summaryrefslogtreecommitdiffhomepage
path: root/device/receive.go
blob: c6a28f7fb4559d4665142eb10b33a971e94003fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/* SPDX-License-Identifier: MIT
 *
 * Copyright (C) 2017-2021 WireGuard LLC. All Rights Reserved.
 */

package device

import (
	"bytes"
	"encoding/binary"
	"errors"
	"net"
	"sync"
	"sync/atomic"
	"time"

	"golang.org/x/crypto/chacha20poly1305"
	"golang.org/x/net/ipv4"
	"golang.org/x/net/ipv6"

	"golang.zx2c4.com/wireguard/conn"
)

type QueueHandshakeElement struct {
	msgType  uint32
	packet   []byte
	endpoint conn.Endpoint
	buffer   *[MaxMessageSize]byte
}

type QueueInboundElement struct {
	sync.Mutex
	buffer   *[MaxMessageSize]byte
	packet   []byte
	counter  uint64
	keypair  *Keypair
	endpoint conn.Endpoint
}

// clearPointers clears elem fields that contain pointers.
// This makes the garbage collector's life easier and
// avoids accidentally keeping other objects around unnecessarily.
// It also reduces the possible collateral damage from use-after-free bugs.
func (elem *QueueInboundElement) clearPointers() {
	elem.buffer = nil
	elem.packet = nil
	elem.keypair = nil
	elem.endpoint = nil
}

/* Called when a new authenticated message has been received
 *
 * NOTE: Not thread safe, but called by sequential receiver!
 */
func (peer *Peer) keepKeyFreshReceiving() {
	if peer.timers.sentLastMinuteHandshake.Get() {
		return
	}
	keypair := peer.keypairs.Current()
	if keypair != nil && keypair.isInitiator && time.Since(keypair.created) > (RejectAfterTime-KeepaliveTimeout-RekeyTimeout) {
		peer.timers.sentLastMinuteHandshake.Set(true)
		peer.SendHandshakeInitiation(false)
	}
}

/* Receives incoming datagrams for the device
 *
 * Every time the bind is updated a new routine is started for
 * IPv4 and IPv6 (separately)
 */
func (device *Device) RoutineReceiveIncoming(IP int, bind conn.Bind) {
	defer func() {
		device.log.Verbosef("Routine: receive incoming IPv%d - stopped", IP)
		device.queue.decryption.wg.Done()
		device.queue.handshake.wg.Done()
		device.net.stopping.Done()
	}()

	device.log.Verbosef("Routine: receive incoming IPv%d - started", IP)

	// receive datagrams until conn is closed

	buffer := device.GetMessageBuffer()

	var (
		err         error
		size        int
		endpoint    conn.Endpoint
		deathSpiral int
	)

	for {
		switch IP {
		case ipv4.Version:
			size, endpoint, err = bind.ReceiveIPv4(buffer[:])
		case ipv6.Version:
			size, endpoint, err = bind.ReceiveIPv6(buffer[:])
		default:
			panic("invalid IP version")
		}

		if err != nil {
			device.PutMessageBuffer(buffer)
			if errors.Is(err, conn.NetErrClosed) {
				return
			}
			device.log.Errorf("Failed to receive packet: %v", err)
			if deathSpiral < 10 {
				deathSpiral++
				time.Sleep(time.Second / 3)
				continue
			}
			return
		}
		deathSpiral = 0

		if size < MinMessageSize {
			continue
		}

		// check size of packet

		packet := buffer[:size]
		msgType := binary.LittleEndian.Uint32(packet[:4])

		var okay bool

		switch msgType {

		// check if transport

		case MessageTransportType:

			// check size

			if len(packet) < MessageTransportSize {
				continue
			}

			// lookup key pair

			receiver := binary.LittleEndian.Uint32(
				packet[MessageTransportOffsetReceiver:MessageTransportOffsetCounter],
			)
			value := device.indexTable.Lookup(receiver)
			keypair := value.keypair
			if keypair == nil {
				continue
			}

			// check keypair expiry

			if keypair.created.Add(RejectAfterTime).Before(time.Now()) {
				continue
			}

			// create work element
			peer := value.peer
			elem := device.GetInboundElement()
			elem.packet = packet
			elem.buffer = buffer
			elem.keypair = keypair
			elem.endpoint = endpoint
			elem.counter = 0
			elem.Mutex = sync.Mutex{}
			elem.Lock()

			// add to decryption queues
			peer.queue.RLock()
			if peer.isRunning.Get() {
				peer.queue.inbound <- elem
				device.queue.decryption.c <- elem
				buffer = device.GetMessageBuffer()
			} else {
				device.PutInboundElement(elem)
			}
			peer.queue.RUnlock()

			continue

		// otherwise it is a fixed size & handshake related packet

		case MessageInitiationType:
			okay = len(packet) == MessageInitiationSize

		case MessageResponseType:
			okay = len(packet) == MessageResponseSize

		case MessageCookieReplyType:
			okay = len(packet) == MessageCookieReplySize

		default:
			device.log.Verbosef("Received message with unknown type")
		}

		if okay {
			select {
			case device.queue.handshake.c <- QueueHandshakeElement{
				msgType:  msgType,
				buffer:   buffer,
				packet:   packet,
				endpoint: endpoint,
			}:
				buffer = device.GetMessageBuffer()
			default:
			}
		}
	}
}

func (device *Device) RoutineDecryption() {
	var nonce [chacha20poly1305.NonceSize]byte

	defer device.log.Verbosef("Routine: decryption worker - stopped")
	device.log.Verbosef("Routine: decryption worker - started")

	for elem := range device.queue.decryption.c {
		// split message into fields
		counter := elem.packet[MessageTransportOffsetCounter:MessageTransportOffsetContent]
		content := elem.packet[MessageTransportOffsetContent:]

		// decrypt and release to consumer
		var err error
		elem.counter = binary.LittleEndian.Uint64(counter)
		// copy counter to nonce
		binary.LittleEndian.PutUint64(nonce[0x4:0xc], elem.counter)
		elem.packet, err = elem.keypair.receive.Open(
			content[:0],
			nonce[:],
			content,
			nil,
		)
		if err != nil {
			elem.packet = nil
		}
		elem.Unlock()
	}
}

/* Handles incoming packets related to handshake
 */
func (device *Device) RoutineHandshake() {
	defer device.log.Verbosef("Routine: handshake worker - stopped")
	device.log.Verbosef("Routine: handshake worker - started")

	for elem := range device.queue.handshake.c {

		// handle cookie fields and ratelimiting

		switch elem.msgType {

		case MessageCookieReplyType:

			// unmarshal packet

			var reply MessageCookieReply
			reader := bytes.NewReader(elem.packet)
			err := binary.Read(reader, binary.LittleEndian, &reply)
			if err != nil {
				device.log.Verbosef("Failed to decode cookie reply")
				goto skip
			}

			// lookup peer from index

			entry := device.indexTable.Lookup(reply.Receiver)

			if entry.peer == nil {
				goto skip
			}

			// consume reply

			if peer := entry.peer; peer.isRunning.Get() {
				device.log.Verbosef("Receiving cookie response from %s", elem.endpoint.DstToString())
				if !peer.cookieGenerator.ConsumeReply(&reply) {
					device.log.Verbosef("Could not decrypt invalid cookie response")
				}
			}

			goto skip

		case MessageInitiationType, MessageResponseType:

			// check mac fields and maybe ratelimit

			if !device.cookieChecker.CheckMAC1(elem.packet) {
				device.log.Verbosef("Received packet with invalid mac1")
				goto skip
			}

			// endpoints destination address is the source of the datagram

			if device.IsUnderLoad() {

				// verify MAC2 field

				if !device.cookieChecker.CheckMAC2(elem.packet, elem.endpoint.DstToBytes()) {
					device.SendHandshakeCookie(&elem)
					goto skip
				}

				// check ratelimiter

				if !device.rate.limiter.Allow(elem.endpoint.DstIP()) {
					goto skip
				}
			}

		default:
			device.log.Errorf("Invalid packet ended up in the handshake queue")
			goto skip
		}

		// handle handshake initiation/response content

		switch elem.msgType {
		case MessageInitiationType:

			// unmarshal

			var msg MessageInitiation
			reader := bytes.NewReader(elem.packet)
			err := binary.Read(reader, binary.LittleEndian, &msg)
			if err != nil {
				device.log.Errorf("Failed to decode initiation message")
				goto skip
			}

			// consume initiation

			peer := device.ConsumeMessageInitiation(&msg)
			if peer == nil {
				device.log.Verbosef("Received invalid initiation message from %s", elem.endpoint.DstToString())
				goto skip
			}

			// update timers

			peer.timersAnyAuthenticatedPacketTraversal()
			peer.timersAnyAuthenticatedPacketReceived()

			// update endpoint
			peer.SetEndpointFromPacket(elem.endpoint)

			device.log.Verbosef("%v - Received handshake initiation", peer)
			atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)))

			peer.SendHandshakeResponse()

		case MessageResponseType:

			// unmarshal

			var msg MessageResponse
			reader := bytes.NewReader(elem.packet)
			err := binary.Read(reader, binary.LittleEndian, &msg)
			if err != nil {
				device.log.Errorf("Failed to decode response message")
				goto skip
			}

			// consume response

			peer := device.ConsumeMessageResponse(&msg)
			if peer == nil {
				device.log.Verbosef("Received invalid response message from %s", elem.endpoint.DstToString())
				goto skip
			}

			// update endpoint
			peer.SetEndpointFromPacket(elem.endpoint)

			device.log.Verbosef("%v - Received handshake response", peer)
			atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)))

			// update timers

			peer.timersAnyAuthenticatedPacketTraversal()
			peer.timersAnyAuthenticatedPacketReceived()

			// derive keypair

			err = peer.BeginSymmetricSession()

			if err != nil {
				device.log.Errorf("%v - Failed to derive keypair: %v", peer, err)
				goto skip
			}

			peer.timersSessionDerived()
			peer.timersHandshakeComplete()
			peer.SendKeepalive()
		}
	skip:
		device.PutMessageBuffer(elem.buffer)
	}
}

func (peer *Peer) RoutineSequentialReceiver() {
	device := peer.device
	defer func() {
		device.log.Verbosef("%v - Routine: sequential receiver - stopped", peer)
		peer.stopping.Done()
	}()
	device.log.Verbosef("%v - Routine: sequential receiver - started", peer)

	for elem := range peer.queue.inbound {
		var err error
		elem.Lock()
		if elem.packet == nil {
			// decryption failed
			goto skip
		}

		if !elem.keypair.replayFilter.ValidateCounter(elem.counter, RejectAfterMessages) {
			goto skip
		}

		peer.SetEndpointFromPacket(elem.endpoint)
		if peer.ReceivedWithKeypair(elem.keypair) {
			peer.timersHandshakeComplete()
			peer.SendStagedPackets()
		}

		peer.keepKeyFreshReceiving()
		peer.timersAnyAuthenticatedPacketTraversal()
		peer.timersAnyAuthenticatedPacketReceived()
		atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)+MinMessageSize))

		if len(elem.packet) == 0 {
			device.log.Verbosef("%v - Receiving keepalive packet", peer)
			goto skip
		}
		peer.timersDataReceived()

		switch elem.packet[0] >> 4 {
		case ipv4.Version:
			if len(elem.packet) < ipv4.HeaderLen {
				goto skip
			}
			field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2]
			length := binary.BigEndian.Uint16(field)
			if int(length) > len(elem.packet) || int(length) < ipv4.HeaderLen {
				goto skip
			}
			elem.packet = elem.packet[:length]
			src := elem.packet[IPv4offsetSrc : IPv4offsetSrc+net.IPv4len]
			if device.allowedips.LookupIPv4(src) != peer {
				device.log.Verbosef("IPv4 packet with disallowed source address from %v", peer)
				goto skip
			}

		case ipv6.Version:
			if len(elem.packet) < ipv6.HeaderLen {
				goto skip
			}
			field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2]
			length := binary.BigEndian.Uint16(field)
			length += ipv6.HeaderLen
			if int(length) > len(elem.packet) {
				goto skip
			}
			elem.packet = elem.packet[:length]
			src := elem.packet[IPv6offsetSrc : IPv6offsetSrc+net.IPv6len]
			if device.allowedips.LookupIPv6(src) != peer {
				device.log.Verbosef("IPv6 packet with disallowed source address from %v", peer)
				goto skip
			}

		default:
			device.log.Verbosef("Packet with invalid IP version from %v", peer)
			goto skip
		}

		_, err = device.tun.device.Write(elem.buffer[:MessageTransportOffsetContent+len(elem.packet)], MessageTransportOffsetContent)
		if err != nil && !device.isClosed() {
			device.log.Errorf("Failed to write packet to TUN device: %v", err)
		}
		if len(peer.queue.inbound) == 0 {
			err = device.tun.device.Flush()
			if err != nil {
				peer.device.log.Errorf("Unable to flush packets: %v", err)
			}
		}
	skip:
		device.PutMessageBuffer(elem.buffer)
		device.PutInboundElement(elem)
	}
}