1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
package main
import (
"bytes"
"encoding/binary"
"math/rand"
"sync/atomic"
"time"
)
/* Called when a new authenticated message has been send
*
*/
func (peer *Peer) KeepKeyFreshSending() {
kp := peer.keyPairs.Current()
if kp == nil {
return
}
nonce := atomic.LoadUint64(&kp.sendNonce)
if nonce > RekeyAfterMessages {
signalSend(peer.signal.handshakeBegin)
}
if kp.isInitiator && time.Now().Sub(kp.created) > RekeyAfterTime {
signalSend(peer.signal.handshakeBegin)
}
}
/* Called when a new authenticated message has been recevied
*
* NOTE: Not thread safe (called by sequential receiver)
*/
func (peer *Peer) KeepKeyFreshReceiving() {
if peer.timer.sendLastMinuteHandshake {
return
}
kp := peer.keyPairs.Current()
if kp == nil {
return
}
if !kp.isInitiator {
return
}
nonce := atomic.LoadUint64(&kp.sendNonce)
send := nonce > RekeyAfterMessages || time.Now().Sub(kp.created) > RekeyAfterTimeReceiving
if send {
// do a last minute attempt at initiating a new handshake
signalSend(peer.signal.handshakeBegin)
peer.timer.sendLastMinuteHandshake = true
}
}
/* Queues a keep-alive if no packets are queued for peer
*/
func (peer *Peer) SendKeepAlive() bool {
elem := peer.device.NewOutboundElement()
elem.packet = nil
if len(peer.queue.nonce) == 0 {
select {
case peer.queue.nonce <- elem:
return true
default:
return false
}
}
return true
}
/* Event:
* Sent non-empty (authenticated) transport message
*/
func (peer *Peer) TimerDataSent() {
timerStop(peer.timer.keepalivePassive)
if !peer.timer.pendingNewHandshake {
peer.timer.pendingNewHandshake = true
peer.timer.newHandshake.Reset(NewHandshakeTime)
}
}
/* Event:
* Received non-empty (authenticated) transport message
*/
func (peer *Peer) TimerDataReceived() {
if peer.timer.pendingKeepalivePassive {
peer.timer.needAnotherKeepalive = true
return
}
peer.timer.pendingKeepalivePassive = false
peer.timer.keepalivePassive.Reset(KeepaliveTimeout)
}
/* Event:
* Any (authenticated) packet received
*/
func (peer *Peer) TimerAnyAuthenticatedPacketReceived() {
timerStop(peer.timer.newHandshake)
}
/* Event:
* Any authenticated packet send / received.
*/
func (peer *Peer) TimerAnyAuthenticatedPacketTraversal() {
interval := atomic.LoadUint64(&peer.persistentKeepaliveInterval)
if interval > 0 {
duration := time.Duration(interval) * time.Second
peer.timer.keepalivePersistent.Reset(duration)
}
}
/* Called after succesfully completing a handshake.
* i.e. after:
*
* - Valid handshake response
* - First transport message under the "next" key
*/
func (peer *Peer) TimerHandshakeComplete() {
atomic.StoreInt64(
&peer.stats.lastHandshakeNano,
time.Now().UnixNano(),
)
signalSend(peer.signal.handshakeCompleted)
peer.device.log.Info.Println("Negotiated new handshake for", peer.String())
}
/* Event:
* An ephemeral key is generated
*
* i.e after:
*
* CreateMessageInitiation
* CreateMessageResponse
*
* Schedules the deletion of all key material
* upon failure to complete a handshake
*/
func (peer *Peer) TimerEphemeralKeyCreated() {
peer.timer.zeroAllKeys.Reset(RejectAfterTime * 3)
}
func (peer *Peer) RoutineTimerHandler() {
device := peer.device
logDebug := device.log.Debug
logDebug.Println("Routine, timer handler, started for peer", peer.String())
for {
select {
case <-peer.signal.stop:
return
// keep-alives
case <-peer.timer.keepalivePersistent.C:
interval := atomic.LoadUint64(&peer.persistentKeepaliveInterval)
if interval > 0 {
logDebug.Println("Sending keep-alive to", peer.String())
peer.SendKeepAlive()
}
case <-peer.timer.keepalivePassive.C:
logDebug.Println("Sending keep-alive to", peer.String())
peer.SendKeepAlive()
if peer.timer.needAnotherKeepalive {
peer.timer.keepalivePassive.Reset(KeepaliveTimeout)
peer.timer.needAnotherKeepalive = false
}
// unresponsive session
case <-peer.timer.newHandshake.C:
logDebug.Println("Retrying handshake with", peer.String(), "due to lack of reply")
signalSend(peer.signal.handshakeBegin)
// clear key material
case <-peer.timer.zeroAllKeys.C:
logDebug.Println("Clearing all key material for", peer.String())
hs := &peer.handshake
hs.mutex.Lock()
kp := &peer.keyPairs
kp.mutex.Lock()
// remove key-pairs
if kp.previous != nil {
device.DeleteKeyPair(kp.previous)
kp.previous = nil
}
if kp.current != nil {
device.DeleteKeyPair(kp.current)
kp.current = nil
}
if kp.next != nil {
device.DeleteKeyPair(kp.next)
kp.next = nil
}
kp.mutex.Unlock()
// zero out handshake
device.indices.Delete(hs.localIndex)
hs.localIndex = 0
setZero(hs.localEphemeral[:])
setZero(hs.remoteEphemeral[:])
setZero(hs.chainKey[:])
setZero(hs.hash[:])
hs.mutex.Unlock()
}
}
}
/* This is the state machine for handshake initiation
*
* Associated with this routine is the signal "handshakeBegin"
* The routine will read from the "handshakeBegin" channel
* at most every RekeyTimeout seconds
*/
func (peer *Peer) RoutineHandshakeInitiator() {
device := peer.device
logInfo := device.log.Info
logError := device.log.Error
logDebug := device.log.Debug
logDebug.Println("Routine, handshake initator, started for", peer.String())
var temp [256]byte
for {
// wait for signal
select {
case <-peer.signal.handshakeBegin:
case <-peer.signal.stop:
return
}
// set deadline
BeginHandshakes:
signalClear(peer.signal.handshakeReset)
deadline := time.NewTimer(RekeyAttemptTime)
AttemptHandshakes:
for attempts := uint(1); ; attempts++ {
// check if deadline reached
select {
case <-deadline.C:
logInfo.Println("Handshake negotiation timed out for:", peer.String())
signalSend(peer.signal.flushNonceQueue)
timerStop(peer.timer.keepalivePersistent)
break
case <-peer.signal.stop:
return
default:
}
signalClear(peer.signal.handshakeCompleted)
// create initiation message
msg, err := peer.device.CreateMessageInitiation(peer)
if err != nil {
logError.Println("Failed to create handshake initiation message:", err)
break AttemptHandshakes
}
jitter := time.Millisecond * time.Duration(rand.Uint32()%334)
// marshal and send
writer := bytes.NewBuffer(temp[:0])
binary.Write(writer, binary.LittleEndian, msg)
packet := writer.Bytes()
peer.mac.AddMacs(packet)
_, err = peer.SendBuffer(packet)
if err != nil {
logError.Println(
"Failed to send handshake initiation message to",
peer.String(), ":", err,
)
continue
}
peer.TimerAnyAuthenticatedPacketTraversal()
// set handshake timeout
timeout := time.NewTimer(RekeyTimeout + jitter)
logDebug.Println(
"Handshake initiation attempt",
attempts, "sent to", peer.String(),
)
// wait for handshake or timeout
select {
case <-peer.signal.stop:
return
case <-peer.signal.handshakeCompleted:
<-timeout.C
peer.timer.sendLastMinuteHandshake = false
break AttemptHandshakes
case <-peer.signal.handshakeReset:
<-timeout.C
goto BeginHandshakes
case <-timeout.C:
// TODO: Clear source address for peer
continue
}
}
// clear signal set in the meantime
signalClear(peer.signal.handshakeBegin)
}
}
|