1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
package main
import (
"bytes"
"encoding/binary"
"sync/atomic"
"time"
)
/* Sends a keep-alive if no packets queued for peer
*
* Used by initiator of handshake and with active keep-alive
*/
func (peer *Peer) SendKeepAlive() bool {
elem := peer.device.NewOutboundElement()
elem.packet = nil
if len(peer.queue.nonce) == 0 {
select {
case peer.queue.nonce <- elem:
return true
default:
return false
}
}
return true
}
/* Called when a new authenticated message has been send
*
* TODO: This might be done in a faster way
*/
func (peer *Peer) KeepKeyFreshSending() {
send := func() bool {
peer.keyPairs.mutex.RLock()
defer peer.keyPairs.mutex.RUnlock()
kp := peer.keyPairs.current
if kp == nil {
return false
}
if !kp.isInitiator {
return false
}
nonce := atomic.LoadUint64(&kp.sendNonce)
if nonce > RekeyAfterMessages {
return true
}
return time.Now().Sub(kp.created) > RekeyAfterTime
}()
if send {
sendSignal(peer.signal.handshakeBegin)
}
}
/* This is the state machine for handshake initiation
*
* Associated with this routine is the signal "handshakeBegin"
* The routine will read from the "handshakeBegin" channel
* at most every RekeyTimeout seconds
*/
func (peer *Peer) RoutineHandshakeInitiator() {
device := peer.device
logger := device.log.Debug
timeout := stoppedTimer()
var elem *QueueOutboundElement
logger.Println("Routine, handshake initator, started for peer", peer.id)
func() {
for {
var attempts uint
var deadline time.Time
// wait for signal
select {
case <-peer.signal.handshakeBegin:
case <-peer.signal.stop:
return
}
HandshakeLoop:
for {
// clear completed signal
select {
case <-peer.signal.handshakeCompleted:
case <-peer.signal.stop:
return
default:
}
// create initiation
if elem != nil {
elem.Drop()
}
elem = device.NewOutboundElement()
msg, err := device.CreateMessageInitiation(peer)
if err != nil {
device.log.Error.Println("Failed to create initiation message:", err)
break
}
// marshal & schedule for sending
writer := bytes.NewBuffer(elem.data[:0])
binary.Write(writer, binary.LittleEndian, msg)
elem.packet = writer.Bytes()
peer.mac.AddMacs(elem.packet)
addToOutboundQueue(peer.queue.outbound, elem)
if attempts == 0 {
deadline = time.Now().Add(MaxHandshakeAttemptTime)
}
// set timeout
attempts += 1
stopTimer(timeout)
timeout.Reset(RekeyTimeout)
device.log.Debug.Println("Handshake initiation attempt", attempts, "queued for peer", peer.id)
// wait for handshake or timeout
select {
case <-peer.signal.stop:
return
case <-peer.signal.handshakeCompleted:
device.log.Debug.Println("Handshake complete")
break HandshakeLoop
case <-timeout.C:
device.log.Debug.Println("Timeout")
if deadline.Before(time.Now().Add(RekeyTimeout)) {
peer.signal.flushNonceQueue <- struct{}{}
if !peer.timer.sendKeepalive.Stop() {
<-peer.timer.sendKeepalive.C
}
break HandshakeLoop
}
}
}
}
}()
logger.Println("Routine, handshake initator, stopped for peer", peer.id)
}
|