1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
|
/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2022 WireGuard LLC. All Rights Reserved.
*/
package device
import (
"bytes"
"encoding/hex"
"fmt"
"io"
"math/rand"
"net/netip"
"runtime"
"runtime/pprof"
"sync"
"sync/atomic"
"testing"
"time"
"golang.zx2c4.com/wireguard/conn"
"golang.zx2c4.com/wireguard/conn/bindtest"
"golang.zx2c4.com/wireguard/tun/tuntest"
)
// uapiCfg returns a string that contains cfg formatted use with IpcSet.
// cfg is a series of alternating key/value strings.
// uapiCfg exists because editors and humans like to insert
// whitespace into configs, which can cause failures, some of which are silent.
// For example, a leading blank newline causes the remainder
// of the config to be silently ignored.
func uapiCfg(cfg ...string) string {
if len(cfg)%2 != 0 {
panic("odd number of args to uapiReader")
}
buf := new(bytes.Buffer)
for i, s := range cfg {
buf.WriteString(s)
sep := byte('\n')
if i%2 == 0 {
sep = '='
}
buf.WriteByte(sep)
}
return buf.String()
}
// genConfigs generates a pair of configs that connect to each other.
// The configs use distinct, probably-usable ports.
func genConfigs(tb testing.TB) (cfgs, endpointCfgs [2]string) {
var key1, key2 NoisePrivateKey
_, err := rand.Read(key1[:])
if err != nil {
tb.Errorf("unable to generate private key random bytes: %v", err)
}
_, err = rand.Read(key2[:])
if err != nil {
tb.Errorf("unable to generate private key random bytes: %v", err)
}
pub1, pub2 := key1.publicKey(), key2.publicKey()
cfgs[0] = uapiCfg(
"private_key", hex.EncodeToString(key1[:]),
"listen_port", "0",
"replace_peers", "true",
"public_key", hex.EncodeToString(pub2[:]),
"protocol_version", "1",
"replace_allowed_ips", "true",
"allowed_ip", "1.0.0.2/32",
)
endpointCfgs[0] = uapiCfg(
"public_key", hex.EncodeToString(pub2[:]),
"endpoint", "127.0.0.1:%d",
)
cfgs[1] = uapiCfg(
"private_key", hex.EncodeToString(key2[:]),
"listen_port", "0",
"replace_peers", "true",
"public_key", hex.EncodeToString(pub1[:]),
"protocol_version", "1",
"replace_allowed_ips", "true",
"allowed_ip", "1.0.0.1/32",
)
endpointCfgs[1] = uapiCfg(
"public_key", hex.EncodeToString(pub1[:]),
"endpoint", "127.0.0.1:%d",
)
return
}
// A testPair is a pair of testPeers.
type testPair [2]testPeer
// A testPeer is a peer used for testing.
type testPeer struct {
tun *tuntest.ChannelTUN
dev *Device
ip netip.Addr
}
type SendDirection bool
const (
Ping SendDirection = true
Pong SendDirection = false
)
func (d SendDirection) String() string {
if d == Ping {
return "ping"
}
return "pong"
}
func (pair *testPair) Send(tb testing.TB, ping SendDirection, done chan struct{}) {
tb.Helper()
p0, p1 := pair[0], pair[1]
if !ping {
// pong is the new ping
p0, p1 = p1, p0
}
msg := tuntest.Ping(p0.ip, p1.ip)
p1.tun.Outbound <- msg
timer := time.NewTimer(5 * time.Second)
defer timer.Stop()
var err error
select {
case msgRecv := <-p0.tun.Inbound:
if !bytes.Equal(msg, msgRecv) {
err = fmt.Errorf("%s did not transit correctly", ping)
}
case <-timer.C:
err = fmt.Errorf("%s did not transit", ping)
case <-done:
}
if err != nil {
// The error may have occurred because the test is done.
select {
case <-done:
return
default:
}
// Real error.
tb.Error(err)
}
}
// genTestPair creates a testPair.
func genTestPair(tb testing.TB, realSocket bool) (pair testPair) {
cfg, endpointCfg := genConfigs(tb)
var binds [2]conn.Bind
if realSocket {
binds[0], binds[1] = conn.NewDefaultBind(), conn.NewDefaultBind()
} else {
binds = bindtest.NewChannelBinds()
}
// Bring up a ChannelTun for each config.
for i := range pair {
p := &pair[i]
p.tun = tuntest.NewChannelTUN()
p.ip = netip.AddrFrom4([4]byte{1, 0, 0, byte(i + 1)})
level := LogLevelVerbose
if _, ok := tb.(*testing.B); ok && !testing.Verbose() {
level = LogLevelError
}
p.dev = NewDevice(p.tun.TUN(), binds[i], NewLogger(level, fmt.Sprintf("dev%d: ", i)))
if err := p.dev.IpcSet(cfg[i]); err != nil {
tb.Errorf("failed to configure device %d: %v", i, err)
p.dev.Close()
continue
}
if err := p.dev.Up(); err != nil {
tb.Errorf("failed to bring up device %d: %v", i, err)
p.dev.Close()
continue
}
endpointCfg[i^1] = fmt.Sprintf(endpointCfg[i^1], p.dev.net.port)
}
for i := range pair {
p := &pair[i]
if err := p.dev.IpcSet(endpointCfg[i]); err != nil {
tb.Errorf("failed to configure device endpoint %d: %v", i, err)
p.dev.Close()
continue
}
// The device is ready. Close it when the test completes.
tb.Cleanup(p.dev.Close)
}
return
}
func TestTwoDevicePing(t *testing.T) {
goroutineLeakCheck(t)
pair := genTestPair(t, true)
t.Run("ping 1.0.0.1", func(t *testing.T) {
pair.Send(t, Ping, nil)
})
t.Run("ping 1.0.0.2", func(t *testing.T) {
pair.Send(t, Pong, nil)
})
}
func TestUpDown(t *testing.T) {
goroutineLeakCheck(t)
const itrials = 50
const otrials = 10
for n := 0; n < otrials; n++ {
pair := genTestPair(t, false)
for i := range pair {
for k := range pair[i].dev.peers.keyMap {
pair[i].dev.IpcSet(fmt.Sprintf("public_key=%s\npersistent_keepalive_interval=1\n", hex.EncodeToString(k[:])))
}
}
var wg sync.WaitGroup
wg.Add(len(pair))
for i := range pair {
go func(d *Device) {
defer wg.Done()
for i := 0; i < itrials; i++ {
if err := d.Up(); err != nil {
t.Errorf("failed up bring up device: %v", err)
}
time.Sleep(time.Duration(rand.Intn(int(time.Nanosecond * (0x10000 - 1)))))
if err := d.Down(); err != nil {
t.Errorf("failed to bring down device: %v", err)
}
time.Sleep(time.Duration(rand.Intn(int(time.Nanosecond * (0x10000 - 1)))))
}
}(pair[i].dev)
}
wg.Wait()
for i := range pair {
pair[i].dev.Up()
pair[i].dev.Close()
}
}
}
// TestConcurrencySafety does other things concurrently with tunnel use.
// It is intended to be used with the race detector to catch data races.
func TestConcurrencySafety(t *testing.T) {
pair := genTestPair(t, true)
done := make(chan struct{})
const warmupIters = 10
var warmup sync.WaitGroup
warmup.Add(warmupIters)
go func() {
// Send data continuously back and forth until we're done.
// Note that we may continue to attempt to send data
// even after done is closed.
i := warmupIters
for ping := Ping; ; ping = !ping {
pair.Send(t, ping, done)
select {
case <-done:
return
default:
}
if i > 0 {
warmup.Done()
i--
}
}
}()
warmup.Wait()
applyCfg := func(cfg string) {
err := pair[0].dev.IpcSet(cfg)
if err != nil {
t.Fatal(err)
}
}
// Change persistent_keepalive_interval concurrently with tunnel use.
t.Run("persistentKeepaliveInterval", func(t *testing.T) {
var pub NoisePublicKey
for key := range pair[0].dev.peers.keyMap {
pub = key
break
}
cfg := uapiCfg(
"public_key", hex.EncodeToString(pub[:]),
"persistent_keepalive_interval", "1",
)
for i := 0; i < 1000; i++ {
applyCfg(cfg)
}
})
// Change private keys concurrently with tunnel use.
t.Run("privateKey", func(t *testing.T) {
bad := uapiCfg("private_key", "7777777777777777777777777777777777777777777777777777777777777777")
good := uapiCfg("private_key", hex.EncodeToString(pair[0].dev.staticIdentity.privateKey[:]))
// Set iters to a large number like 1000 to flush out data races quickly.
// Don't leave it large. That can cause logical races
// in which the handshake is interleaved with key changes
// such that the private key appears to be unchanging but
// other state gets reset, which can cause handshake failures like
// "Received packet with invalid mac1".
const iters = 1
for i := 0; i < iters; i++ {
applyCfg(bad)
applyCfg(good)
}
})
close(done)
}
func BenchmarkLatency(b *testing.B) {
pair := genTestPair(b, true)
// Establish a connection.
pair.Send(b, Ping, nil)
pair.Send(b, Pong, nil)
b.ResetTimer()
for i := 0; i < b.N; i++ {
pair.Send(b, Ping, nil)
pair.Send(b, Pong, nil)
}
}
func BenchmarkThroughput(b *testing.B) {
pair := genTestPair(b, true)
// Establish a connection.
pair.Send(b, Ping, nil)
pair.Send(b, Pong, nil)
// Measure how long it takes to receive b.N packets,
// starting when we receive the first packet.
var recv atomic.Uint64
var elapsed time.Duration
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
var start time.Time
for {
<-pair[0].tun.Inbound
new := recv.Add(1)
if new == 1 {
start = time.Now()
}
// Careful! Don't change this to else if; b.N can be equal to 1.
if new == uint64(b.N) {
elapsed = time.Since(start)
return
}
}
}()
// Send packets as fast as we can until we've received enough.
ping := tuntest.Ping(pair[0].ip, pair[1].ip)
pingc := pair[1].tun.Outbound
var sent uint64
for recv.Load() != uint64(b.N) {
sent++
pingc <- ping
}
wg.Wait()
b.ReportMetric(float64(elapsed)/float64(b.N), "ns/op")
b.ReportMetric(1-float64(b.N)/float64(sent), "packet-loss")
}
func BenchmarkUAPIGet(b *testing.B) {
pair := genTestPair(b, true)
pair.Send(b, Ping, nil)
pair.Send(b, Pong, nil)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
pair[0].dev.IpcGetOperation(io.Discard)
}
}
func goroutineLeakCheck(t *testing.T) {
goroutines := func() (int, []byte) {
p := pprof.Lookup("goroutine")
b := new(bytes.Buffer)
p.WriteTo(b, 1)
return p.Count(), b.Bytes()
}
startGoroutines, startStacks := goroutines()
t.Cleanup(func() {
if t.Failed() {
return
}
// Give goroutines time to exit, if they need it.
for i := 0; i < 10000; i++ {
if runtime.NumGoroutine() <= startGoroutines {
return
}
time.Sleep(1 * time.Millisecond)
}
endGoroutines, endStacks := goroutines()
t.Logf("starting stacks:\n%s\n", startStacks)
t.Logf("ending stacks:\n%s\n", endStacks)
t.Fatalf("expected %d goroutines, got %d, leak?", startGoroutines, endGoroutines)
})
}
|