summaryrefslogtreecommitdiffhomepage
path: root/src/receive.go
blob: d97ca41de55b3b0ef4b3e77b823ddb47ec8ee29e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
package main

import (
	"bytes"
	"encoding/binary"
	"golang.org/x/crypto/chacha20poly1305"
	"golang.org/x/net/ipv4"
	"golang.org/x/net/ipv6"
	"net"
	"sync"
	"sync/atomic"
	"time"
)

type QueueHandshakeElement struct {
	msgType uint32
	packet  []byte
	buffer  *[MaxMessageSize]byte
	source  *net.UDPAddr
}

type QueueInboundElement struct {
	dropped int32
	mutex   sync.Mutex
	buffer  *[MaxMessageSize]byte
	packet  []byte
	counter uint64
	keyPair *KeyPair
}

func (elem *QueueInboundElement) Drop() {
	atomic.StoreInt32(&elem.dropped, AtomicTrue)
}

func (elem *QueueInboundElement) IsDropped() bool {
	return atomic.LoadInt32(&elem.dropped) == AtomicTrue
}

func (device *Device) addToInboundQueue(
	queue chan *QueueInboundElement,
	element *QueueInboundElement,
) {
	for {
		select {
		case queue <- element:
			return
		default:
			select {
			case old := <-queue:
				old.Drop()
			default:
			}
		}
	}
}

func (device *Device) addToHandshakeQueue(
	queue chan QueueHandshakeElement,
	element QueueHandshakeElement,
) {
	for {
		select {
		case queue <- element:
			return
		default:
			select {
			case elem := <-queue:
				device.PutMessageBuffer(elem.buffer)
			default:
			}
		}
	}
}

/* Routine determining the busy state of the interface
 */
func (device *Device) RoutineBusyMonitor() {
	samples := 0
	interval := time.Second
	for timer := time.NewTimer(interval); ; {

		select {
		case <-device.signal.stop:
			return
		case <-timer.C:
		}

		// compute busy heuristic

		if len(device.queue.handshake) > QueueHandshakeBusySize {
			samples += 1
		} else if samples > 0 {
			samples -= 1
		}
		samples %= 30
		busy := samples > 5

		// update busy state

		if busy {
			atomic.StoreInt32(&device.underLoad, AtomicTrue)
		} else {
			atomic.StoreInt32(&device.underLoad, AtomicFalse)
		}

		timer.Reset(interval)
	}
}

func (device *Device) RoutineReceiveIncomming() {

	logInfo := device.log.Info
	logDebug := device.log.Debug
	logDebug.Println("Routine, receive incomming, started")

	var buffer *[MaxMessageSize]byte

	for {

		// check if stopped

		select {
		case <-device.signal.stop:
			return
		default:
		}

		// read next datagram

		if buffer == nil {
			buffer = device.GetMessageBuffer()
		}

		device.net.mutex.RLock()
		conn := device.net.conn
		device.net.mutex.RUnlock()
		if conn == nil {
			time.Sleep(time.Second)
			continue
		}

		conn.SetReadDeadline(time.Now().Add(time.Second))

		size, raddr, err := conn.ReadFromUDP(buffer[:])
		if err != nil || size < MinMessageSize {
			continue
		}

		// handle packet

		packet := buffer[:size]
		msgType := binary.LittleEndian.Uint32(packet[:4])

		func() {
			switch msgType {

			case MessageInitiationType, MessageResponseType:

				// add to handshake queue

				device.addToHandshakeQueue(
					device.queue.handshake,
					QueueHandshakeElement{
						msgType: msgType,
						buffer:  buffer,
						packet:  packet,
						source:  raddr,
					},
				)
				buffer = nil

			case MessageCookieReplyType:

				// verify and update peer cookie state

				if len(packet) != MessageCookieReplySize {
					return
				}

				var reply MessageCookieReply
				reader := bytes.NewReader(packet)
				err := binary.Read(reader, binary.LittleEndian, &reply)
				if err != nil {
					logDebug.Println("Failed to decode cookie reply")
					return
				}
				device.ConsumeMessageCookieReply(&reply)

			case MessageTransportType:

				// lookup key pair

				if len(packet) < MessageTransportSize {
					return
				}

				receiver := binary.LittleEndian.Uint32(
					packet[MessageTransportOffsetReceiver:MessageTransportOffsetCounter],
				)
				value := device.indices.Lookup(receiver)
				keyPair := value.keyPair
				if keyPair == nil {
					return
				}

				// check key-pair expiry

				if keyPair.created.Add(RejectAfterTime).Before(time.Now()) {
					return
				}

				// add to peer queue

				peer := value.peer
				elem := &QueueInboundElement{
					packet:  packet,
					buffer:  buffer,
					keyPair: keyPair,
					dropped: AtomicFalse,
				}
				elem.mutex.Lock()

				// add to decryption queues

				device.addToInboundQueue(device.queue.decryption, elem)
				device.addToInboundQueue(peer.queue.inbound, elem)
				buffer = nil

			default:
				logInfo.Println("Got unknown message from:", raddr)
			}
		}()
	}
}

func (device *Device) RoutineDecryption() {
	var elem *QueueInboundElement
	var nonce [chacha20poly1305.NonceSize]byte

	logDebug := device.log.Debug
	logDebug.Println("Routine, decryption, started for device")

	for {
		select {
		case elem = <-device.queue.decryption:
		case <-device.signal.stop:
			return
		}

		// check if dropped

		if elem.IsDropped() {
			elem.mutex.Unlock()
			continue
		}

		// split message into fields

		counter := elem.packet[MessageTransportOffsetCounter:MessageTransportOffsetContent]
		content := elem.packet[MessageTransportOffsetContent:]

		// decrypt with key-pair

		var err error
		copy(nonce[4:], counter)
		elem.counter = binary.LittleEndian.Uint64(counter)
		elem.packet, err = elem.keyPair.receive.Open(
			elem.buffer[:0],
			nonce[:],
			content,
			nil,
		)
		if err != nil {
			elem.Drop()
		}
		elem.mutex.Unlock()
	}
}

/* Handles incomming packets related to handshake
 *
 *
 */
func (device *Device) RoutineHandshake() {

	logInfo := device.log.Info
	logError := device.log.Error
	logDebug := device.log.Debug
	logDebug.Println("Routine, handshake routine, started for device")

	var elem QueueHandshakeElement

	for {
		select {
		case elem = <-device.queue.handshake:
		case <-device.signal.stop:
			return
		}

		func() {

			// verify mac1

			if !device.mac.CheckMAC1(elem.packet) {
				logDebug.Println("Received packet with invalid mac1")
				return
			}

			// verify mac2

			busy := atomic.LoadInt32(&device.underLoad) == AtomicTrue

			if busy && !device.mac.CheckMAC2(elem.packet, elem.source) {
				sender := binary.LittleEndian.Uint32(elem.packet[4:8]) // "sender" always follows "type"
				reply, err := device.CreateMessageCookieReply(elem.packet, sender, elem.source)
				if err != nil {
					logError.Println("Failed to create cookie reply:", err)
					return
				}
				writer := bytes.NewBuffer(elem.packet[:0])
				binary.Write(writer, binary.LittleEndian, reply)
				elem.packet = writer.Bytes()
				_, err = device.net.conn.WriteToUDP(elem.packet, elem.source)
				if err != nil {
					logDebug.Println("Failed to send cookie reply:", err)
				}
				return
			}

			// ratelimit

			if !device.ratelimiter.Allow(elem.source.IP) {
				return
			}

			// handle messages

			switch elem.msgType {
			case MessageInitiationType:

				// unmarshal

				if len(elem.packet) != MessageInitiationSize {
					return
				}

				var msg MessageInitiation
				reader := bytes.NewReader(elem.packet)
				err := binary.Read(reader, binary.LittleEndian, &msg)
				if err != nil {
					logError.Println("Failed to decode initiation message")
					return
				}

				// consume initiation

				peer := device.ConsumeMessageInitiation(&msg)
				if peer == nil {
					logInfo.Println(
						"Recieved invalid initiation message from",
						elem.source.IP.String(),
						elem.source.Port,
					)
					return
				}

				// update endpoint

				peer.mutex.Lock()
				peer.endpoint = elem.source
				peer.mutex.Unlock()

				// create response

				response, err := device.CreateMessageResponse(peer)
				if err != nil {
					logError.Println("Failed to create response message:", err)
					return
				}

				logDebug.Println("Creating response message for", peer.String())

				outElem := device.NewOutboundElement()
				writer := bytes.NewBuffer(outElem.buffer[:0])
				binary.Write(writer, binary.LittleEndian, response)
				outElem.packet = writer.Bytes()
				peer.mac.AddMacs(outElem.packet)
				addToOutboundQueue(peer.queue.outbound, outElem)

				// create new keypair

				peer.NewKeyPair()

			case MessageResponseType:

				// unmarshal

				if len(elem.packet) != MessageResponseSize {
					return
				}

				var msg MessageResponse
				reader := bytes.NewReader(elem.packet)
				err := binary.Read(reader, binary.LittleEndian, &msg)
				if err != nil {
					logError.Println("Failed to decode response message")
					return
				}

				// consume response

				peer := device.ConsumeMessageResponse(&msg)
				if peer == nil {
					logInfo.Println(
						"Recieved invalid response message from",
						elem.source.IP.String(),
						elem.source.Port,
					)
					return
				}
				kp := peer.NewKeyPair()
				if kp == nil {
					logDebug.Println("Failed to derieve key-pair")
				}
				peer.SendKeepAlive()
				peer.EventHandshakeComplete()

			default:
				logError.Println("Invalid message type in handshake queue")
			}
		}()
	}
}

func (peer *Peer) RoutineSequentialReceiver() {
	var elem *QueueInboundElement

	device := peer.device

	logInfo := device.log.Info
	logDebug := device.log.Debug
	logDebug.Println("Routine, sequential receiver, started for peer", peer.id)

	for {
		// wait for decryption

		select {
		case <-peer.signal.stop:
			return
		case elem = <-peer.queue.inbound:
		}
		elem.mutex.Lock()

		// process packet

		func() {
			if elem.IsDropped() {
				return
			}

			// check for replay

			if !elem.keyPair.replayFilter.ValidateCounter(elem.counter) {
				return
			}

			// time (passive) keep-alive

			peer.TimerStartKeepalive()

			// refresh key material (rekey)

			peer.KeepKeyFreshReceiving()

			// check if using new key-pair

			kp := &peer.keyPairs
			kp.mutex.Lock()
			if kp.next == elem.keyPair {
				peer.EventHandshakeComplete()
				kp.previous = kp.current
				kp.current = kp.next
				kp.next = nil
			}
			kp.mutex.Unlock()

			// check for keep-alive

			if len(elem.packet) == 0 {
				logDebug.Println("Received keep-alive from", peer.String())
				return
			}

			// verify source and strip padding

			switch elem.packet[0] >> 4 {
			case ipv4.Version:

				// strip padding

				if len(elem.packet) < ipv4.HeaderLen {
					return
				}

				field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2]
				length := binary.BigEndian.Uint16(field)
				elem.packet = elem.packet[:length]

				// verify IPv4 source

				dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
				if device.routingTable.LookupIPv4(dst) != peer {
					logInfo.Println("Packet with unallowed source IP from", peer.String())
					return
				}

			case ipv6.Version:

				// strip padding

				if len(elem.packet) < ipv6.HeaderLen {
					return
				}

				field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2]
				length := binary.BigEndian.Uint16(field)
				length += ipv6.HeaderLen
				elem.packet = elem.packet[:length]

				// verify IPv6 source

				dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
				if device.routingTable.LookupIPv6(dst) != peer {
					logInfo.Println("Packet with unallowed source IP from", peer.String())
					return
				}

			default:
				logInfo.Println("Packet with invalid IP version from", peer.String())
				return
			}

			atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)))
			device.addToInboundQueue(device.queue.inbound, elem)
		}()
	}
}

func (device *Device) RoutineWriteToTUN(tun TUNDevice) {

	logError := device.log.Error
	logDebug := device.log.Debug
	logDebug.Println("Routine, sequential tun writer, started")

	for {
		select {
		case <-device.signal.stop:
			return
		case elem := <-device.queue.inbound:
			_, err := tun.Write(elem.packet)
			device.PutMessageBuffer(elem.buffer)
			if err != nil {
				logError.Println("Failed to write packet to TUN device:", err)
			}
		}
	}
}