blob: 238c3396e09e7e476ca505210f3e50ee821986a4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
package main
import (
"bytes"
"encoding/binary"
"net"
"sync/atomic"
"time"
)
/* Sends a keep-alive if no packets queued for peer
*
* Used by initiator of handshake and with active keep-alive
*/
func (peer *Peer) SendKeepAlive() bool {
if len(peer.queue.nonce) == 0 {
select {
case peer.queue.nonce <- []byte{}:
return true
default:
return false
}
}
return true
}
func (peer *Peer) RoutineHandshakeInitiator() {
var ongoing bool
var begun time.Time
var attempts uint
var timeout time.Timer
device := peer.device
work := new(QueueOutboundElement)
buffer := make([]byte, 0, 1024)
queueHandshakeInitiation := func() error {
work.mutex.Lock()
defer work.mutex.Unlock()
// create initiation
msg, err := device.CreateMessageInitiation(peer)
if err != nil {
return err
}
// create "work" element
writer := bytes.NewBuffer(buffer[:0])
binary.Write(writer, binary.LittleEndian, &msg)
work.packet = writer.Bytes()
peer.mac.AddMacs(work.packet)
peer.InsertOutbound(work)
return nil
}
for {
select {
case <-peer.signal.stopInitiator:
return
case <-peer.signal.newHandshake:
if ongoing {
continue
}
// create handshake
err := queueHandshakeInitiation()
if err != nil {
device.log.Error.Println("Failed to create initiation message:", err)
}
// log when we began
begun = time.Now()
ongoing = true
attempts = 0
timeout.Reset(RekeyTimeout)
case <-peer.timer.sendKeepalive.C:
// active keep-alives
peer.SendKeepAlive()
case <-peer.timer.handshakeTimeout.C:
// check if we can stop trying
if time.Now().Sub(begun) > MaxHandshakeAttempTime {
peer.signal.flushNonceQueue <- true
peer.timer.sendKeepalive.Stop()
ongoing = false
continue
}
// otherwise, try again (exponental backoff)
attempts += 1
err := queueHandshakeInitiation()
if err != nil {
device.log.Error.Println("Failed to create initiation message:", err)
}
peer.timer.handshakeTimeout.Reset((1 << attempts) * RekeyTimeout)
}
}
}
/* Handles packets related to handshake
*
*
*/
func (device *Device) HandshakeWorker(queue chan struct {
msg []byte
msgType uint32
addr *net.UDPAddr
}) {
for {
elem := <-queue
switch elem.msgType {
case MessageInitiationType:
if len(elem.msg) != MessageInitiationSize {
continue
}
// check for cookie
var msg MessageInitiation
binary.Read(nil, binary.LittleEndian, &msg)
case MessageResponseType:
if len(elem.msg) != MessageResponseSize {
continue
}
// check for cookie
case MessageCookieReplyType:
case MessageTransportType:
}
}
}
func (device *Device) KeepKeyFresh(peer *Peer) {
send := func() bool {
peer.keyPairs.mutex.RLock()
defer peer.keyPairs.mutex.RUnlock()
kp := peer.keyPairs.current
if kp == nil {
return false
}
nonce := atomic.LoadUint64(&kp.sendNonce)
if nonce > RekeyAfterMessage {
return true
}
return kp.isInitiator && time.Now().Sub(kp.created) > RekeyAfterTime
}()
if send {
}
}
|