package main import ( "bufio" "fmt" "io" "net" "strconv" "strings" "sync/atomic" "time" ) type IPCError struct { Code int64 } func (s *IPCError) Error() string { return fmt.Sprintf("IPC error: %d", s.Code) } func (s *IPCError) ErrorCode() int64 { return s.Code } func ipcGetOperation(device *Device, socket *bufio.ReadWriter) *IPCError { // create lines device.mutex.RLock() device.net.mutex.RLock() lines := make([]string, 0, 100) send := func(line string) { lines = append(lines, line) } if !device.privateKey.IsZero() { send("private_key=" + device.privateKey.ToHex()) } if device.net.port != 0 { send(fmt.Sprintf("listen_port=%d", device.net.port)) } if device.net.fwmark != 0 { send(fmt.Sprintf("fwmark=%d", device.net.fwmark)) } for _, peer := range device.peers { func() { peer.mutex.RLock() defer peer.mutex.RUnlock() send("public_key=" + peer.handshake.remoteStatic.ToHex()) send("preshared_key=" + peer.handshake.presharedKey.ToHex()) if peer.endpoint != nil { send("endpoint=" + peer.endpoint.DstToString()) } nano := atomic.LoadInt64(&peer.stats.lastHandshakeNano) secs := nano / time.Second.Nanoseconds() nano %= time.Second.Nanoseconds() send(fmt.Sprintf("last_handshake_time_sec=%d", secs)) send(fmt.Sprintf("last_handshake_time_nsec=%d", nano)) send(fmt.Sprintf("tx_bytes=%d", peer.stats.txBytes)) send(fmt.Sprintf("rx_bytes=%d", peer.stats.rxBytes)) send(fmt.Sprintf("persistent_keepalive_interval=%d", atomic.LoadUint64(&peer.persistentKeepaliveInterval), )) for _, ip := range device.routingTable.AllowedIPs(peer) { send("allowed_ip=" + ip.String()) } }() } device.net.mutex.RUnlock() device.mutex.RUnlock() // send lines for _, line := range lines { _, err := socket.WriteString(line + "\n") if err != nil { return &IPCError{ Code: ipcErrorIO, } } } return nil } func ipcSetOperation(device *Device, socket *bufio.ReadWriter) *IPCError { scanner := bufio.NewScanner(socket) logInfo := device.log.Info logError := device.log.Error logDebug := device.log.Debug var peer *Peer dummy := false deviceConfig := true for scanner.Scan() { // parse line line := scanner.Text() if line == "" { return nil } parts := strings.Split(line, "=") if len(parts) != 2 { return &IPCError{Code: ipcErrorProtocol} } key := parts[0] value := parts[1] /* device configuration */ if deviceConfig { switch key { case "private_key": var sk NoisePrivateKey err := sk.FromHex(value) if err != nil { logError.Println("Failed to set private_key:", err) return &IPCError{Code: ipcErrorInvalid} } device.SetPrivateKey(sk) case "listen_port": port, err := strconv.ParseUint(value, 10, 16) if err != nil { logError.Println("Failed to parse listen_port:", err) return &IPCError{Code: ipcErrorInvalid} } device.net.port = uint16(port) if err := updateBind(device); err != nil { logError.Println("Failed to set listen_port:", err) return &IPCError{Code: ipcErrorPortInUse} } case "fwmark": // parse fwmark field fwmark, err := func() (uint32, error) { if value == "" { return 0, nil } mark, err := strconv.ParseUint(value, 10, 32) return uint32(mark), err }() if err != nil { logError.Println("Invalid fwmark", err) return &IPCError{Code: ipcErrorInvalid} } device.net.mutex.Lock() device.net.fwmark = uint32(fwmark) device.net.mutex.Unlock() case "public_key": // switch to peer configuration deviceConfig = false case "replace_peers": if value != "true" { logError.Println("Failed to set replace_peers, invalid value:", value) return &IPCError{Code: ipcErrorInvalid} } device.RemoveAllPeers() default: logError.Println("Invalid UAPI key (device configuration):", key) return &IPCError{Code: ipcErrorInvalid} } } /* peer configuration */ if !deviceConfig { switch key { case "public_key": var pubKey NoisePublicKey err := pubKey.FromHex(value) if err != nil { logError.Println("Failed to get peer by public_key:", err) return &IPCError{Code: ipcErrorInvalid} } // check if public key of peer equal to device device.mutex.RLock() if device.publicKey.Equals(pubKey) { // create dummy instance (not added to device) peer = &Peer{} dummy = true device.mutex.RUnlock() logInfo.Println("Ignoring peer with public key of device") } else { // find peer referenced peer, _ = device.peers[pubKey] device.mutex.RUnlock() if peer == nil { peer, err = device.NewPeer(pubKey) if err != nil { logError.Println("Failed to create new peer:", err) return &IPCError{Code: ipcErrorInvalid} } } peer.timer.handshakeDeadline.Reset(RekeyAttemptTime) dummy = false } case "remove": // remove currently selected peer from device if value != "true" { logError.Println("Failed to set remove, invalid value:", value) return &IPCError{Code: ipcErrorInvalid} } if !dummy { logDebug.Println("Removing", peer.String()) device.RemovePeer(peer.handshake.remoteStatic) } peer = &Peer{} dummy = true case "preshared_key": // update PSK peer.mutex.Lock() err := peer.handshake.presharedKey.FromHex(value) peer.mutex.Unlock() if err != nil { logError.Println("Failed to set preshared_key:", err) return &IPCError{Code: ipcErrorInvalid} } case "endpoint": // set endpoint destination err := func() error { peer.mutex.Lock() defer peer.mutex.Unlock() endpoint, err := CreateEndpoint(value) if err != nil { return err } peer.endpoint = endpoint peer.timer.handshakeDeadline.Reset(RekeyAttemptTime) return nil }() if err != nil { logError.Println("Failed to set endpoint:", value) return &IPCError{Code: ipcErrorInvalid} } case "persistent_keepalive_interval": // update keep-alive interval secs, err := strconv.ParseUint(value, 10, 16) if err != nil { logError.Println("Failed to set persistent_keepalive_interval:", err) return &IPCError{Code: ipcErrorInvalid} } old := atomic.SwapUint64( &peer.persistentKeepaliveInterval, secs, ) // send immediate keep-alive if old == 0 && secs != 0 { if err != nil { logError.Println("Failed to get tun device status:", err) return &IPCError{Code: ipcErrorIO} } if device.isUp.Get() && !dummy { peer.SendKeepAlive() } } case "replace_allowed_ips": if value != "true" { logError.Println("Failed to set replace_allowed_ips, invalid value:", value) return &IPCError{Code: ipcErrorInvalid} } if !dummy { device.routingTable.RemovePeer(peer) } case "allowed_ip": _, network, err := net.ParseCIDR(value) if err != nil { logError.Println("Failed to set allowed_ip:", err) return &IPCError{Code: ipcErrorInvalid} } ones, _ := network.Mask.Size() if !dummy { device.routingTable.Insert(network.IP, uint(ones), peer) } default: logError.Println("Invalid UAPI key (peer configuration):", key) return &IPCError{Code: ipcErrorInvalid} } } } return nil } func ipcHandle(device *Device, socket net.Conn) { // create buffered read/writer defer socket.Close() buffered := func(s io.ReadWriter) *bufio.ReadWriter { reader := bufio.NewReader(s) writer := bufio.NewWriter(s) return bufio.NewReadWriter(reader, writer) }(socket) defer buffered.Flush() op, err := buffered.ReadString('\n') if err != nil { return } // handle operation var status *IPCError switch op { case "set=1\n": device.log.Debug.Println("Config, set operation") status = ipcSetOperation(device, buffered) case "get=1\n": device.log.Debug.Println("Config, get operation") status = ipcGetOperation(device, buffered) default: device.log.Error.Println("Invalid UAPI operation:", op) return } // write status if status != nil { device.log.Error.Println(status) fmt.Fprintf(buffered, "errno=%d\n\n", status.ErrorCode()) } else { fmt.Fprintf(buffered, "errno=0\n\n") } }