1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
|
package main
import (
"bytes"
"encoding/binary"
"golang.org/x/crypto/chacha20poly1305"
"net"
"sync"
"sync/atomic"
"time"
)
const (
ElementStateOkay = iota
ElementStateDropped
)
type QueueHandshakeElement struct {
msgType uint32
packet []byte
source *net.UDPAddr
}
type QueueInboundElement struct {
state uint32
mutex sync.Mutex
packet []byte
counter uint64
keyPair *KeyPair
}
func (elem *QueueInboundElement) Drop() {
atomic.StoreUint32(&elem.state, ElementStateDropped)
}
func (elem *QueueInboundElement) IsDropped() bool {
return atomic.LoadUint32(&elem.state) == ElementStateDropped
}
func addToInboundQueue(
queue chan *QueueInboundElement,
element *QueueInboundElement,
) {
for {
select {
case queue <- element:
return
default:
select {
case old := <-queue:
old.Drop()
default:
}
}
}
}
func addToHandshakeQueue(
queue chan QueueHandshakeElement,
element QueueHandshakeElement,
) {
for {
select {
case queue <- element:
return
default:
select {
case <-queue:
default:
}
}
}
}
/* Routine determining the busy state of the interface
*
* TODO: prehaps nicer to do this in response to events
* TODO: more well reasoned definition of "busy"
*/
func (device *Device) RoutineBusyMonitor() {
samples := 0
interval := time.Second
for timer := time.NewTimer(interval); ; {
select {
case <-device.signal.stop:
return
case <-timer.C:
}
// compute busy heuristic
if len(device.queue.handshake) > QueueHandshakeBusySize {
samples += 1
} else if samples > 0 {
samples -= 1
}
samples %= 30
busy := samples > 5
// update busy state
if busy {
atomic.StoreInt32(&device.congestionState, CongestionStateUnderLoad)
} else {
atomic.StoreInt32(&device.congestionState, CongestionStateOkay)
}
timer.Reset(interval)
}
}
func (device *Device) RoutineReceiveIncomming() {
logDebug := device.log.Debug
logDebug.Println("Routine, receive incomming, started")
var buffer []byte
for {
// check if stopped
select {
case <-device.signal.stop:
return
default:
}
// read next datagram
if buffer == nil {
buffer = make([]byte, MaxMessageSize)
}
device.net.mutex.RLock()
conn := device.net.conn
device.net.mutex.RUnlock()
if conn == nil {
time.Sleep(time.Second)
continue
}
conn.SetReadDeadline(time.Now().Add(time.Second))
size, raddr, err := conn.ReadFromUDP(buffer)
if err != nil || size < MinMessageSize {
continue
}
// handle packet
packet := buffer[:size]
msgType := binary.LittleEndian.Uint32(packet[:4])
func() {
switch msgType {
case MessageInitiationType, MessageResponseType:
// add to handshake queue
addToHandshakeQueue(
device.queue.handshake,
QueueHandshakeElement{
msgType: msgType,
packet: packet,
source: raddr,
},
)
buffer = nil
case MessageCookieReplyType:
// verify and update peer cookie state
if len(packet) != MessageCookieReplySize {
return
}
var reply MessageCookieReply
reader := bytes.NewReader(packet)
err := binary.Read(reader, binary.LittleEndian, &reply)
if err != nil {
logDebug.Println("Failed to decode cookie reply")
return
}
device.ConsumeMessageCookieReply(&reply)
case MessageTransportType:
// lookup key pair
if len(packet) < MessageTransportSize {
return
}
receiver := binary.LittleEndian.Uint32(
packet[MessageTransportOffsetReceiver:MessageTransportOffsetCounter],
)
value := device.indices.Lookup(receiver)
keyPair := value.keyPair
if keyPair == nil {
return
}
// check key-pair expiry
if keyPair.created.Add(RejectAfterTime).Before(time.Now()) {
return
}
// add to peer queue
peer := value.peer
work := new(QueueInboundElement)
work.packet = packet
work.keyPair = keyPair
work.state = ElementStateOkay
work.mutex.Lock()
// add to decryption queues
addToInboundQueue(device.queue.decryption, work)
addToInboundQueue(peer.queue.inbound, work)
buffer = nil
default:
// unknown message type
logDebug.Println("Got unknown message from:", raddr)
}
}()
}
}
func (device *Device) RoutineDecryption() {
var elem *QueueInboundElement
var nonce [chacha20poly1305.NonceSize]byte
logDebug := device.log.Debug
logDebug.Println("Routine, decryption, started for device")
for {
select {
case elem = <-device.queue.decryption:
case <-device.signal.stop:
return
}
// check if dropped
if elem.IsDropped() {
elem.mutex.Unlock()
continue
}
// split message into fields
counter := elem.packet[MessageTransportOffsetCounter:MessageTransportOffsetContent]
content := elem.packet[MessageTransportOffsetContent:]
// decrypt with key-pair
var err error
copy(nonce[4:], counter)
elem.counter = binary.LittleEndian.Uint64(counter)
elem.packet, err = elem.keyPair.receive.Open(elem.packet[:0], nonce[:], content, nil)
if err != nil {
elem.Drop()
}
elem.mutex.Unlock()
}
}
/* Handles incomming packets related to handshake
*
*
*/
func (device *Device) RoutineHandshake() {
logInfo := device.log.Info
logError := device.log.Error
logDebug := device.log.Debug
logDebug.Println("Routine, handshake routine, started for device")
var elem QueueHandshakeElement
for {
select {
case elem = <-device.queue.handshake:
case <-device.signal.stop:
return
}
func() {
// verify mac1
if !device.mac.CheckMAC1(elem.packet) {
logDebug.Println("Received packet with invalid mac1")
return
}
// verify mac2
busy := atomic.LoadInt32(&device.congestionState) == CongestionStateUnderLoad
if busy && !device.mac.CheckMAC2(elem.packet, elem.source) {
sender := binary.LittleEndian.Uint32(elem.packet[4:8]) // "sender" always follows "type"
reply, err := device.CreateMessageCookieReply(elem.packet, sender, elem.source)
if err != nil {
logError.Println("Failed to create cookie reply:", err)
return
}
writer := bytes.NewBuffer(elem.packet[:0])
binary.Write(writer, binary.LittleEndian, reply)
elem.packet = writer.Bytes()
_, err = device.net.conn.WriteToUDP(elem.packet, elem.source)
if err != nil {
logDebug.Println("Failed to send cookie reply:", err)
}
return
}
// ratelimit
// handle messages
switch elem.msgType {
case MessageInitiationType:
// unmarshal
if len(elem.packet) != MessageInitiationSize {
return
}
var msg MessageInitiation
reader := bytes.NewReader(elem.packet)
err := binary.Read(reader, binary.LittleEndian, &msg)
if err != nil {
logError.Println("Failed to decode initiation message")
return
}
// consume initiation
peer := device.ConsumeMessageInitiation(&msg)
if peer == nil {
logInfo.Println(
"Recieved invalid initiation message from",
elem.source.IP.String(),
elem.source.Port,
)
return
}
// create response
response, err := device.CreateMessageResponse(peer)
if err != nil {
logError.Println("Failed to create response message:", err)
return
}
outElem := device.NewOutboundElement()
writer := bytes.NewBuffer(outElem.data[:0])
binary.Write(writer, binary.LittleEndian, response)
elem.packet = writer.Bytes()
peer.mac.AddMacs(elem.packet)
addToOutboundQueue(peer.queue.outbound, outElem)
case MessageResponseType:
// unmarshal
if len(elem.packet) != MessageResponseSize {
return
}
var msg MessageResponse
reader := bytes.NewReader(elem.packet)
err := binary.Read(reader, binary.LittleEndian, &msg)
if err != nil {
logError.Println("Failed to decode response message")
return
}
// consume response
peer := device.ConsumeMessageResponse(&msg)
if peer == nil {
logInfo.Println(
"Recieved invalid response message from",
elem.source.IP.String(),
elem.source.Port,
)
return
}
sendSignal(peer.signal.handshakeCompleted)
logDebug.Println("Recieved valid response message for peer", peer.id)
kp := peer.NewKeyPair()
if kp == nil {
logDebug.Println("Failed to derieve key-pair")
}
peer.SendKeepAlive()
default:
device.log.Error.Println("Invalid message type in handshake queue")
}
}()
}
}
func (peer *Peer) RoutineSequentialReceiver() {
var elem *QueueInboundElement
device := peer.device
logDebug := device.log.Debug
logDebug.Println("Routine, sequential receiver, started for peer", peer.id)
for {
// wait for decryption
select {
case <-peer.signal.stop:
return
case elem = <-peer.queue.inbound:
}
elem.mutex.Lock()
// process packet
func() {
if elem.IsDropped() {
return
}
// check for replay
// update timers
// refresh key material
// check for keep-alive
if len(elem.packet) == 0 {
return
}
// verify source and strip padding
switch elem.packet[0] >> 4 {
case IPv4version:
// strip padding
if len(elem.packet) < IPv4headerSize {
return
}
field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2]
length := binary.BigEndian.Uint16(field)
elem.packet = elem.packet[:length]
// verify IPv4 source
dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
if device.routingTable.LookupIPv4(dst) != peer {
return
}
case IPv6version:
// strip padding
if len(elem.packet) < IPv6headerSize {
return
}
field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2]
length := binary.BigEndian.Uint16(field)
length += IPv6headerSize
elem.packet = elem.packet[:length]
// verify IPv6 source
dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
if device.routingTable.LookupIPv6(dst) != peer {
return
}
default:
device.log.Debug.Println("Receieved packet with unknown IP version")
return
}
atomic.AddUint64(&peer.rxBytes, uint64(len(elem.packet)))
addToInboundQueue(device.queue.inbound, elem)
}()
}
}
func (device *Device) RoutineWriteToTUN(tun TUNDevice) {
logError := device.log.Error
logDebug := device.log.Debug
logDebug.Println("Routine, sequential tun writer, started")
for {
select {
case <-device.signal.stop:
return
case elem := <-device.queue.inbound:
_, err := tun.Write(elem.packet)
if err != nil {
logError.Println("Failed to write packet to TUN device:", err)
}
}
}
}
|