summaryrefslogtreecommitdiffhomepage
path: root/device/peer.go
blob: 332f7bd190fa414d1c9b0f4049405efcb9d6b7fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/* SPDX-License-Identifier: MIT
 *
 * Copyright (C) 2017-2021 WireGuard LLC. All Rights Reserved.
 */

package device

import (
	"container/list"
	"encoding/base64"
	"errors"
	"fmt"
	"sync"
	"sync/atomic"
	"time"

	"golang.zx2c4.com/wireguard/conn"
)

type Peer struct {
	isRunning    AtomicBool
	sync.RWMutex // Mostly protects endpoint, but is generally taken whenever we modify peer
	keypairs     Keypairs
	handshake    Handshake
	device       *Device
	endpoint     conn.Endpoint
	stopping     sync.WaitGroup // routines pending stop

	// These fields are accessed with atomic operations, which must be
	// 64-bit aligned even on 32-bit platforms. Go guarantees that an
	// allocated struct will be 64-bit aligned. So we place
	// atomically-accessed fields up front, so that they can share in
	// this alignment before smaller fields throw it off.
	stats struct {
		txBytes           uint64 // bytes send to peer (endpoint)
		rxBytes           uint64 // bytes received from peer
		lastHandshakeNano int64  // nano seconds since epoch
	}

	disableRoaming bool

	timers struct {
		retransmitHandshake     *Timer
		sendKeepalive           *Timer
		newHandshake            *Timer
		zeroKeyMaterial         *Timer
		persistentKeepalive     *Timer
		handshakeAttempts       uint32
		needAnotherKeepalive    AtomicBool
		sentLastMinuteHandshake AtomicBool
	}

	state struct {
		sync.Mutex // protects against concurrent Start/Stop
	}

	queue struct {
		staged   chan *QueueOutboundElement // staged packets before a handshake is available
		outbound *autodrainingOutboundQueue // sequential ordering of udp transmission
		inbound  *autodrainingInboundQueue  // sequential ordering of tun writing
	}

	cookieGenerator             CookieGenerator
	trieEntries                 list.List
	persistentKeepaliveInterval uint32 // accessed atomically
}

func (device *Device) NewPeer(pk NoisePublicKey) (*Peer, error) {
	if device.isClosed() {
		return nil, errors.New("device closed")
	}

	// lock resources
	device.staticIdentity.RLock()
	defer device.staticIdentity.RUnlock()

	device.peers.Lock()
	defer device.peers.Unlock()

	// check if over limit
	if len(device.peers.keyMap) >= MaxPeers {
		return nil, errors.New("too many peers")
	}

	// create peer
	peer := new(Peer)
	peer.Lock()
	defer peer.Unlock()

	peer.cookieGenerator.Init(pk)
	peer.device = device
	peer.queue.outbound = newAutodrainingOutboundQueue(device)
	peer.queue.inbound = newAutodrainingInboundQueue(device)
	peer.queue.staged = make(chan *QueueOutboundElement, QueueStagedSize)

	// map public key
	_, ok := device.peers.keyMap[pk]
	if ok {
		return nil, errors.New("adding existing peer")
	}

	// pre-compute DH
	handshake := &peer.handshake
	handshake.mutex.Lock()
	handshake.precomputedStaticStatic = device.staticIdentity.privateKey.sharedSecret(pk)
	handshake.remoteStatic = pk
	handshake.mutex.Unlock()

	// reset endpoint
	peer.endpoint = nil

	// add
	device.peers.keyMap[pk] = peer
	device.peers.empty.Set(false)

	// start peer
	peer.timersInit()
	if peer.device.isUp() {
		peer.Start()
	}

	return peer, nil
}

func (peer *Peer) SendBuffer(buffer []byte) error {
	peer.device.net.RLock()
	defer peer.device.net.RUnlock()

	if peer.device.isClosed() {
		return nil
	}

	peer.RLock()
	defer peer.RUnlock()

	if peer.endpoint == nil {
		return errors.New("no known endpoint for peer")
	}

	err := peer.device.net.bind.Send(buffer, peer.endpoint)
	if err == nil {
		atomic.AddUint64(&peer.stats.txBytes, uint64(len(buffer)))
	}
	return err
}

func (peer *Peer) String() string {
	base64Key := base64.StdEncoding.EncodeToString(peer.handshake.remoteStatic[:])
	abbreviatedKey := "invalid"
	if len(base64Key) == 44 {
		abbreviatedKey = base64Key[0:4] + "…" + base64Key[39:43]
	}
	return fmt.Sprintf("peer(%s)", abbreviatedKey)
}

func (peer *Peer) Start() {
	// should never start a peer on a closed device
	if peer.device.isClosed() {
		return
	}

	// prevent simultaneous start/stop operations
	peer.state.Lock()
	defer peer.state.Unlock()

	if peer.isRunning.Get() {
		return
	}

	device := peer.device
	device.log.Verbosef("%v - Starting...", peer)

	// reset routine state
	peer.stopping.Wait()
	peer.stopping.Add(2)

	peer.handshake.mutex.Lock()
	peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second))
	peer.handshake.mutex.Unlock()

	peer.device.queue.encryption.wg.Add(1) // keep encryption queue open for our writes

	peer.timersStart()

	device.flushInboundQueue(peer.queue.inbound)
	device.flushOutboundQueue(peer.queue.outbound)
	go peer.RoutineSequentialSender()
	go peer.RoutineSequentialReceiver()

	peer.isRunning.Set(true)
}

func (peer *Peer) ZeroAndFlushAll() {
	device := peer.device

	// clear key pairs

	keypairs := &peer.keypairs
	keypairs.Lock()
	device.DeleteKeypair(keypairs.previous)
	device.DeleteKeypair(keypairs.current)
	device.DeleteKeypair(keypairs.loadNext())
	keypairs.previous = nil
	keypairs.current = nil
	keypairs.storeNext(nil)
	keypairs.Unlock()

	// clear handshake state

	handshake := &peer.handshake
	handshake.mutex.Lock()
	device.indexTable.Delete(handshake.localIndex)
	handshake.Clear()
	handshake.mutex.Unlock()

	peer.FlushStagedPackets()
}

func (peer *Peer) ExpireCurrentKeypairs() {
	handshake := &peer.handshake
	handshake.mutex.Lock()
	peer.device.indexTable.Delete(handshake.localIndex)
	handshake.Clear()
	peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second))
	handshake.mutex.Unlock()

	keypairs := &peer.keypairs
	keypairs.Lock()
	if keypairs.current != nil {
		atomic.StoreUint64(&keypairs.current.sendNonce, RejectAfterMessages)
	}
	if keypairs.next != nil {
		next := keypairs.loadNext()
		atomic.StoreUint64(&next.sendNonce, RejectAfterMessages)
	}
	keypairs.Unlock()
}

func (peer *Peer) Stop() {
	peer.state.Lock()
	defer peer.state.Unlock()

	if !peer.isRunning.Swap(false) {
		return
	}

	peer.device.log.Verbosef("%v - Stopping...", peer)

	peer.timersStop()
	// Signal that RoutineSequentialSender and RoutineSequentialReceiver should exit.
	peer.queue.inbound.c <- nil
	peer.queue.outbound.c <- nil
	peer.stopping.Wait()
	peer.device.queue.encryption.wg.Done() // no more writes to encryption queue from us

	peer.ZeroAndFlushAll()
}

func (peer *Peer) SetEndpointFromPacket(endpoint conn.Endpoint) {
	if peer.disableRoaming {
		return
	}
	peer.Lock()
	peer.endpoint = endpoint
	peer.Unlock()
}