summaryrefslogtreecommitdiffhomepage
path: root/device/channels.go
blob: bf788682aeef1628dcd0d242906182e3a2d65314 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/* SPDX-License-Identifier: MIT
 *
 * Copyright (C) 2017-2021 WireGuard LLC. All Rights Reserved.
 */

package device

import (
	"runtime"
	"sync"
)

// An outboundQueue is a channel of QueueOutboundElements awaiting encryption.
// An outboundQueue is ref-counted using its wg field.
// An outboundQueue created with newOutboundQueue has one reference.
// Every additional writer must call wg.Add(1).
// Every completed writer must call wg.Done().
// When no further writers will be added,
// call wg.Done to remove the initial reference.
// When the refcount hits 0, the queue's channel is closed.
type outboundQueue struct {
	c  chan *QueueOutboundElement
	wg sync.WaitGroup
}

func newOutboundQueue() *outboundQueue {
	q := &outboundQueue{
		c: make(chan *QueueOutboundElement, QueueOutboundSize),
	}
	q.wg.Add(1)
	go func() {
		q.wg.Wait()
		close(q.c)
	}()
	return q
}

// A inboundQueue is similar to an outboundQueue; see those docs.
type inboundQueue struct {
	c  chan *QueueInboundElement
	wg sync.WaitGroup
}

func newInboundQueue() *inboundQueue {
	q := &inboundQueue{
		c: make(chan *QueueInboundElement, QueueInboundSize),
	}
	q.wg.Add(1)
	go func() {
		q.wg.Wait()
		close(q.c)
	}()
	return q
}

// A handshakeQueue is similar to an outboundQueue; see those docs.
type handshakeQueue struct {
	c  chan QueueHandshakeElement
	wg sync.WaitGroup
}

func newHandshakeQueue() *handshakeQueue {
	q := &handshakeQueue{
		c: make(chan QueueHandshakeElement, QueueHandshakeSize),
	}
	q.wg.Add(1)
	go func() {
		q.wg.Wait()
		close(q.c)
	}()
	return q
}

type autodrainingInboundQueue struct {
	c chan *QueueInboundElement
}

// newAutodrainingInboundQueue returns a channel that will be drained when it gets GC'd.
// It is useful in cases in which is it hard to manage the lifetime of the channel.
// The returned channel must not be closed. Senders should signal shutdown using
// some other means, such as sending a sentinel nil values.
func newAutodrainingInboundQueue(device *Device) *autodrainingInboundQueue {
	q := &autodrainingInboundQueue{
		c: make(chan *QueueInboundElement, QueueInboundSize),
	}
	runtime.SetFinalizer(q, func(q *autodrainingInboundQueue) {
		for {
			select {
			case elem := <-q.c:
				elem.Lock()
				device.PutMessageBuffer(elem.buffer)
				device.PutInboundElement(elem)
			default:
				return
			}
		}
	})
	return q
}

type autodrainingOutboundQueue struct {
	c chan *QueueOutboundElement
}

// newAutodrainingOutboundQueue returns a channel that will be drained when it gets GC'd.
// It is useful in cases in which is it hard to manage the lifetime of the channel.
// The returned channel must not be closed. Senders should signal shutdown using
// some other means, such as sending a sentinel nil values.
// All sends to the channel must be best-effort, because there may be no receivers.
func newAutodrainingOutboundQueue(device *Device) *autodrainingOutboundQueue {
	q := &autodrainingOutboundQueue{
		c: make(chan *QueueOutboundElement, QueueOutboundSize),
	}
	runtime.SetFinalizer(q, func(q *autodrainingOutboundQueue) {
		for {
			select {
			case elem := <-q.c:
				elem.Lock()
				device.PutMessageBuffer(elem.buffer)
				device.PutOutboundElement(elem)
			default:
				return
			}
		}
	})
	return q
}