshl.u32 q4, q8, #7
- vshl.u32 q5, q9, #7
- vsri.u32 q4, q8, #25
- vsri.u32 q5, q9, #25
-
- veor q8, q6, q10
- veor q9, q7, q11
- vshl.u32 q6, q8, #7
- vshl.u32 q7, q9, #7
- vsri.u32 q6, q8, #25
- vsri.u32 q7, q9, #25
-
- vld1.32 {q8-q9}, [sp, :256]
-
- // x0 += x5, x15 = rotl32(x15 ^ x0, 16)
- // x1 += x6, x12 = rotl32(x12 ^ x1, 16)
- // x2 += x7, x13 = rotl32(x13 ^ x2, 16)
- // x3 += x4, x14 = rotl32(x14 ^ x3, 16)
- vadd.i32 q0, q0, q5
- vadd.i32 q1, q1, q6
- vadd.i32 q2, q2, q7
- vadd.i32 q3, q3, q4
-
- veor q15, q15, q0
- veor q12, q12, q1
- veor q13, q13, q2
- veor q14, q14, q3
-
- vrev32.16 q15, q15
- vrev32.16 q12, q12
- vrev32.16 q13, q13
- vrev32.16 q14, q14
-
- // x10 += x15, x5 = rotl32(x5 ^ x10, 12)
- // x11 += x12, x6 = rotl32(x6 ^ x11, 12)
- // x8 += x13, x7 = rotl32(x7 ^ x8, 12)
- // x9 += x14, x4 = rotl32(x4 ^ x9, 12)
- vadd.i32 q10, q10, q15
- vadd.i32 q11, q11, q12
- vadd.i32 q8, q8, q13
- vadd.i32 q9, q9, q14
-
- vst1.32 {q8-q9}, [sp, :256]
-
- veor q8, q7, q8
- veor q9, q4, q9
- vshl.u32 q7, q8, #12
- vshl.u32 q4, q9, #12
- vsri.u32 q7, q8, #20
- vsri.u32 q4, q9, #20
-
- veor q8, q5, q10
- veor q9, q6, q11
- vshl.u32 q5, q8, #12
- vshl.u32 q6, q9, #12
- vsri.u32 q5, q8, #20
- vsri.u32 q6, q9, #20
-
- // x0 += x5, x15 = rotl32(x15 ^ x0, 8)
- // x1 += x6, x12 = rotl32(x12 ^ x1, 8)
- // x2 += x7, x13 = rotl32(x13 ^ x2, 8)
- // x3 += x4, x14 = rotl32(x14 ^ x3, 8)
- vld1.8 {d16}, [ip, :64]
- vadd.i32 q0, q0, q5
- vadd.i32 q1, q1, q6
- vadd.i32 q2, q2, q7
- vadd.i32 q3, q3, q4
-
- veor q15, q15, q0
- veor q12, q12, q1
- veor q13, q13, q2
- veor q14, q14, q3
-
- vtbl.8 d30, {d30}, d16
- vtbl.8 d31, {d31}, d16
- vtbl.8 d24, {d24}, d16
- vtbl.8 d25, {d25}, d16
- vtbl.8 d26, {d26}, d16
- vtbl.8 d27, {d27}, d16
- vtbl.8 d28, {d28}, d16
- vtbl.8 d29, {d29}, d16
-
- vld1.32 {q8-q9}, [sp, :256]
-
- // x10 += x15, x5 = rotl32(x5 ^ x10, 7)
- // x11 += x12, x6 = rotl32(x6 ^ x11, 7)
- // x8 += x13, x7 = rotl32(x7 ^ x8, 7)
- // x9 += x14, x4 = rotl32(x4 ^ x9, 7)
- vadd.i32 q10, q10, q15
- vadd.i32 q11, q11, q12
- vadd.i32 q8, q8, q13
- vadd.i32 q9, q9, q14
-
- vst1.32 {q8-q9}, [sp, :256]
-
- veor q8, q7, q8
- veor q9, q4, q9
- vshl.u32 q7, q8, #7
- vshl.u32 q4, q9, #7
- vsri.u32 q7, q8, #25
- vsri.u32 q4, q9, #25
-
- veor q8, q5, q10
- veor q9, q6, q11
- vshl.u32 q5, q8, #7
- vshl.u32 q6, q9, #7
- vsri.u32 q5, q8, #25
- vsri.u32 q6, q9, #25
-
- subs r3, r3, #1
- bne .Ldoubleround4
-
- // x0..7[0-3] are in q0-q7, x10..15[0-3] are in q10-q15.
- // x8..9[0-3] are on the stack.
-
- // Re-interleave the words in the first two rows of each block (x0..7).
- // Also add the counter values 0-3 to x12[0-3].
- vld1.32 {q8}, [r5, :128] // load counter values 0-3
- vzip.32 q0, q1 // => (0 1 0 1) (0 1 0 1)
- vzip.32 q2, q3 // => (2 3 2 3) (2 3 2 3)
- vzip.32 q4, q5 // => (4 5 4 5) (4 5 4 5)
- vzip.32 q6, q7 // => (6 7 6 7) (6 7 6 7)
- vadd.u32 q12, q8 // x12 += counter values 0-3
- vswp d1, d4
- vswp d3, d6
- vld1.32 {q8-q9}, [r0]! // load s0..7
- vswp d9, d12
- vswp d11, d14
-
- // Swap q1 and q4 so that we'll free up consecutive registers (q0-q1)
- // after XORing the first 32 bytes.
- vswp q1, q4
-
- // First two rows of each block are (q0 q1) (q2 q6) (q4 q5) (q3 q7)
-
- // x0..3[0-3] += s0..3[0-3] (add orig state to 1st row of each block)
- vadd.u32 q0, q0, q8
- vadd.u32 q2, q2, q8
- vadd.u32 q4, q4, q8
- vadd.u32 q3, q3, q8
-
- // x4..7[0-3] += s4..7[0-3] (add orig state to 2nd row of each block)
- vadd.u32 q1, q1, q9
- vadd.u32 q6, q6, q9
- vadd.u32 q5, q5, q9
- vadd.u32 q7, q7, q9
-
- // XOR first 32 bytes using keystream from first two rows of first block
- vld1.8 {q8-q9}, [r2]!
- veor q8, q8, q0
- veor q9, q9, q1
- vst1.8 {q8-q9}, [r1]!
-
- // Re-interleave the words in the last two rows of each block (x8..15).
- vld1.32 {q8-q9}, [sp, :256]
- vzip.32 q12, q13 // => (12 13 12 13) (12 13 12 13)
- vzip.32 q14, q15 // => (14 15 14 15) (14 15 14 15)
- vzip.32 q8, q9 // => (8 9 8 9) (8 9 8 9)
- vzip.32 q10, q11 // => (10 11 10 11) (10 11 10 11)
- vld1.32 {q0-q1}, [r0] // load s8..15
- vswp d25, d28
- vswp d27, d30
- vswp d17, d20
- vswp d19, d22
-
- // Last two rows of each block are (q8 q12) (q10 q14) (q9 q13) (q11 q15)
-
- // x8..11[0-3] += s8..11[0-3] (add orig state to 3rd row of each block)
- vadd.u32 q8, q8, q0
- vadd.u32 q10, q10, q0
- vadd.u32 q9, q9, q0
- vadd.u32 q11, q11, q0
-
- // x12..15[0-3] += s12..15[0-3] (add orig state to 4th row of each block)
- vadd.u32 q12, q12, q1
- vadd.u32 q14, q14, q1
- vadd.u32 q13, q13, q1
- vadd.u32 q15, q15, q1
-
- // XOR the rest of the data with the keystream
-
- vld1.8 {q0-q1}, [r2]!
- veor q0, q0, q8
- veor q1, q1, q12
- vst1.8 {q0-q1}, [r1]!
-
- vld1.8 {q0-q1}, [r2]!
- veor q0, q0, q2
- veor q1, q1, q6
- vst1.8 {q0-q1}, [r1]!
-
- vld1.8 {q0-q1}, [r2]!
- veor q0, q0, q10
- veor q1, q1, q14
- vst1.8 {q0-q1}, [r1]!
-
- vld1.8 {q0-q1}, [r2]!
- veor q0, q0, q4
- veor q1, q1, q5
- vst1.8 {q0-q1}, [r1]!
-
- vld1.8 {q0-q1}, [r2]!
- veor q0, q0, q9
- veor q1, q1, q13
- vst1.8 {q0-q1}, [r1]!
-
- vld1.8 {q0-q1}, [r2]!
- veor q0, q0, q3
- veor q1, q1, q7
- vst1.8 {q0-q1}, [r1]!
-
- vld1.8 {q0-q1}, [r2]
- mov sp, r4 // restore original stack pointer
- veor q0, q0, q11
- veor q1, q1, q15
- vst1.8 {q0-q1}, [r1]
-
- pop {r4-r5}
- bx lr
-ENDPROC(chacha20_neon_4block)
+.align 4
+.L128_or_more_neon:
+ vld1.8 {q12-q13},[r12]!
+ vld1.8 {q14-q15},[r12]!
+ veor q0,q0,q12
+ veor q1,q1,q13
+ vld1.8 {q12-q13},[r12]!
+ veor q2,q2,q14
+ veor q3,q3,q15
+ vld1.8 {q14-q15},[r12]!
+
+ veor q4,q4,q12
+ veor q5,q5,q13
+ vst1.8 {q0-q1},[r14]!
+ veor q6,q6,q14
+ vst1.8 {q2-q3},[r14]!
+ veor q7,q7,q15
+ vst1.8 {q4-q5},[r14]!
+ vst1.8 {q6-q7},[r14]!
+
+ beq .Ldone_neon
+
+ add r8,sp,#4*(8)
+ vst1.8 {q8-q9},[sp]
+ add r10,sp,#4*(0)
+ vst1.8 {q10-q11},[r8]
+ sub r11,r11,#64*2 @ len-=64*2
+ b .Loop_tail_neon
+
+.align 4
+.L192_or_more_neon:
+ vld1.8 {q12-q13},[r12]!
+ vld1.8 {q14-q15},[r12]!
+ veor q0,q0,q12
+ veor q1,q1,q13
+ vld1.8 {q12-q13},[r12]!
+ veor q2,q2,q14
+ veor q3,q3,q15
+ vld1.8 {q14-q15},[r12]!
+
+ veor q4,q4,q12
+ veor q5,q5,q13
+ vld1.8 {q12-q13},[r12]!
+ veor q6,q6,q14
+ vst1.8 {q0-q1},[r14]!
+ veor q7,q7,q15
+ vld1.8 {q14-q15},[r12]!
+
+ veor q8,q8,q12
+ vst1.8 {q2-q3},[r14]!
+ veor q9,q9,q13
+ vst1.8 {q4-q5},[r14]!
+ veor q10,q10,q14
+ vst1.8 {q6-q7},[r14]!
+ veor q11,q11,q15
+ vst1.8 {q8-q9},[r14]!
+ vst1.8 {q10-q11},[r14]!
+
+ beq .Ldone_neon
+
+ ldmia sp,{r8-r11} @ load key material
+ add r0,r0,r8 @ accumulate key material
+ add r8,sp,#4*(4)
+ add r1,r1,r9
+ add r2,r2,r10
+ add r3,r3,r11
+ ldmia r8,{r8-r11} @ load key material
+
+ add r4,r4,r8 @ accumulate key material
+ add r8,sp,#4*(8)
+ add r5,r5,r9
+ add r6,r6,r10
+ add r7,r7,r11
+ ldmia r8,{r8-r11} @ load key material
+#ifdef __ARMEB__
+ rev r0,r0
+ rev r1,r1
+ rev r2,r2
+ rev r3,r3
+ rev r4,r4
+ rev r5,r5
+ rev r6,r6
+ rev r7,r7
+#endif
+ stmia sp,{r0-r7}
+ add r0,sp,#4*(16+8)
+
+ ldmia r0,{r0-r7} @ load second half
+
+ add r0,r0,r8 @ accumulate key material
+ add r8,sp,#4*(12)
+ add r1,r1,r9
+ add r2,r2,r10
+ add r3,r3,r11
+ ldmia r8,{r8-r11} @ load key material
+
+ add r4,r4,r8 @ accumulate key material
+ add r8,sp,#4*(8)
+ add r5,r5,r9
+ add r4,r4,#3 @ counter+3
+ add r6,r6,r10
+ add r7,r7,r11
+ ldr r11,[sp,#4*(32+2)] @ re-load len
+#ifdef __ARMEB__
+ rev r0,r0
+ rev r1,r1
+ rev r2,r2
+ rev r3,r3
+ rev r4,r4
+ rev r5,r5
+ rev r6,r6
+ rev r7,r7
+#endif
+ stmia r8,{r0-r7}
+ add r10,sp,#4*(0)
+ sub r11,r11,#64*3 @ len-=64*3
+
+.Loop_tail_neon:
+ ldrb r8,[r10],#1 @ read buffer on stack
+ ldrb r9,[r12],#1 @ read input
+ subs r11,r11,#1
+ eor r8,r8,r9
+ strb r8,[r14],#1 @ store output
+ bne .Loop_tail_neon
+
+.Ldone_neon:
+ add sp,sp,#4*(32+4)
+ vldmia sp,{d8-d15}
+ add sp,sp,#4*(16+3)
+.Lno_data_neon:
+ ldmia sp!,{r4-r11,pc}
+ENDPROC(chacha20_neon)
#endif