summaryrefslogtreecommitdiffhomepage
path: root/src/send.go
blob: 405366905e488a9235b2bdd043ab5745a10b4b45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
package main

import (
	"encoding/binary"
	"golang.org/x/crypto/chacha20poly1305"
	"net"
	"sync"
	"sync/atomic"
	"time"
)

/* Handles outbound flow
 *
 * 1. TUN queue
 * 2. Routing (sequential)
 * 3. Nonce assignment (sequential)
 * 4. Encryption (parallel)
 * 5. Transmission (sequential)
 *
 * The order of packets (per peer) is maintained.
 * The functions in this file occure (roughly) in the order packets are processed.
 */

/* A work unit
 *
 * The sequential consumers will attempt to take the lock,
 * workers release lock when they have completed work on the packet.
 *
 * If the element is inserted into the "encryption queue",
 * the content is preceeded by enough "junk" to contain the header
 * (to allow the constuction of transport messages in-place)
 */
type QueueOutboundElement struct {
	state   uint32
	mutex   sync.Mutex
	data    [MaxMessageSize]byte
	packet  []byte   // slice of packet (sending)
	nonce   uint64   // nonce for encryption
	keyPair *KeyPair // key-pair for encryption
	peer    *Peer    // related peer
}

func (peer *Peer) FlushNonceQueue() {
	elems := len(peer.queue.nonce)
	for i := 0; i < elems; i += 1 {
		select {
		case <-peer.queue.nonce:
		default:
			return
		}
	}
}

func (device *Device) NewOutboundElement() *QueueOutboundElement {
	elem := new(QueueOutboundElement) // TODO: profile, consider sync.Pool
	return elem
}

func (elem *QueueOutboundElement) Drop() {
	atomic.StoreUint32(&elem.state, ElementStateDropped)
}

func (elem *QueueOutboundElement) IsDropped() bool {
	return atomic.LoadUint32(&elem.state) == ElementStateDropped
}

func addToOutboundQueue(
	queue chan *QueueOutboundElement,
	element *QueueOutboundElement,
) {
	for {
		select {
		case queue <- element:
			return
		default:
			select {
			case old := <-queue:
				old.Drop()
			default:
			}
		}
	}
}

/* Reads packets from the TUN and inserts
 * into nonce queue for peer
 *
 * Obs. Single instance per TUN device
 */
func (device *Device) RoutineReadFromTUN(tun TUNDevice) {
	if tun == nil {
		// dummy
		return
	}

	elem := device.NewOutboundElement()

	device.log.Debug.Println("Routine, TUN Reader: started")
	for {
		// read packet

		if elem == nil {
			elem = device.NewOutboundElement()
		}

		elem.packet = elem.data[MessageTransportHeaderSize:]
		size, err := tun.Read(elem.packet)
		if err != nil {
			device.log.Error.Println("Failed to read packet from TUN device:", err)
			continue
		}
		elem.packet = elem.packet[:size]
		if len(elem.packet) < IPv4headerSize {
			device.log.Error.Println("Packet too short, length:", size)
			continue
		}

		// lookup peer

		var peer *Peer
		switch elem.packet[0] >> 4 {
		case IPv4version:
			dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
			peer = device.routingTable.LookupIPv4(dst)

		case IPv6version:
			dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
			peer = device.routingTable.LookupIPv6(dst)

		default:
			device.log.Debug.Println("Receieved packet with unknown IP version")
		}

		if peer == nil {
			continue
		}
		if peer.endpoint == nil {
			device.log.Debug.Println("No known endpoint for peer", peer.id)
			continue
		}

		// insert into nonce/pre-handshake queue

		addToOutboundQueue(peer.queue.nonce, elem)
		elem = nil

	}
}

/* Queues packets when there is no handshake.
 * Then assigns nonces to packets sequentially
 * and creates "work" structs for workers
 *
 * TODO: Avoid dynamic allocation of work queue elements
 *
 * Obs. A single instance per peer
 */
func (peer *Peer) RoutineNonce() {
	var keyPair *KeyPair
	var elem *QueueOutboundElement

	device := peer.device
	logger := device.log.Debug

	logger.Println("Routine, nonce worker, started for peer", peer.id)

	func() {

		for {
		NextPacket:

			// wait for packet

			if elem == nil {
				select {
				case elem = <-peer.queue.nonce:
				case <-peer.signal.stop:
					return
				}
			}

			// wait for key pair

			for {
				select {
				case <-peer.signal.newKeyPair:
				default:
				}

				keyPair = peer.keyPairs.Current()
				if keyPair != nil && keyPair.sendNonce < RejectAfterMessages {
					if time.Now().Sub(keyPair.created) < RejectAfterTime {
						break
					}
				}
				logger.Println("Key pair:", keyPair)

				sendSignal(peer.signal.handshakeBegin)
				logger.Println("Waiting for key-pair, peer", peer.id)

				select {
				case <-peer.signal.newKeyPair:
					logger.Println("Key-pair negotiated for peer", peer.id)
					goto NextPacket

				case <-peer.signal.flushNonceQueue:
					logger.Println("Clearing queue for peer", peer.id)
					peer.FlushNonceQueue()
					elem = nil
					goto NextPacket

				case <-peer.signal.stop:
					return
				}
			}

			// process current packet

			if elem != nil {

				// create work element

				elem.keyPair = keyPair
				elem.nonce = atomic.AddUint64(&keyPair.sendNonce, 1) - 1
				elem.peer = peer
				elem.mutex.Lock()

				// add to parallel processing and sequential consuming queue

				addToOutboundQueue(device.queue.encryption, elem)
				addToOutboundQueue(peer.queue.outbound, elem)
				elem = nil
			}
		}
	}()

	logger.Println("Routine, nonce worker, stopped for peer", peer.id)
}

/* Encrypts the elements in the queue
 * and marks them for sequential consumption (by releasing the mutex)
 *
 * Obs. One instance per core
 */
func (device *Device) RoutineEncryption() {
	var nonce [chacha20poly1305.NonceSize]byte
	for work := range device.queue.encryption {
		if work.IsDropped() {
			continue
		}

		// populate header fields

		func() {
			header := work.data[:MessageTransportHeaderSize]

			fieldType := header[0:4]
			fieldReceiver := header[4:8]
			fieldNonce := header[8:16]

			binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
			binary.LittleEndian.PutUint32(fieldReceiver, work.keyPair.remoteIndex)
			binary.LittleEndian.PutUint64(fieldNonce, work.nonce)
		}()

		// encrypt content

		func() {
			binary.LittleEndian.PutUint64(nonce[4:], work.nonce)
			work.packet = work.keyPair.send.Seal(
				work.packet[:0],
				nonce[:],
				work.packet,
				nil,
			)
			work.mutex.Unlock()
		}()

		// reslice to include header

		work.packet = work.data[:MessageTransportHeaderSize+len(work.packet)]

		// refresh key if necessary

		work.peer.KeepKeyFreshSending()
	}
}

/* Sequentially reads packets from queue and sends to endpoint
 *
 * Obs. Single instance per peer.
 * The routine terminates then the outbound queue is closed.
 */
func (peer *Peer) RoutineSequentialSender() {
	logger := peer.device.log.Debug
	logger.Println("Routine, sequential sender, started for peer", peer.id)

	device := peer.device

	for {
		select {
		case <-peer.signal.stop:
			logger.Println("Routine, sequential sender, stopped for peer", peer.id)
			return
		case work := <-peer.queue.outbound:
			if work.IsDropped() {
				continue
			}
			work.mutex.Lock()
			func() {
				if work.packet == nil {
					return
				}

				peer.mutex.RLock()
				defer peer.mutex.RUnlock()

				if peer.endpoint == nil {
					logger.Println("No endpoint for peer:", peer.id)
					return
				}

				device.net.mutex.RLock()
				defer device.net.mutex.RUnlock()

				if device.net.conn == nil {
					logger.Println("No source for device")
					return
				}

				_, err := device.net.conn.WriteToUDP(work.packet, peer.endpoint)
				if err != nil {
					return
				}
				atomic.AddUint64(&peer.tx_bytes, uint64(len(work.packet)))

				// shift keep-alive timer

				if peer.persistentKeepaliveInterval != 0 {
					interval := time.Duration(peer.persistentKeepaliveInterval) * time.Second
					peer.timer.sendKeepalive.Reset(interval)
				}
			}()
		}
	}
}