summaryrefslogtreecommitdiffhomepage
path: root/src/timers.go
blob: 99695ba59cb61fdd6e07a33b3a6aaf82caa82201 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
package main

import (
	"bytes"
	"encoding/binary"
	"math/rand"
	"sync/atomic"
	"time"
)

/* Called when a new authenticated message has been send
 *
 */
func (peer *Peer) KeepKeyFreshSending() {
	kp := peer.keyPairs.Current()
	if kp == nil {
		return
	}
	nonce := atomic.LoadUint64(&kp.sendNonce)
	if nonce > RekeyAfterMessages {
		signalSend(peer.signal.handshakeBegin)
	}
	if kp.isInitiator && time.Now().Sub(kp.created) > RekeyAfterTime {
		signalSend(peer.signal.handshakeBegin)
	}
}

/* Called when a new authenticated message has been recevied
 *
 * NOTE: Not thread safe (called by sequential receiver)
 */
func (peer *Peer) KeepKeyFreshReceiving() {
	if peer.timer.sendLastMinuteHandshake {
		return
	}
	kp := peer.keyPairs.Current()
	if kp == nil {
		return
	}
	if !kp.isInitiator {
		return
	}
	nonce := atomic.LoadUint64(&kp.sendNonce)
	send := nonce > RekeyAfterMessages || time.Now().Sub(kp.created) > RekeyAfterTimeReceiving
	if send {
		// do a last minute attempt at initiating a new handshake
		signalSend(peer.signal.handshakeBegin)
		peer.timer.sendLastMinuteHandshake = true
	}
}

/* Queues a keep-alive if no packets are queued for peer
 */
func (peer *Peer) SendKeepAlive() bool {
	elem := peer.device.NewOutboundElement()
	elem.packet = nil
	if len(peer.queue.nonce) == 0 {
		select {
		case peer.queue.nonce <- elem:
			return true
		default:
			return false
		}
	}
	return true
}

/* Event:
 * Sent non-empty (authenticated) transport message
 */
func (peer *Peer) TimerDataSent() {
	timerStop(peer.timer.keepalivePassive)
	if !peer.timer.pendingNewHandshake {
		peer.timer.pendingNewHandshake = true
		peer.timer.newHandshake.Reset(NewHandshakeTime)
	}
}

/* Event:
 * Received non-empty (authenticated) transport message
 */
func (peer *Peer) TimerDataReceived() {
	if peer.timer.pendingKeepalivePassive {
		peer.timer.needAnotherKeepalive = true
		return
	}
	peer.timer.pendingKeepalivePassive = false
	peer.timer.keepalivePassive.Reset(KeepaliveTimeout)
}

/* Event:
 * Any (authenticated) packet received
 */
func (peer *Peer) TimerAnyAuthenticatedPacketReceived() {
	timerStop(peer.timer.newHandshake)
}

/* Event:
 * Any authenticated packet send / received.
 */
func (peer *Peer) TimerAnyAuthenticatedPacketTraversal() {
	interval := atomic.LoadUint64(&peer.persistentKeepaliveInterval)
	if interval > 0 {
		duration := time.Duration(interval) * time.Second
		peer.timer.keepalivePersistent.Reset(duration)
	}
}

/* Called after succesfully completing a handshake.
 * i.e. after:
 *
 * - Valid handshake response
 * - First transport message under the "next" key
 */
func (peer *Peer) TimerHandshakeComplete() {
	atomic.StoreInt64(
		&peer.stats.lastHandshakeNano,
		time.Now().UnixNano(),
	)
	signalSend(peer.signal.handshakeCompleted)
	peer.device.log.Info.Println("Negotiated new handshake for", peer.String())
}

/* Event:
 * An ephemeral key is generated
 *
 * i.e after:
 *
 * CreateMessageInitiation
 * CreateMessageResponse
 *
 * Schedules the deletion of all key material
 * upon failure to complete a handshake
 */
func (peer *Peer) TimerEphemeralKeyCreated() {
	peer.timer.zeroAllKeys.Reset(RejectAfterTime * 3)
}

func (peer *Peer) RoutineTimerHandler() {
	device := peer.device

	logDebug := device.log.Debug
	logDebug.Println("Routine, timer handler, started for peer", peer.String())

	for {
		select {

		case <-peer.signal.stop:
			return

		// keep-alives

		case <-peer.timer.keepalivePersistent.C:

			interval := atomic.LoadUint64(&peer.persistentKeepaliveInterval)
			if interval > 0 {
				logDebug.Println("Sending keep-alive to", peer.String())
				peer.SendKeepAlive()
			}

		case <-peer.timer.keepalivePassive.C:

			logDebug.Println("Sending keep-alive to", peer.String())

			peer.SendKeepAlive()

			if peer.timer.needAnotherKeepalive {
				peer.timer.keepalivePassive.Reset(KeepaliveTimeout)
				peer.timer.needAnotherKeepalive = false
			}

		// unresponsive session

		case <-peer.timer.newHandshake.C:

			logDebug.Println("Retrying handshake with", peer.String(), "due to lack of reply")

			signalSend(peer.signal.handshakeBegin)

		// clear key material

		case <-peer.timer.zeroAllKeys.C:

			logDebug.Println("Clearing all key material for", peer.String())

			hs := &peer.handshake
			hs.mutex.Lock()

			kp := &peer.keyPairs
			kp.mutex.Lock()

			// remove key-pairs

			if kp.previous != nil {
				device.DeleteKeyPair(kp.previous)
				kp.previous = nil
			}
			if kp.current != nil {
				device.DeleteKeyPair(kp.current)
				kp.current = nil
			}
			if kp.next != nil {
				device.DeleteKeyPair(kp.next)
				kp.next = nil
			}
			kp.mutex.Unlock()

			// zero out handshake

			device.indices.Delete(hs.localIndex)

			hs.localIndex = 0
			setZero(hs.localEphemeral[:])
			setZero(hs.remoteEphemeral[:])
			setZero(hs.chainKey[:])
			setZero(hs.hash[:])
			hs.mutex.Unlock()
		}
	}
}

/* This is the state machine for handshake initiation
 *
 * Associated with this routine is the signal "handshakeBegin"
 * The routine will read from the "handshakeBegin" channel
 * at most every RekeyTimeout seconds
 */
func (peer *Peer) RoutineHandshakeInitiator() {
	device := peer.device

	logInfo := device.log.Info
	logError := device.log.Error
	logDebug := device.log.Debug
	logDebug.Println("Routine, handshake initator, started for", peer.String())

	var temp [256]byte

	for {

		// wait for signal

		select {
		case <-peer.signal.handshakeBegin:
		case <-peer.signal.stop:
			return
		}

		// set deadline

	BeginHandshakes:

		signalClear(peer.signal.handshakeReset)
		deadline := time.NewTimer(RekeyAttemptTime)

	AttemptHandshakes:

		for attempts := uint(1); ; attempts++ {

			// check if deadline reached

			select {
			case <-deadline.C:
				logInfo.Println("Handshake negotiation timed out for:", peer.String())
				signalSend(peer.signal.flushNonceQueue)
				timerStop(peer.timer.keepalivePersistent)
				break
			case <-peer.signal.stop:
				return
			default:
			}

			signalClear(peer.signal.handshakeCompleted)

			// create initiation message

			msg, err := peer.device.CreateMessageInitiation(peer)
			if err != nil {
				logError.Println("Failed to create handshake initiation message:", err)
				break AttemptHandshakes
			}

			jitter := time.Millisecond * time.Duration(rand.Uint32()%334)

			// marshal and send

			writer := bytes.NewBuffer(temp[:0])
			binary.Write(writer, binary.LittleEndian, msg)
			packet := writer.Bytes()
			peer.mac.AddMacs(packet)

			_, err = peer.SendBuffer(packet)
			if err != nil {
				logError.Println(
					"Failed to send handshake initiation message to",
					peer.String(), ":", err,
				)
				continue
			}

			peer.TimerAnyAuthenticatedPacketTraversal()

			// set handshake timeout

			timeout := time.NewTimer(RekeyTimeout + jitter)
			logDebug.Println(
				"Handshake initiation attempt",
				attempts, "sent to", peer.String(),
			)

			// wait for handshake or timeout

			select {

			case <-peer.signal.stop:
				return

			case <-peer.signal.handshakeCompleted:
				<-timeout.C
				peer.timer.sendLastMinuteHandshake = false
				break AttemptHandshakes

			case <-peer.signal.handshakeReset:
				<-timeout.C
				goto BeginHandshakes

			case <-timeout.C:
				// TODO: Clear source address for peer
				continue
			}
		}

		// clear signal set in the meantime

		signalClear(peer.signal.handshakeBegin)
	}
}