Age | Commit message (Collapse) | Author |
|
Access to Peer.endpoint was previously synchronized by Peer.RWMutex.
This has now moved to Peer.endpoint.Mutex. Peer.SendBuffers() is now the
sole caller of Endpoint.ClearSrc(), which is signaled via a new bool,
Peer.endpoint.clearSrcOnTx. Previous Callers of Endpoint.ClearSrc() now
set this bool, primarily via peer.markEndpointSrcForClearing().
Peer.SetEndpointFromPacket() clears Peer.endpoint.clearSrcOnTx when an
updated conn.Endpoint is stored. This maintains the same event order as
before, i.e. a conn.Endpoint received after peer.endpoint.clearSrcOnTx
is set, but before the next Peer.SendBuffers() call results in the
latest conn.Endpoint source being used for the next packet transmission.
These changes result in throughput improvements for single flow,
parallel (-P n) flow, and bidirectional (--bidir) flow iperf3 TCP/UDP
tests as measured on both Linux and Windows. Latency under load improves
especially for high throughput Linux scenarios. These improvements are
likely realized on all platforms to some degree, as the changes are not
platform-specific.
Co-authored-by: James Tucker <james@tailscale.com>
Signed-off-by: James Tucker <james@tailscale.com>
Signed-off-by: Jordan Whited <jordan@tailscale.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
Forgetting to seed the unsafe rng, the jitter before followed a fixed
pattern, which didn't help when a fleet of computers all boot at once.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
There's no way for len(peers)==0 when a current peer has
isRunning==false.
This requires some struct reshuffling so that the uint64 pointer is
aligned.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
timersInit sets up the timers.
It need only be done once per peer.
timersStart does the work to prepare the timers
for a newly running peer. It needs to be done
every time a peer starts.
Separate the two and call them in the appropriate places.
This prevents data races on the peer's timers fields
when starting and stopping peers.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
|
|
This commit simplifies device state management.
It creates a single unified state variable and documents its semantics.
It also makes state changes more atomic.
As an example of the sort of bug that occurred due to non-atomic state changes,
the following sequence of events used to occur approximately every 2.5 million test runs:
* RoutineTUNEventReader received an EventDown event.
* It called device.Down, which called device.setUpDown.
* That set device.state.changing, but did not yet attempt to lock device.state.Mutex.
* Test completion called device.Close.
* device.Close locked device.state.Mutex.
* device.Close blocked on a call to device.state.stopping.Wait.
* device.setUpDown then attempted to lock device.state.Mutex and blocked.
Deadlock results. setUpDown cannot progress because device.state.Mutex is locked.
Until setUpDown returns, RoutineTUNEventReader cannot call device.state.stopping.Done.
Until device.state.stopping.Done gets called, device.state.stopping.Wait is blocked.
As long as device.state.stopping.Wait is blocked, device.state.Mutex cannot be unlocked.
This commit fixes that deadlock by holding device.state.mu
when checking that the device is not closed.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
|
|
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
This moves to a simple queue with no routine processing it, to reduce
scheduler pressure.
This splits latency in half!
benchmark old ns/op new ns/op delta
BenchmarkThroughput-16 2394 2364 -1.25%
BenchmarkLatency-16 259652 120810 -53.47%
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
There are very few cases, if any, in which a user only wants one of
these levels, so combine it into a single level.
While we're at it, reduce indirection on the loggers by using an empty
function rather than a nil function pointer. It's not like we have
retpolines anyway, and we were always calling through a function with a
branch prior, so this seems like a net gain.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
This commit overhauls wireguard-go's logging.
The primary, motivating change is to use a function instead
of a *log.Logger as the basic unit of logging.
Using functions provides a lot more flexibility for
people to bring their own logging system.
It also introduces logging helper methods on Device.
These reduce line noise at the call site.
They also allow for log functions to be nil;
when nil, instead of generating a log line and throwing it away,
we don't bother generating it at all.
This spares allocation and pointless work.
This is a breaking change, although the fix required
of clients is fairly straightforward.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
|
|
Found by the race detector and existing tests.
To avoid introducing a lock into this hot path,
calculate and cache whether any peers exist.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
|
|
Co-authored-by: David Anderson <danderson@tailscale.com>
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
|
|
This also makes the lifetime of modifyingLock more prominent.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
|
|
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
|
|
|