/* SPDX-License-Identifier: MIT * * Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved. */ package tun import ( "bytes" "encoding/binary" "errors" "io" "unsafe" "golang.org/x/sys/unix" "golang.zx2c4.com/wireguard/conn" ) const tcpFlagsOffset = 13 const ( tcpFlagFIN uint8 = 0x01 tcpFlagPSH uint8 = 0x08 tcpFlagACK uint8 = 0x10 ) // virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The // kernel symbol is virtio_net_hdr. type virtioNetHdr struct { flags uint8 gsoType uint8 hdrLen uint16 gsoSize uint16 csumStart uint16 csumOffset uint16 } func (v *virtioNetHdr) decode(b []byte) error { if len(b) < virtioNetHdrLen { return io.ErrShortBuffer } copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen]) return nil } func (v *virtioNetHdr) encode(b []byte) error { if len(b) < virtioNetHdrLen { return io.ErrShortBuffer } copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen)) return nil } const ( // virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the // shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr). virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{})) ) // flowKey represents the key for a flow. type flowKey struct { srcAddr, dstAddr [16]byte srcPort, dstPort uint16 rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows. } // tcpGROTable holds flow and coalescing information for the purposes of GRO. type tcpGROTable struct { itemsByFlow map[flowKey][]tcpGROItem itemsPool [][]tcpGROItem } func newTCPGROTable() *tcpGROTable { t := &tcpGROTable{ itemsByFlow: make(map[flowKey][]tcpGROItem, conn.DefaultBatchSize), itemsPool: make([][]tcpGROItem, conn.DefaultBatchSize), } for i := range t.itemsPool { t.itemsPool[i] = make([]tcpGROItem, 0, conn.DefaultBatchSize) } return t } func newFlowKey(pkt []byte, srcAddr, dstAddr, tcphOffset int) flowKey { key := flowKey{} addrSize := dstAddr - srcAddr copy(key.srcAddr[:], pkt[srcAddr:dstAddr]) copy(key.dstAddr[:], pkt[dstAddr:dstAddr+addrSize]) key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:]) key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:]) key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:]) return key } // lookupOrInsert looks up a flow for the provided packet and metadata, // returning the packets found for the flow, or inserting a new one if none // is found. func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, buffsIndex int) ([]tcpGROItem, bool) { key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset) items, ok := t.itemsByFlow[key] if ok { return items, ok } // TODO: insert() performs another map lookup. This could be rearranged to avoid. t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, buffsIndex) return nil, false } // insert an item in the table for the provided packet and packet metadata. func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, buffsIndex int) { key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset) item := tcpGROItem{ key: key, buffsIndex: uint16(buffsIndex), gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])), iphLen: uint8(tcphOffset), tcphLen: uint8(tcphLen), sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]), pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0, } items, ok := t.itemsByFlow[key] if !ok { items = t.newItems() } items = append(items, item) t.itemsByFlow[key] = items } func (t *tcpGROTable) updateAt(item tcpGROItem, i int) { items, _ := t.itemsByFlow[item.key] items[i] = item } func (t *tcpGROTable) deleteAt(key flowKey, i int) { items, _ := t.itemsByFlow[key] items = append(items[:i], items[i+1:]...) t.itemsByFlow[key] = items } // tcpGROItem represents bookkeeping data for a TCP packet during the lifetime // of a GRO evaluation across a vector of packets. type tcpGROItem struct { key flowKey sentSeq uint32 // the sequence number buffsIndex uint16 // the index into the original buffs slice numMerged uint16 // the number of packets merged into this item gsoSize uint16 // payload size iphLen uint8 // ip header len tcphLen uint8 // tcp header len pshSet bool // psh flag is set } func (t *tcpGROTable) newItems() []tcpGROItem { var items []tcpGROItem items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1] return items } func (t *tcpGROTable) reset() { for k, items := range t.itemsByFlow { items = items[:0] t.itemsPool = append(t.itemsPool, items) delete(t.itemsByFlow, k) } } // canCoalesce represents the outcome of checking if two TCP packets are // candidates for coalescing. type canCoalesce int const ( coalescePrepend canCoalesce = -1 coalesceUnavailable canCoalesce = 0 coalesceAppend canCoalesce = 1 ) // tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet // described by item. This function makes considerations that match the kernel's // GRO self tests, which can be found in tools/testing/selftests/net/gro.c. func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, buffs [][]byte, buffsOffset int) canCoalesce { pktTarget := buffs[item.buffsIndex][buffsOffset:] if tcphLen != item.tcphLen { // cannot coalesce with unequal tcp options len return coalesceUnavailable } if tcphLen > 20 { if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) { // cannot coalesce with unequal tcp options return coalesceUnavailable } } if pkt[1] != pktTarget[1] { // cannot coalesce with unequal ToS values return coalesceUnavailable } if pkt[6]>>5 != pktTarget[6]>>5 { // cannot coalesce with unequal DF or reserved bits. MF is checked // further up the stack. return coalesceUnavailable } // seq adjacency lhsLen := item.gsoSize lhsLen += item.numMerged * item.gsoSize if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective if item.pshSet { // We cannot append to a segment that has the PSH flag set, PSH // can only be set on the final segment in a reassembled group. return coalesceUnavailable } if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 { // A smaller than gsoSize packet has been appended previously. // Nothing can come after a smaller packet on the end. return coalesceUnavailable } if gsoSize > item.gsoSize { // We cannot have a larger packet following a smaller one. return coalesceUnavailable } return coalesceAppend } else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective if pshSet { // We cannot prepend with a segment that has the PSH flag set, PSH // can only be set on the final segment in a reassembled group. return coalesceUnavailable } if gsoSize < item.gsoSize { // We cannot have a larger packet following a smaller one. return coalesceUnavailable } if gsoSize > item.gsoSize && item.numMerged > 0 { // There's at least one previous merge, and we're larger than all // previous. This would put multiple smaller packets on the end. return coalesceUnavailable } return coalescePrepend } return coalesceUnavailable } func tcpChecksumValid(pkt []byte, iphLen uint8, isV6 bool) bool { srcAddrAt := ipv4SrcAddrOffset addrSize := 4 if isV6 { srcAddrAt = ipv6SrcAddrOffset addrSize = 16 } tcpTotalLen := uint16(len(pkt) - int(iphLen)) tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], tcpTotalLen) return ^checksum(pkt[iphLen:], tcpCSumNoFold) == 0 } // coalesceResult represents the result of attempting to coalesce two TCP // packets. type coalesceResult int const ( coalesceInsufficientCap coalesceResult = 0 coalescePSHEnding coalesceResult = 1 coalesceItemInvalidCSum coalesceResult = 2 coalescePktInvalidCSum coalesceResult = 3 coalesceSuccess coalesceResult = 4 ) // coalesceTCPPackets attempts to coalesce pkt with the packet described by // item, returning the outcome. This function may swap buffs elements in the // event of a prepend as item's buffs index is already being tracked for writing // to a Device. func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, buffs [][]byte, buffsOffset int, isV6 bool) coalesceResult { var pktHead []byte // the packet that will end up at the front headersLen := item.iphLen + item.tcphLen coalescedLen := len(buffs[item.buffsIndex][buffsOffset:]) + len(pkt) - int(headersLen) // Copy data if mode == coalescePrepend { pktHead = pkt if cap(pkt)-buffsOffset < coalescedLen { // We don't want to allocate a new underlying array if capacity is // too small. return coalesceInsufficientCap } if pshSet { return coalescePSHEnding } if item.numMerged == 0 { if !tcpChecksumValid(buffs[item.buffsIndex][buffsOffset:], item.iphLen, isV6) { return coalesceItemInvalidCSum } } if !tcpChecksumValid(pkt, item.iphLen, isV6) { return coalescePktInvalidCSum } item.sentSeq = seq extendBy := coalescedLen - len(pktHead) buffs[pktBuffsIndex] = append(buffs[pktBuffsIndex], make([]byte, extendBy)...) copy(buffs[pktBuffsIndex][buffsOffset+len(pkt):], buffs[item.buffsIndex][buffsOffset+int(headersLen):]) // Flip the slice headers in buffs as part of prepend. The index of item // is already being tracked for writing. buffs[item.buffsIndex], buffs[pktBuffsIndex] = buffs[pktBuffsIndex], buffs[item.buffsIndex] } else { pktHead = buffs[item.buffsIndex][buffsOffset:] if cap(pktHead)-buffsOffset < coalescedLen { // We don't want to allocate a new underlying array if capacity is // too small. return coalesceInsufficientCap } if item.numMerged == 0 { if !tcpChecksumValid(buffs[item.buffsIndex][buffsOffset:], item.iphLen, isV6) { return coalesceItemInvalidCSum } } if !tcpChecksumValid(pkt, item.iphLen, isV6) { return coalescePktInvalidCSum } if pshSet { // We are appending a segment with PSH set. item.pshSet = pshSet pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH } extendBy := len(pkt) - int(headersLen) buffs[item.buffsIndex] = append(buffs[item.buffsIndex], make([]byte, extendBy)...) copy(buffs[item.buffsIndex][buffsOffset+len(pktHead):], pkt[headersLen:]) } if gsoSize > item.gsoSize { item.gsoSize = gsoSize } hdr := virtioNetHdr{ flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb hdrLen: uint16(headersLen), gsoSize: uint16(item.gsoSize), csumStart: uint16(item.iphLen), csumOffset: 16, } // Recalculate the total len (IPv4) or payload len (IPv6). Recalculate the // (IPv4) header checksum. if isV6 { hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6 binary.BigEndian.PutUint16(pktHead[4:], uint16(coalescedLen)-uint16(item.iphLen)) // set new payload len } else { hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4 pktHead[10], pktHead[11] = 0, 0 // clear checksum field binary.BigEndian.PutUint16(pktHead[2:], uint16(coalescedLen)) // set new total length iphCSum := ^checksum(pktHead[:item.iphLen], 0) // compute checksum binary.BigEndian.PutUint16(pktHead[10:], iphCSum) // set checksum field } hdr.encode(buffs[item.buffsIndex][buffsOffset-virtioNetHdrLen:]) // Calculate the pseudo header checksum and place it at the TCP checksum // offset. Downstream checksum offloading will combine this with computation // of the tcp header and payload checksum. addrLen := 4 addrOffset := ipv4SrcAddrOffset if isV6 { addrLen = 16 addrOffset = ipv6SrcAddrOffset } srcAddrAt := buffsOffset + addrOffset srcAddr := buffs[item.buffsIndex][srcAddrAt : srcAddrAt+addrLen] dstAddr := buffs[item.buffsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2] psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(coalescedLen-int(item.iphLen))) binary.BigEndian.PutUint16(pktHead[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum)) item.numMerged++ return coalesceSuccess } const ( ipv4FlagMoreFragments = 0x80 ) const ( ipv4SrcAddrOffset = 12 ipv6SrcAddrOffset = 8 maxUint16 = 1<<16 - 1 ) // tcpGRO evaluates the TCP packet at pktI in buffs for coalescing with // existing packets tracked in table. It will return false when pktI is not // coalesced, otherwise true. This indicates to the caller if buffs[pktI] // should be written to the Device. func tcpGRO(buffs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) (pktCoalesced bool) { pkt := buffs[pktI][offset:] if len(pkt) > maxUint16 { // A valid IPv4 or IPv6 packet will never exceed this. return false } iphLen := int((pkt[0] & 0x0F) * 4) if isV6 { iphLen = 40 ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:])) if ipv6HPayloadLen != len(pkt)-iphLen { return false } } else { totalLen := int(binary.BigEndian.Uint16(pkt[2:])) if totalLen != len(pkt) { return false } if iphLen < 20 || iphLen > 60 { return false } } if len(pkt) < iphLen { return false } tcphLen := int((pkt[iphLen+12] >> 4) * 4) if tcphLen < 20 || tcphLen > 60 { return false } if len(pkt) < iphLen+tcphLen { return false } if !isV6 { if pkt[6]&ipv4FlagMoreFragments != 0 || (pkt[6]<<3 != 0 || pkt[7] != 0) { // no GRO support for fragmented segments for now return false } } tcpFlags := pkt[iphLen+tcpFlagsOffset] var pshSet bool // not a candidate if any non-ACK flags (except PSH+ACK) are set if tcpFlags != tcpFlagACK { if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH { return false } pshSet = true } gsoSize := uint16(len(pkt) - tcphLen - iphLen) // not a candidate if payload len is 0 if gsoSize < 1 { return false } seq := binary.BigEndian.Uint32(pkt[iphLen+4:]) srcAddrOffset := ipv4SrcAddrOffset addrLen := 4 if isV6 { srcAddrOffset = ipv6SrcAddrOffset addrLen = 16 } items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI) if !existing { return false } for i := len(items) - 1; i >= 0; i-- { // In the best case of packets arriving in order iterating in reverse is // more efficient if there are multiple items for a given flow. This // also enables a natural table.deleteAt() in the // coalesceItemInvalidCSum case without the need for index tracking. // This algorithm makes a best effort to coalesce in the event of // unordered packets, where pkt may land anywhere in items from a // sequence number perspective, however once an item is inserted into // the table it is never compared across other items later. item := items[i] can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, buffs, offset) if can != coalesceUnavailable { result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, buffs, offset, isV6) switch result { case coalesceSuccess: table.updateAt(item, i) return true case coalesceItemInvalidCSum: // delete the item with an invalid csum table.deleteAt(item.key, i) case coalescePktInvalidCSum: // no point in inserting an item that we can't coalesce return false default: } } } // failed to coalesce with any other packets; store the item in the flow table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI) return false } func isTCP4(b []byte) bool { if len(b) < 40 { return false } if b[0]>>4 != 4 { return false } if b[9] != unix.IPPROTO_TCP { return false } return true } func isTCP6NoEH(b []byte) bool { if len(b) < 60 { return false } if b[0]>>4 != 6 { return false } if b[6] != unix.IPPROTO_TCP { return false } return true } // handleGRO evaluates buffs for GRO, and writes the indices of the resulting // packets into toWrite. toWrite, tcp4Table, and tcp6Table should initially be // empty (but non-nil), and are passed in to save allocs as the caller may reset // and recycle them across vectors of packets. func handleGRO(buffs [][]byte, offset int, tcp4Table, tcp6Table *tcpGROTable, toWrite *[]int) error { for i := range buffs { if offset < virtioNetHdrLen || offset > len(buffs[i])-1 { return errors.New("invalid offset") } var coalesced bool switch { case isTCP4(buffs[i][offset:]): coalesced = tcpGRO(buffs, offset, i, tcp4Table, false) case isTCP6NoEH(buffs[i][offset:]): // ipv6 packets w/extension headers do not coalesce coalesced = tcpGRO(buffs, offset, i, tcp6Table, true) } if !coalesced { hdr := virtioNetHdr{} err := hdr.encode(buffs[i][offset-virtioNetHdrLen:]) if err != nil { return err } *toWrite = append(*toWrite, i) } } return nil } // tcpTSO splits packets from in into outBuffs, writing the size of each // element into sizes. It returns the number of buffers populated, and/or an // error. func tcpTSO(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int) (int, error) { iphLen := int(hdr.csumStart) srcAddrOffset := ipv6SrcAddrOffset addrLen := 16 if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 { in[10], in[11] = 0, 0 // clear ipv4 header checksum srcAddrOffset = ipv4SrcAddrOffset addrLen = 4 } tcpCSumAt := int(hdr.csumStart + hdr.csumOffset) in[tcpCSumAt], in[tcpCSumAt+1] = 0, 0 // clear tcp checksum firstTCPSeqNum := binary.BigEndian.Uint32(in[hdr.csumStart+4:]) nextSegmentDataAt := int(hdr.hdrLen) i := 0 for ; nextSegmentDataAt < len(in); i++ { if i == len(outBuffs) { return i - 1, ErrTooManySegments } nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize) if nextSegmentEnd > len(in) { nextSegmentEnd = len(in) } segmentDataLen := nextSegmentEnd - nextSegmentDataAt totalLen := int(hdr.hdrLen) + segmentDataLen sizes[i] = totalLen out := outBuffs[i][outOffset:] copy(out, in[:iphLen]) if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 { // For IPv4 we are responsible for incrementing the ID field, // updating the total len field, and recalculating the header // checksum. if i > 0 { id := binary.BigEndian.Uint16(out[4:]) id += uint16(i) binary.BigEndian.PutUint16(out[4:], id) } binary.BigEndian.PutUint16(out[2:], uint16(totalLen)) ipv4CSum := ^checksum(out[:iphLen], 0) binary.BigEndian.PutUint16(out[10:], ipv4CSum) } else { // For IPv6 we are responsible for updating the payload length field. binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen)) } // TCP header copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen]) tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i)) binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq) if nextSegmentEnd != len(in) { // FIN and PSH should only be set on last segment clearFlags := tcpFlagFIN | tcpFlagPSH out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags } // payload copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd]) // TCP checksum tcpHLen := int(hdr.hdrLen - hdr.csumStart) tcpLenForPseudo := uint16(tcpHLen + segmentDataLen) tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], tcpLenForPseudo) tcpCSum := ^checksum(out[hdr.csumStart:totalLen], tcpCSumNoFold) binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], tcpCSum) nextSegmentDataAt += int(hdr.gsoSize) } return i, nil } func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error { cSumAt := cSumStart + cSumOffset // The initial value at the checksum offset should be summed with the // checksum we compute. This is typically the pseudo-header checksum. initial := binary.BigEndian.Uint16(in[cSumAt:]) in[cSumAt], in[cSumAt+1] = 0, 0 binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial))) return nil }