summaryrefslogtreecommitdiffhomepage
path: root/src/handshake.go
blob: 238c3396e09e7e476ca505210f3e50ee821986a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
package main

import (
	"bytes"
	"encoding/binary"
	"net"
	"sync/atomic"
	"time"
)

/* Sends a keep-alive if no packets queued for peer
 *
 * Used by initiator of handshake and with active keep-alive
 */
func (peer *Peer) SendKeepAlive() bool {
	if len(peer.queue.nonce) == 0 {
		select {
		case peer.queue.nonce <- []byte{}:
			return true
		default:
			return false
		}
	}
	return true
}

func (peer *Peer) RoutineHandshakeInitiator() {
	var ongoing bool
	var begun time.Time
	var attempts uint
	var timeout time.Timer

	device := peer.device
	work := new(QueueOutboundElement)
	buffer := make([]byte, 0, 1024)

	queueHandshakeInitiation := func() error {
		work.mutex.Lock()
		defer work.mutex.Unlock()

		// create initiation

		msg, err := device.CreateMessageInitiation(peer)
		if err != nil {
			return err
		}

		// create "work" element

		writer := bytes.NewBuffer(buffer[:0])
		binary.Write(writer, binary.LittleEndian, &msg)
		work.packet = writer.Bytes()
		peer.mac.AddMacs(work.packet)
		peer.InsertOutbound(work)
		return nil
	}

	for {
		select {
		case <-peer.signal.stopInitiator:
			return

		case <-peer.signal.newHandshake:
			if ongoing {
				continue
			}

			// create handshake

			err := queueHandshakeInitiation()
			if err != nil {
				device.log.Error.Println("Failed to create initiation message:", err)
			}

			// log when we began

			begun = time.Now()
			ongoing = true
			attempts = 0
			timeout.Reset(RekeyTimeout)

		case <-peer.timer.sendKeepalive.C:

			// active keep-alives

			peer.SendKeepAlive()

		case <-peer.timer.handshakeTimeout.C:

			// check if we can stop trying

			if time.Now().Sub(begun) > MaxHandshakeAttempTime {
				peer.signal.flushNonceQueue <- true
				peer.timer.sendKeepalive.Stop()
				ongoing = false
				continue
			}

			// otherwise, try again (exponental backoff)

			attempts += 1
			err := queueHandshakeInitiation()
			if err != nil {
				device.log.Error.Println("Failed to create initiation message:", err)
			}
			peer.timer.handshakeTimeout.Reset((1 << attempts) * RekeyTimeout)
		}
	}
}

/* Handles packets related to handshake
 *
 *
 */
func (device *Device) HandshakeWorker(queue chan struct {
	msg     []byte
	msgType uint32
	addr    *net.UDPAddr
}) {
	for {
		elem := <-queue

		switch elem.msgType {
		case MessageInitiationType:
			if len(elem.msg) != MessageInitiationSize {
				continue
			}

			// check for cookie

			var msg MessageInitiation

			binary.Read(nil, binary.LittleEndian, &msg)

		case MessageResponseType:
			if len(elem.msg) != MessageResponseSize {
				continue
			}

			// check for cookie

		case MessageCookieReplyType:

		case MessageTransportType:
		}

	}
}

func (device *Device) KeepKeyFresh(peer *Peer) {

	send := func() bool {
		peer.keyPairs.mutex.RLock()
		defer peer.keyPairs.mutex.RUnlock()

		kp := peer.keyPairs.current
		if kp == nil {
			return false
		}

		nonce := atomic.LoadUint64(&kp.sendNonce)
		if nonce > RekeyAfterMessage {
			return true
		}

		return kp.isInitiator && time.Now().Sub(kp.created) > RekeyAfterTime
	}()

	if send {

	}
}