1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2021 WireGuard LLC. All Rights Reserved.
*/
package device
import (
"encoding/base64"
"errors"
"fmt"
"sync"
"sync/atomic"
"time"
"golang.zx2c4.com/wireguard/conn"
)
type Peer struct {
isRunning AtomicBool
sync.RWMutex // Mostly protects endpoint, but is generally taken whenever we modify peer
keypairs Keypairs
handshake Handshake
device *Device
endpoint conn.Endpoint
persistentKeepaliveInterval uint32 // accessed atomically
firstTrieEntry *trieEntry
stopping sync.WaitGroup // routines pending stop
// These fields are accessed with atomic operations, which must be
// 64-bit aligned even on 32-bit platforms. Go guarantees that an
// allocated struct will be 64-bit aligned. So we place
// atomically-accessed fields up front, so that they can share in
// this alignment before smaller fields throw it off.
stats struct {
txBytes uint64 // bytes send to peer (endpoint)
rxBytes uint64 // bytes received from peer
lastHandshakeNano int64 // nano seconds since epoch
}
disableRoaming bool
timers struct {
retransmitHandshake *Timer
sendKeepalive *Timer
newHandshake *Timer
zeroKeyMaterial *Timer
persistentKeepalive *Timer
handshakeAttempts uint32
needAnotherKeepalive AtomicBool
sentLastMinuteHandshake AtomicBool
}
state struct {
sync.Mutex // protects against concurrent Start/Stop
}
queue struct {
staged chan *QueueOutboundElement // staged packets before a handshake is available
outbound *autodrainingOutboundQueue // sequential ordering of udp transmission
inbound *autodrainingInboundQueue // sequential ordering of tun writing
}
cookieGenerator CookieGenerator
}
func (device *Device) NewPeer(pk NoisePublicKey) (*Peer, error) {
if device.isClosed() {
return nil, errors.New("device closed")
}
// lock resources
device.staticIdentity.RLock()
defer device.staticIdentity.RUnlock()
device.peers.Lock()
defer device.peers.Unlock()
// check if over limit
if len(device.peers.keyMap) >= MaxPeers {
return nil, errors.New("too many peers")
}
// create peer
peer := new(Peer)
peer.Lock()
defer peer.Unlock()
peer.cookieGenerator.Init(pk)
peer.device = device
// map public key
_, ok := device.peers.keyMap[pk]
if ok {
return nil, errors.New("adding existing peer")
}
// pre-compute DH
handshake := &peer.handshake
handshake.mutex.Lock()
handshake.precomputedStaticStatic = device.staticIdentity.privateKey.sharedSecret(pk)
handshake.remoteStatic = pk
handshake.mutex.Unlock()
// reset endpoint
peer.endpoint = nil
// add
device.peers.keyMap[pk] = peer
device.peers.empty.Set(false)
// start peer
peer.timersInit()
if peer.device.isUp() {
peer.Start()
}
return peer, nil
}
func (peer *Peer) SendBuffer(buffer []byte) error {
peer.device.net.RLock()
defer peer.device.net.RUnlock()
if peer.device.net.bind == nil {
// Packets can leak through to SendBuffer while the device is closing.
// When that happens, drop them silently to avoid spurious errors.
if peer.device.isClosed() {
return nil
}
return errors.New("no bind")
}
peer.RLock()
defer peer.RUnlock()
if peer.endpoint == nil {
return errors.New("no known endpoint for peer")
}
err := peer.device.net.bind.Send(buffer, peer.endpoint)
if err == nil {
atomic.AddUint64(&peer.stats.txBytes, uint64(len(buffer)))
}
return err
}
func (peer *Peer) String() string {
base64Key := base64.StdEncoding.EncodeToString(peer.handshake.remoteStatic[:])
abbreviatedKey := "invalid"
if len(base64Key) == 44 {
abbreviatedKey = base64Key[0:4] + "…" + base64Key[39:43]
}
return fmt.Sprintf("peer(%s)", abbreviatedKey)
}
func (peer *Peer) Start() {
// should never start a peer on a closed device
if peer.device.isClosed() {
return
}
// prevent simultaneous start/stop operations
peer.state.Lock()
defer peer.state.Unlock()
if peer.isRunning.Get() {
return
}
device := peer.device
device.log.Verbosef("%v - Starting...", peer)
// reset routine state
peer.stopping.Wait()
peer.stopping.Add(2)
peer.handshake.mutex.Lock()
peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second))
peer.handshake.mutex.Unlock()
// prepare queues
peer.queue.outbound = newAutodrainingOutboundQueue(device)
peer.queue.inbound = newAutodrainingInboundQueue(device)
if peer.queue.staged == nil {
peer.queue.staged = make(chan *QueueOutboundElement, QueueStagedSize)
}
peer.device.queue.encryption.wg.Add(1) // keep encryption queue open for our writes
peer.timersStart()
go peer.RoutineSequentialSender()
go peer.RoutineSequentialReceiver()
peer.isRunning.Set(true)
}
func (peer *Peer) ZeroAndFlushAll() {
device := peer.device
// clear key pairs
keypairs := &peer.keypairs
keypairs.Lock()
device.DeleteKeypair(keypairs.previous)
device.DeleteKeypair(keypairs.current)
device.DeleteKeypair(keypairs.loadNext())
keypairs.previous = nil
keypairs.current = nil
keypairs.storeNext(nil)
keypairs.Unlock()
// clear handshake state
handshake := &peer.handshake
handshake.mutex.Lock()
device.indexTable.Delete(handshake.localIndex)
handshake.Clear()
handshake.mutex.Unlock()
peer.FlushStagedPackets()
}
func (peer *Peer) ExpireCurrentKeypairs() {
handshake := &peer.handshake
handshake.mutex.Lock()
peer.device.indexTable.Delete(handshake.localIndex)
handshake.Clear()
peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second))
handshake.mutex.Unlock()
keypairs := &peer.keypairs
keypairs.Lock()
if keypairs.current != nil {
atomic.StoreUint64(&keypairs.current.sendNonce, RejectAfterMessages)
}
if keypairs.next != nil {
next := keypairs.loadNext()
atomic.StoreUint64(&next.sendNonce, RejectAfterMessages)
}
keypairs.Unlock()
}
func (peer *Peer) Stop() {
peer.state.Lock()
defer peer.state.Unlock()
if !peer.isRunning.Swap(false) {
return
}
peer.device.log.Verbosef("%v - Stopping...", peer)
peer.timersStop()
// Signal that RoutineSequentialSender and RoutineSequentialReceiver should exit.
peer.queue.inbound.c <- nil
peer.queue.outbound.c <- nil
peer.stopping.Wait()
peer.device.queue.encryption.wg.Done() // no more writes to encryption queue from us
peer.ZeroAndFlushAll()
}
func (peer *Peer) SetEndpointFromPacket(endpoint conn.Endpoint) {
if peer.disableRoaming {
return
}
peer.Lock()
peer.endpoint = endpoint
peer.Unlock()
}
|