summaryrefslogtreecommitdiffhomepage
path: root/src/handshake.go
blob: de607df174d0beff86173cb77a6c54e841f4f0dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
package main

import (
	"bytes"
	"encoding/binary"
	"sync/atomic"
	"time"
)

/* Sends a keep-alive if no packets queued for peer
 *
 * Used by initiator of handshake and with active keep-alive
 */
func (peer *Peer) SendKeepAlive() bool {
	elem := peer.device.NewOutboundElement()
	elem.packet = nil
	if len(peer.queue.nonce) == 0 {
		select {
		case peer.queue.nonce <- elem:
			return true
		default:
			return false
		}
	}
	return true
}

/* Called when a new authenticated message has been send
 *
 * TODO: This might be done in a faster way
 */
func (peer *Peer) KeepKeyFreshSending() {
	send := func() bool {
		peer.keyPairs.mutex.RLock()
		defer peer.keyPairs.mutex.RUnlock()

		kp := peer.keyPairs.current
		if kp == nil {
			return false
		}

		if !kp.isInitiator {
			return false
		}

		nonce := atomic.LoadUint64(&kp.sendNonce)
		if nonce > RekeyAfterMessages {
			return true
		}
		return time.Now().Sub(kp.created) > RekeyAfterTime
	}()
	if send {
		sendSignal(peer.signal.handshakeBegin)
	}
}

/* This is the state machine for handshake initiation
 *
 * Associated with this routine is the signal "handshakeBegin"
 * The routine will read from the "handshakeBegin" channel
 * at most every RekeyTimeout seconds
 */
func (peer *Peer) RoutineHandshakeInitiator() {
	device := peer.device
	logger := device.log.Debug
	timeout := stoppedTimer()

	var elem *QueueOutboundElement

	logger.Println("Routine, handshake initator, started for peer", peer.id)

	func() {
		for {
			var attempts uint
			var deadline time.Time

			// wait for signal

			select {
			case <-peer.signal.handshakeBegin:
			case <-peer.signal.stop:
				return
			}

		HandshakeLoop:
			for {
				// clear completed signal

				select {
				case <-peer.signal.handshakeCompleted:
				case <-peer.signal.stop:
					return
				default:
				}

				// create initiation

				if elem != nil {
					elem.Drop()
				}
				elem = device.NewOutboundElement()

				msg, err := device.CreateMessageInitiation(peer)
				if err != nil {
					device.log.Error.Println("Failed to create initiation message:", err)
					break
				}

				// marshal & schedule for sending

				writer := bytes.NewBuffer(elem.data[:0])
				binary.Write(writer, binary.LittleEndian, msg)
				elem.packet = writer.Bytes()
				peer.mac.AddMacs(elem.packet)
				addToOutboundQueue(peer.queue.outbound, elem)

				if attempts == 0 {
					deadline = time.Now().Add(MaxHandshakeAttemptTime)
				}

				// set timeout

				attempts += 1
				stopTimer(timeout)
				timeout.Reset(RekeyTimeout)
				device.log.Debug.Println("Handshake initiation attempt", attempts, "queued for peer", peer.id)

				// wait for handshake or timeout

				select {
				case <-peer.signal.stop:
					return

				case <-peer.signal.handshakeCompleted:
					device.log.Debug.Println("Handshake complete")
					break HandshakeLoop

				case <-timeout.C:
					device.log.Debug.Println("Timeout")
					if deadline.Before(time.Now().Add(RekeyTimeout)) {
						peer.signal.flushNonceQueue <- struct{}{}
						if !peer.timer.sendKeepalive.Stop() {
							<-peer.timer.sendKeepalive.C
						}
						break HandshakeLoop
					}
				}
			}
		}
	}()

	logger.Println("Routine, handshake initator, stopped for peer", peer.id)
}