1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
package main
import (
"encoding/binary"
"errors"
"golang.org/x/crypto/chacha20poly1305"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
"net"
"sync"
"sync/atomic"
"time"
)
/* Handles outbound flow
*
* 1. TUN queue
* 2. Routing (sequential)
* 3. Nonce assignment (sequential)
* 4. Encryption (parallel)
* 5. Transmission (sequential)
*
* The order of packets (per peer) is maintained.
* The functions in this file occure (roughly) in the order packets are processed.
*/
/* The sequential consumers will attempt to take the lock,
* workers release lock when they have completed work (encryption) on the packet.
*
* If the element is inserted into the "encryption queue",
* the content is preceeded by enough "junk" to contain the transport header
* (to allow the construction of transport messages in-place)
*/
type QueueOutboundElement struct {
dropped int32
mutex sync.Mutex
buffer *[MaxMessageSize]byte // slice holding the packet data
packet []byte // slice of "data" (always!)
nonce uint64 // nonce for encryption
keyPair *KeyPair // key-pair for encryption
peer *Peer // related peer
}
func (peer *Peer) FlushNonceQueue() {
elems := len(peer.queue.nonce)
for i := 0; i < elems; i++ {
select {
case <-peer.queue.nonce:
default:
return
}
}
}
var (
ErrorNoEndpoint = errors.New("No known endpoint for peer")
ErrorNoConnection = errors.New("No UDP socket for device")
)
func (device *Device) NewOutboundElement() *QueueOutboundElement {
return &QueueOutboundElement{
dropped: AtomicFalse,
buffer: device.pool.messageBuffers.Get().(*[MaxMessageSize]byte),
}
}
func (elem *QueueOutboundElement) Drop() {
atomic.StoreInt32(&elem.dropped, AtomicTrue)
}
func (elem *QueueOutboundElement) IsDropped() bool {
return atomic.LoadInt32(&elem.dropped) == AtomicTrue
}
func addToOutboundQueue(
queue chan *QueueOutboundElement,
element *QueueOutboundElement,
) {
for {
select {
case queue <- element:
return
default:
select {
case old := <-queue:
old.Drop()
default:
}
}
}
}
func addToEncryptionQueue(
queue chan *QueueOutboundElement,
element *QueueOutboundElement,
) {
for {
select {
case queue <- element:
return
default:
select {
case old := <-queue:
old.Drop()
old.mutex.Unlock()
default:
}
}
}
}
func (peer *Peer) SendBuffer(buffer []byte) (int, error) {
peer.device.net.mutex.RLock()
defer peer.device.net.mutex.RUnlock()
peer.mutex.RLock()
defer peer.mutex.RUnlock()
endpoint := peer.endpoint
conn := peer.device.net.conn
if endpoint == nil {
return 0, ErrorNoEndpoint
}
if conn == nil {
return 0, ErrorNoConnection
}
return conn.WriteToUDP(buffer, endpoint)
}
/* Reads packets from the TUN and inserts
* into nonce queue for peer
*
* Obs. Single instance per TUN device
*/
func (device *Device) RoutineReadFromTUN() {
if device.tun == nil {
return
}
var elem *QueueOutboundElement
logDebug := device.log.Debug
logError := device.log.Error
logDebug.Println("Routine, TUN Reader: started")
for {
// read packet
if elem == nil {
elem = device.NewOutboundElement()
}
// TODO: THIS!
elem.packet = elem.buffer[MessageTransportHeaderSize:]
size, err := device.tun.Read(elem.packet)
if err != nil {
logError.Println("Failed to read packet from TUN device:", err)
device.Close()
return
}
if size == 0 {
continue
}
elem.packet = elem.packet[:size]
// lookup peer
var peer *Peer
switch elem.packet[0] >> 4 {
case ipv4.Version:
if len(elem.packet) < ipv4.HeaderLen {
continue
}
dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
peer = device.routingTable.LookupIPv4(dst)
case ipv6.Version:
if len(elem.packet) < ipv6.HeaderLen {
continue
}
dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
peer = device.routingTable.LookupIPv6(dst)
default:
logDebug.Println("Receieved packet with unknown IP version")
}
if peer == nil {
continue
}
// check if known endpoint
peer.mutex.RLock()
if peer.endpoint == nil {
peer.mutex.RUnlock()
logDebug.Println("No known endpoint for peer", peer.String())
continue
}
peer.mutex.RUnlock()
// insert into nonce/pre-handshake queue
signalSend(peer.signal.handshakeReset)
addToOutboundQueue(peer.queue.nonce, elem)
elem = nil
}
}
/* Queues packets when there is no handshake.
* Then assigns nonces to packets sequentially
* and creates "work" structs for workers
*
* TODO: Avoid dynamic allocation of work queue elements
*
* Obs. A single instance per peer
*/
func (peer *Peer) RoutineNonce() {
var keyPair *KeyPair
var elem *QueueOutboundElement
device := peer.device
logDebug := device.log.Debug
logDebug.Println("Routine, nonce worker, started for peer", peer.String())
func() {
for {
NextPacket:
// wait for packet
if elem == nil {
select {
case elem = <-peer.queue.nonce:
case <-peer.signal.stop:
return
}
}
// wait for key pair
for {
select {
case <-peer.signal.newKeyPair:
default:
}
keyPair = peer.keyPairs.Current()
if keyPair != nil && keyPair.sendNonce < RejectAfterMessages {
if time.Now().Sub(keyPair.created) < RejectAfterTime {
break
}
}
signalSend(peer.signal.handshakeBegin)
logDebug.Println("Awaiting key-pair for", peer.String())
select {
case <-peer.signal.newKeyPair:
logDebug.Println("Key-pair negotiated for", peer.String())
goto NextPacket
case <-peer.signal.flushNonceQueue:
logDebug.Println("Clearing queue for", peer.String())
peer.FlushNonceQueue()
elem = nil
goto NextPacket
case <-peer.signal.stop:
return
}
}
// process current packet
if elem != nil {
// create work element
elem.keyPair = keyPair
elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
elem.dropped = AtomicFalse
elem.peer = peer
elem.mutex.Lock()
// add to parallel and sequential queue
addToEncryptionQueue(device.queue.encryption, elem)
addToOutboundQueue(peer.queue.outbound, elem)
elem = nil
}
}
}()
}
/* Encrypts the elements in the queue
* and marks them for sequential consumption (by releasing the mutex)
*
* Obs. One instance per core
*/
func (device *Device) RoutineEncryption() {
var elem *QueueOutboundElement
var nonce [chacha20poly1305.NonceSize]byte
logDebug := device.log.Debug
logDebug.Println("Routine, encryption worker, started")
for {
// fetch next element
select {
case elem = <-device.queue.encryption:
case <-device.signal.stop:
logDebug.Println("Routine, encryption worker, stopped")
return
}
// check if dropped
if elem.IsDropped() {
continue
}
// populate header fields
header := elem.buffer[:MessageTransportHeaderSize]
fieldType := header[0:4]
fieldReceiver := header[4:8]
fieldNonce := header[8:16]
binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
binary.LittleEndian.PutUint32(fieldReceiver, elem.keyPair.remoteIndex)
binary.LittleEndian.PutUint64(fieldNonce, elem.nonce)
// pad content to MTU size
mtu := int(atomic.LoadInt32(&device.mtu))
pad := len(elem.packet) % PaddingMultiple
if pad > 0 {
for i := 0; i < PaddingMultiple-pad && len(elem.packet) < mtu; i++ {
elem.packet = append(elem.packet, 0)
}
// TODO: How good is this code
}
// encrypt content (append to header)
binary.LittleEndian.PutUint64(nonce[4:], elem.nonce)
elem.packet = elem.keyPair.send.Seal(
header,
nonce[:],
elem.packet,
nil,
)
elem.mutex.Unlock()
// refresh key if necessary
elem.peer.KeepKeyFreshSending()
}
}
/* Sequentially reads packets from queue and sends to endpoint
*
* Obs. Single instance per peer.
* The routine terminates then the outbound queue is closed.
*/
func (peer *Peer) RoutineSequentialSender() {
device := peer.device
logDebug := device.log.Debug
logDebug.Println("Routine, sequential sender, started for", peer.String())
for {
select {
case <-peer.signal.stop:
logDebug.Println("Routine, sequential sender, stopped for", peer.String())
return
case elem := <-peer.queue.outbound:
elem.mutex.Lock()
if elem.IsDropped() {
continue
}
// send message and return buffer to pool
length := uint64(len(elem.packet))
_, err := peer.SendBuffer(elem.packet)
device.PutMessageBuffer(elem.buffer)
if err != nil {
continue
}
atomic.AddUint64(&peer.stats.txBytes, length)
// update timers
peer.TimerAnyAuthenticatedPacketTraversal()
if len(elem.packet) != MessageKeepaliveSize {
peer.TimerDataSent()
}
peer.KeepKeyFreshSending()
}
}
}
|