diff options
Diffstat (limited to 'tun/offload_linux.go')
-rw-r--r-- | tun/offload_linux.go | 993 |
1 files changed, 993 insertions, 0 deletions
diff --git a/tun/offload_linux.go b/tun/offload_linux.go new file mode 100644 index 0000000..9ff7fea --- /dev/null +++ b/tun/offload_linux.go @@ -0,0 +1,993 @@ +/* SPDX-License-Identifier: MIT + * + * Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved. + */ + +package tun + +import ( + "bytes" + "encoding/binary" + "errors" + "io" + "unsafe" + + "golang.org/x/sys/unix" + "golang.zx2c4.com/wireguard/conn" +) + +const tcpFlagsOffset = 13 + +const ( + tcpFlagFIN uint8 = 0x01 + tcpFlagPSH uint8 = 0x08 + tcpFlagACK uint8 = 0x10 +) + +// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The +// kernel symbol is virtio_net_hdr. +type virtioNetHdr struct { + flags uint8 + gsoType uint8 + hdrLen uint16 + gsoSize uint16 + csumStart uint16 + csumOffset uint16 +} + +func (v *virtioNetHdr) decode(b []byte) error { + if len(b) < virtioNetHdrLen { + return io.ErrShortBuffer + } + copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen]) + return nil +} + +func (v *virtioNetHdr) encode(b []byte) error { + if len(b) < virtioNetHdrLen { + return io.ErrShortBuffer + } + copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen)) + return nil +} + +const ( + // virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the + // shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr). + virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{})) +) + +// tcpFlowKey represents the key for a TCP flow. +type tcpFlowKey struct { + srcAddr, dstAddr [16]byte + srcPort, dstPort uint16 + rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows. + isV6 bool +} + +// tcpGROTable holds flow and coalescing information for the purposes of TCP GRO. +type tcpGROTable struct { + itemsByFlow map[tcpFlowKey][]tcpGROItem + itemsPool [][]tcpGROItem +} + +func newTCPGROTable() *tcpGROTable { + t := &tcpGROTable{ + itemsByFlow: make(map[tcpFlowKey][]tcpGROItem, conn.IdealBatchSize), + itemsPool: make([][]tcpGROItem, conn.IdealBatchSize), + } + for i := range t.itemsPool { + t.itemsPool[i] = make([]tcpGROItem, 0, conn.IdealBatchSize) + } + return t +} + +func newTCPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset int) tcpFlowKey { + key := tcpFlowKey{} + addrSize := dstAddrOffset - srcAddrOffset + copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset]) + copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize]) + key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:]) + key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:]) + key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:]) + key.isV6 = addrSize == 16 + return key +} + +// lookupOrInsert looks up a flow for the provided packet and metadata, +// returning the packets found for the flow, or inserting a new one if none +// is found. +func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) { + key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset) + items, ok := t.itemsByFlow[key] + if ok { + return items, ok + } + // TODO: insert() performs another map lookup. This could be rearranged to avoid. + t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex) + return nil, false +} + +// insert an item in the table for the provided packet and packet metadata. +func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) { + key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset) + item := tcpGROItem{ + key: key, + bufsIndex: uint16(bufsIndex), + gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])), + iphLen: uint8(tcphOffset), + tcphLen: uint8(tcphLen), + sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]), + pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0, + } + items, ok := t.itemsByFlow[key] + if !ok { + items = t.newItems() + } + items = append(items, item) + t.itemsByFlow[key] = items +} + +func (t *tcpGROTable) updateAt(item tcpGROItem, i int) { + items, _ := t.itemsByFlow[item.key] + items[i] = item +} + +func (t *tcpGROTable) deleteAt(key tcpFlowKey, i int) { + items, _ := t.itemsByFlow[key] + items = append(items[:i], items[i+1:]...) + t.itemsByFlow[key] = items +} + +// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime +// of a GRO evaluation across a vector of packets. +type tcpGROItem struct { + key tcpFlowKey + sentSeq uint32 // the sequence number + bufsIndex uint16 // the index into the original bufs slice + numMerged uint16 // the number of packets merged into this item + gsoSize uint16 // payload size + iphLen uint8 // ip header len + tcphLen uint8 // tcp header len + pshSet bool // psh flag is set +} + +func (t *tcpGROTable) newItems() []tcpGROItem { + var items []tcpGROItem + items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1] + return items +} + +func (t *tcpGROTable) reset() { + for k, items := range t.itemsByFlow { + items = items[:0] + t.itemsPool = append(t.itemsPool, items) + delete(t.itemsByFlow, k) + } +} + +// udpFlowKey represents the key for a UDP flow. +type udpFlowKey struct { + srcAddr, dstAddr [16]byte + srcPort, dstPort uint16 + isV6 bool +} + +// udpGROTable holds flow and coalescing information for the purposes of UDP GRO. +type udpGROTable struct { + itemsByFlow map[udpFlowKey][]udpGROItem + itemsPool [][]udpGROItem +} + +func newUDPGROTable() *udpGROTable { + u := &udpGROTable{ + itemsByFlow: make(map[udpFlowKey][]udpGROItem, conn.IdealBatchSize), + itemsPool: make([][]udpGROItem, conn.IdealBatchSize), + } + for i := range u.itemsPool { + u.itemsPool[i] = make([]udpGROItem, 0, conn.IdealBatchSize) + } + return u +} + +func newUDPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset int) udpFlowKey { + key := udpFlowKey{} + addrSize := dstAddrOffset - srcAddrOffset + copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset]) + copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize]) + key.srcPort = binary.BigEndian.Uint16(pkt[udphOffset:]) + key.dstPort = binary.BigEndian.Uint16(pkt[udphOffset+2:]) + key.isV6 = addrSize == 16 + return key +} + +// lookupOrInsert looks up a flow for the provided packet and metadata, +// returning the packets found for the flow, or inserting a new one if none +// is found. +func (u *udpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int) ([]udpGROItem, bool) { + key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset) + items, ok := u.itemsByFlow[key] + if ok { + return items, ok + } + // TODO: insert() performs another map lookup. This could be rearranged to avoid. + u.insert(pkt, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex, false) + return nil, false +} + +// insert an item in the table for the provided packet and packet metadata. +func (u *udpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int, cSumKnownInvalid bool) { + key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset) + item := udpGROItem{ + key: key, + bufsIndex: uint16(bufsIndex), + gsoSize: uint16(len(pkt[udphOffset+udphLen:])), + iphLen: uint8(udphOffset), + cSumKnownInvalid: cSumKnownInvalid, + } + items, ok := u.itemsByFlow[key] + if !ok { + items = u.newItems() + } + items = append(items, item) + u.itemsByFlow[key] = items +} + +func (u *udpGROTable) updateAt(item udpGROItem, i int) { + items, _ := u.itemsByFlow[item.key] + items[i] = item +} + +// udpGROItem represents bookkeeping data for a UDP packet during the lifetime +// of a GRO evaluation across a vector of packets. +type udpGROItem struct { + key udpFlowKey + bufsIndex uint16 // the index into the original bufs slice + numMerged uint16 // the number of packets merged into this item + gsoSize uint16 // payload size + iphLen uint8 // ip header len + cSumKnownInvalid bool // UDP header checksum validity; a false value DOES NOT imply valid, just unknown. +} + +func (u *udpGROTable) newItems() []udpGROItem { + var items []udpGROItem + items, u.itemsPool = u.itemsPool[len(u.itemsPool)-1], u.itemsPool[:len(u.itemsPool)-1] + return items +} + +func (u *udpGROTable) reset() { + for k, items := range u.itemsByFlow { + items = items[:0] + u.itemsPool = append(u.itemsPool, items) + delete(u.itemsByFlow, k) + } +} + +// canCoalesce represents the outcome of checking if two TCP packets are +// candidates for coalescing. +type canCoalesce int + +const ( + coalescePrepend canCoalesce = -1 + coalesceUnavailable canCoalesce = 0 + coalesceAppend canCoalesce = 1 +) + +// ipHeadersCanCoalesce returns true if the IP headers found in pktA and pktB +// meet all requirements to be merged as part of a GRO operation, otherwise it +// returns false. +func ipHeadersCanCoalesce(pktA, pktB []byte) bool { + if len(pktA) < 9 || len(pktB) < 9 { + return false + } + if pktA[0]>>4 == 6 { + if pktA[0] != pktB[0] || pktA[1]>>4 != pktB[1]>>4 { + // cannot coalesce with unequal Traffic class values + return false + } + if pktA[7] != pktB[7] { + // cannot coalesce with unequal Hop limit values + return false + } + } else { + if pktA[1] != pktB[1] { + // cannot coalesce with unequal ToS values + return false + } + if pktA[6]>>5 != pktB[6]>>5 { + // cannot coalesce with unequal DF or reserved bits. MF is checked + // further up the stack. + return false + } + if pktA[8] != pktB[8] { + // cannot coalesce with unequal TTL values + return false + } + } + return true +} + +// udpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet +// described by item. iphLen and gsoSize describe pkt. bufs is the vector of +// packets involved in the current GRO evaluation. bufsOffset is the offset at +// which packet data begins within bufs. +func udpPacketsCanCoalesce(pkt []byte, iphLen uint8, gsoSize uint16, item udpGROItem, bufs [][]byte, bufsOffset int) canCoalesce { + pktTarget := bufs[item.bufsIndex][bufsOffset:] + if !ipHeadersCanCoalesce(pkt, pktTarget) { + return coalesceUnavailable + } + if len(pktTarget[iphLen+udphLen:])%int(item.gsoSize) != 0 { + // A smaller than gsoSize packet has been appended previously. + // Nothing can come after a smaller packet on the end. + return coalesceUnavailable + } + if gsoSize > item.gsoSize { + // We cannot have a larger packet following a smaller one. + return coalesceUnavailable + } + return coalesceAppend +} + +// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet +// described by item. This function makes considerations that match the kernel's +// GRO self tests, which can be found in tools/testing/selftests/net/gro.c. +func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce { + pktTarget := bufs[item.bufsIndex][bufsOffset:] + if tcphLen != item.tcphLen { + // cannot coalesce with unequal tcp options len + return coalesceUnavailable + } + if tcphLen > 20 { + if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) { + // cannot coalesce with unequal tcp options + return coalesceUnavailable + } + } + if !ipHeadersCanCoalesce(pkt, pktTarget) { + return coalesceUnavailable + } + // seq adjacency + lhsLen := item.gsoSize + lhsLen += item.numMerged * item.gsoSize + if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective + if item.pshSet { + // We cannot append to a segment that has the PSH flag set, PSH + // can only be set on the final segment in a reassembled group. + return coalesceUnavailable + } + if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 { + // A smaller than gsoSize packet has been appended previously. + // Nothing can come after a smaller packet on the end. + return coalesceUnavailable + } + if gsoSize > item.gsoSize { + // We cannot have a larger packet following a smaller one. + return coalesceUnavailable + } + return coalesceAppend + } else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective + if pshSet { + // We cannot prepend with a segment that has the PSH flag set, PSH + // can only be set on the final segment in a reassembled group. + return coalesceUnavailable + } + if gsoSize < item.gsoSize { + // We cannot have a larger packet following a smaller one. + return coalesceUnavailable + } + if gsoSize > item.gsoSize && item.numMerged > 0 { + // There's at least one previous merge, and we're larger than all + // previous. This would put multiple smaller packets on the end. + return coalesceUnavailable + } + return coalescePrepend + } + return coalesceUnavailable +} + +func checksumValid(pkt []byte, iphLen, proto uint8, isV6 bool) bool { + srcAddrAt := ipv4SrcAddrOffset + addrSize := 4 + if isV6 { + srcAddrAt = ipv6SrcAddrOffset + addrSize = 16 + } + lenForPseudo := uint16(len(pkt) - int(iphLen)) + cSum := pseudoHeaderChecksumNoFold(proto, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], lenForPseudo) + return ^checksum(pkt[iphLen:], cSum) == 0 +} + +// coalesceResult represents the result of attempting to coalesce two TCP +// packets. +type coalesceResult int + +const ( + coalesceInsufficientCap coalesceResult = iota + coalescePSHEnding + coalesceItemInvalidCSum + coalescePktInvalidCSum + coalesceSuccess +) + +// coalesceUDPPackets attempts to coalesce pkt with the packet described by +// item, and returns the outcome. +func coalesceUDPPackets(pkt []byte, item *udpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult { + pktHead := bufs[item.bufsIndex][bufsOffset:] // the packet that will end up at the front + headersLen := item.iphLen + udphLen + coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen) + + if cap(pktHead)-bufsOffset < coalescedLen { + // We don't want to allocate a new underlying array if capacity is + // too small. + return coalesceInsufficientCap + } + if item.numMerged == 0 { + if item.cSumKnownInvalid || !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_UDP, isV6) { + return coalesceItemInvalidCSum + } + } + if !checksumValid(pkt, item.iphLen, unix.IPPROTO_UDP, isV6) { + return coalescePktInvalidCSum + } + extendBy := len(pkt) - int(headersLen) + bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...) + copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:]) + + item.numMerged++ + return coalesceSuccess +} + +// coalesceTCPPackets attempts to coalesce pkt with the packet described by +// item, and returns the outcome. This function may swap bufs elements in the +// event of a prepend as item's bufs index is already being tracked for writing +// to a Device. +func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult { + var pktHead []byte // the packet that will end up at the front + headersLen := item.iphLen + item.tcphLen + coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen) + + // Copy data + if mode == coalescePrepend { + pktHead = pkt + if cap(pkt)-bufsOffset < coalescedLen { + // We don't want to allocate a new underlying array if capacity is + // too small. + return coalesceInsufficientCap + } + if pshSet { + return coalescePSHEnding + } + if item.numMerged == 0 { + if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) { + return coalesceItemInvalidCSum + } + } + if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) { + return coalescePktInvalidCSum + } + item.sentSeq = seq + extendBy := coalescedLen - len(pktHead) + bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...) + copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):]) + // Flip the slice headers in bufs as part of prepend. The index of item + // is already being tracked for writing. + bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex] + } else { + pktHead = bufs[item.bufsIndex][bufsOffset:] + if cap(pktHead)-bufsOffset < coalescedLen { + // We don't want to allocate a new underlying array if capacity is + // too small. + return coalesceInsufficientCap + } + if item.numMerged == 0 { + if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) { + return coalesceItemInvalidCSum + } + } + if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) { + return coalescePktInvalidCSum + } + if pshSet { + // We are appending a segment with PSH set. + item.pshSet = pshSet + pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH + } + extendBy := len(pkt) - int(headersLen) + bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...) + copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:]) + } + + if gsoSize > item.gsoSize { + item.gsoSize = gsoSize + } + + item.numMerged++ + return coalesceSuccess +} + +const ( + ipv4FlagMoreFragments uint8 = 0x20 +) + +const ( + ipv4SrcAddrOffset = 12 + ipv6SrcAddrOffset = 8 + maxUint16 = 1<<16 - 1 +) + +type groResult int + +const ( + groResultNoop groResult = iota + groResultTableInsert + groResultCoalesced +) + +// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with +// existing packets tracked in table. It returns a groResultNoop when no +// action was taken, groResultTableInsert when the evaluated packet was +// inserted into table, and groResultCoalesced when the evaluated packet was +// coalesced with another packet in table. +func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) groResult { + pkt := bufs[pktI][offset:] + if len(pkt) > maxUint16 { + // A valid IPv4 or IPv6 packet will never exceed this. + return groResultNoop + } + iphLen := int((pkt[0] & 0x0F) * 4) + if isV6 { + iphLen = 40 + ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:])) + if ipv6HPayloadLen != len(pkt)-iphLen { + return groResultNoop + } + } else { + totalLen := int(binary.BigEndian.Uint16(pkt[2:])) + if totalLen != len(pkt) { + return groResultNoop + } + } + if len(pkt) < iphLen { + return groResultNoop + } + tcphLen := int((pkt[iphLen+12] >> 4) * 4) + if tcphLen < 20 || tcphLen > 60 { + return groResultNoop + } + if len(pkt) < iphLen+tcphLen { + return groResultNoop + } + if !isV6 { + if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 { + // no GRO support for fragmented segments for now + return groResultNoop + } + } + tcpFlags := pkt[iphLen+tcpFlagsOffset] + var pshSet bool + // not a candidate if any non-ACK flags (except PSH+ACK) are set + if tcpFlags != tcpFlagACK { + if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH { + return groResultNoop + } + pshSet = true + } + gsoSize := uint16(len(pkt) - tcphLen - iphLen) + // not a candidate if payload len is 0 + if gsoSize < 1 { + return groResultNoop + } + seq := binary.BigEndian.Uint32(pkt[iphLen+4:]) + srcAddrOffset := ipv4SrcAddrOffset + addrLen := 4 + if isV6 { + srcAddrOffset = ipv6SrcAddrOffset + addrLen = 16 + } + items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI) + if !existing { + return groResultTableInsert + } + for i := len(items) - 1; i >= 0; i-- { + // In the best case of packets arriving in order iterating in reverse is + // more efficient if there are multiple items for a given flow. This + // also enables a natural table.deleteAt() in the + // coalesceItemInvalidCSum case without the need for index tracking. + // This algorithm makes a best effort to coalesce in the event of + // unordered packets, where pkt may land anywhere in items from a + // sequence number perspective, however once an item is inserted into + // the table it is never compared across other items later. + item := items[i] + can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset) + if can != coalesceUnavailable { + result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6) + switch result { + case coalesceSuccess: + table.updateAt(item, i) + return groResultCoalesced + case coalesceItemInvalidCSum: + // delete the item with an invalid csum + table.deleteAt(item.key, i) + case coalescePktInvalidCSum: + // no point in inserting an item that we can't coalesce + return groResultNoop + default: + } + } + } + // failed to coalesce with any other packets; store the item in the flow + table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI) + return groResultTableInsert +} + +// applyTCPCoalesceAccounting updates bufs to account for coalescing based on the +// metadata found in table. +func applyTCPCoalesceAccounting(bufs [][]byte, offset int, table *tcpGROTable) error { + for _, items := range table.itemsByFlow { + for _, item := range items { + if item.numMerged > 0 { + hdr := virtioNetHdr{ + flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb + hdrLen: uint16(item.iphLen + item.tcphLen), + gsoSize: item.gsoSize, + csumStart: uint16(item.iphLen), + csumOffset: 16, + } + pkt := bufs[item.bufsIndex][offset:] + + // Recalculate the total len (IPv4) or payload len (IPv6). + // Recalculate the (IPv4) header checksum. + if item.key.isV6 { + hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6 + binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len + } else { + hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4 + pkt[10], pkt[11] = 0, 0 + binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length + iphCSum := ^checksum(pkt[:item.iphLen], 0) // compute IPv4 header checksum + binary.BigEndian.PutUint16(pkt[10:], iphCSum) // set IPv4 header checksum field + } + err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:]) + if err != nil { + return err + } + + // Calculate the pseudo header checksum and place it at the TCP + // checksum offset. Downstream checksum offloading will combine + // this with computation of the tcp header and payload checksum. + addrLen := 4 + addrOffset := ipv4SrcAddrOffset + if item.key.isV6 { + addrLen = 16 + addrOffset = ipv6SrcAddrOffset + } + srcAddrAt := offset + addrOffset + srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen] + dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2] + psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen))) + binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum)) + } else { + hdr := virtioNetHdr{} + err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:]) + if err != nil { + return err + } + } + } + } + return nil +} + +// applyUDPCoalesceAccounting updates bufs to account for coalescing based on the +// metadata found in table. +func applyUDPCoalesceAccounting(bufs [][]byte, offset int, table *udpGROTable) error { + for _, items := range table.itemsByFlow { + for _, item := range items { + if item.numMerged > 0 { + hdr := virtioNetHdr{ + flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb + hdrLen: uint16(item.iphLen + udphLen), + gsoSize: item.gsoSize, + csumStart: uint16(item.iphLen), + csumOffset: 6, + } + pkt := bufs[item.bufsIndex][offset:] + + // Recalculate the total len (IPv4) or payload len (IPv6). + // Recalculate the (IPv4) header checksum. + hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_UDP_L4 + if item.key.isV6 { + binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len + } else { + pkt[10], pkt[11] = 0, 0 + binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length + iphCSum := ^checksum(pkt[:item.iphLen], 0) // compute IPv4 header checksum + binary.BigEndian.PutUint16(pkt[10:], iphCSum) // set IPv4 header checksum field + } + err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:]) + if err != nil { + return err + } + + // Recalculate the UDP len field value + binary.BigEndian.PutUint16(pkt[item.iphLen+4:], uint16(len(pkt[item.iphLen:]))) + + // Calculate the pseudo header checksum and place it at the UDP + // checksum offset. Downstream checksum offloading will combine + // this with computation of the udp header and payload checksum. + addrLen := 4 + addrOffset := ipv4SrcAddrOffset + if item.key.isV6 { + addrLen = 16 + addrOffset = ipv6SrcAddrOffset + } + srcAddrAt := offset + addrOffset + srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen] + dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2] + psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_UDP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen))) + binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum)) + } else { + hdr := virtioNetHdr{} + err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:]) + if err != nil { + return err + } + } + } + } + return nil +} + +type groCandidateType uint8 + +const ( + notGROCandidate groCandidateType = iota + tcp4GROCandidate + tcp6GROCandidate + udp4GROCandidate + udp6GROCandidate +) + +func packetIsGROCandidate(b []byte, canUDPGRO bool) groCandidateType { + if len(b) < 28 { + return notGROCandidate + } + if b[0]>>4 == 4 { + if b[0]&0x0F != 5 { + // IPv4 packets w/IP options do not coalesce + return notGROCandidate + } + if b[9] == unix.IPPROTO_TCP && len(b) >= 40 { + return tcp4GROCandidate + } + if b[9] == unix.IPPROTO_UDP && canUDPGRO { + return udp4GROCandidate + } + } else if b[0]>>4 == 6 { + if b[6] == unix.IPPROTO_TCP && len(b) >= 60 { + return tcp6GROCandidate + } + if b[6] == unix.IPPROTO_UDP && len(b) >= 48 && canUDPGRO { + return udp6GROCandidate + } + } + return notGROCandidate +} + +const ( + udphLen = 8 +) + +// udpGRO evaluates the UDP packet at pktI in bufs for coalescing with +// existing packets tracked in table. It returns a groResultNoop when no +// action was taken, groResultTableInsert when the evaluated packet was +// inserted into table, and groResultCoalesced when the evaluated packet was +// coalesced with another packet in table. +func udpGRO(bufs [][]byte, offset int, pktI int, table *udpGROTable, isV6 bool) groResult { + pkt := bufs[pktI][offset:] + if len(pkt) > maxUint16 { + // A valid IPv4 or IPv6 packet will never exceed this. + return groResultNoop + } + iphLen := int((pkt[0] & 0x0F) * 4) + if isV6 { + iphLen = 40 + ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:])) + if ipv6HPayloadLen != len(pkt)-iphLen { + return groResultNoop + } + } else { + totalLen := int(binary.BigEndian.Uint16(pkt[2:])) + if totalLen != len(pkt) { + return groResultNoop + } + } + if len(pkt) < iphLen { + return groResultNoop + } + if len(pkt) < iphLen+udphLen { + return groResultNoop + } + if !isV6 { + if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 { + // no GRO support for fragmented segments for now + return groResultNoop + } + } + gsoSize := uint16(len(pkt) - udphLen - iphLen) + // not a candidate if payload len is 0 + if gsoSize < 1 { + return groResultNoop + } + srcAddrOffset := ipv4SrcAddrOffset + addrLen := 4 + if isV6 { + srcAddrOffset = ipv6SrcAddrOffset + addrLen = 16 + } + items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI) + if !existing { + return groResultTableInsert + } + // With UDP we only check the last item, otherwise we could reorder packets + // for a given flow. We must also always insert a new item, or successfully + // coalesce with an existing item, for the same reason. + item := items[len(items)-1] + can := udpPacketsCanCoalesce(pkt, uint8(iphLen), gsoSize, item, bufs, offset) + var pktCSumKnownInvalid bool + if can == coalesceAppend { + result := coalesceUDPPackets(pkt, &item, bufs, offset, isV6) + switch result { + case coalesceSuccess: + table.updateAt(item, len(items)-1) + return groResultCoalesced + case coalesceItemInvalidCSum: + // If the existing item has an invalid csum we take no action. A new + // item will be stored after it, and the existing item will never be + // revisited as part of future coalescing candidacy checks. + case coalescePktInvalidCSum: + // We must insert a new item, but we also mark it as invalid csum + // to prevent a repeat checksum validation. + pktCSumKnownInvalid = true + default: + } + } + // failed to coalesce with any other packets; store the item in the flow + table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI, pktCSumKnownInvalid) + return groResultTableInsert +} + +// handleGRO evaluates bufs for GRO, and writes the indices of the resulting +// packets into toWrite. toWrite, tcpTable, and udpTable should initially be +// empty (but non-nil), and are passed in to save allocs as the caller may reset +// and recycle them across vectors of packets. canUDPGRO indicates if UDP GRO is +// supported. +func handleGRO(bufs [][]byte, offset int, tcpTable *tcpGROTable, udpTable *udpGROTable, canUDPGRO bool, toWrite *[]int) error { + for i := range bufs { + if offset < virtioNetHdrLen || offset > len(bufs[i])-1 { + return errors.New("invalid offset") + } + var result groResult + switch packetIsGROCandidate(bufs[i][offset:], canUDPGRO) { + case tcp4GROCandidate: + result = tcpGRO(bufs, offset, i, tcpTable, false) + case tcp6GROCandidate: + result = tcpGRO(bufs, offset, i, tcpTable, true) + case udp4GROCandidate: + result = udpGRO(bufs, offset, i, udpTable, false) + case udp6GROCandidate: + result = udpGRO(bufs, offset, i, udpTable, true) + } + switch result { + case groResultNoop: + hdr := virtioNetHdr{} + err := hdr.encode(bufs[i][offset-virtioNetHdrLen:]) + if err != nil { + return err + } + fallthrough + case groResultTableInsert: + *toWrite = append(*toWrite, i) + } + } + errTCP := applyTCPCoalesceAccounting(bufs, offset, tcpTable) + errUDP := applyUDPCoalesceAccounting(bufs, offset, udpTable) + return errors.Join(errTCP, errUDP) +} + +// gsoSplit splits packets from in into outBuffs, writing the size of each +// element into sizes. It returns the number of buffers populated, and/or an +// error. +func gsoSplit(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int, isV6 bool) (int, error) { + iphLen := int(hdr.csumStart) + srcAddrOffset := ipv6SrcAddrOffset + addrLen := 16 + if !isV6 { + in[10], in[11] = 0, 0 // clear ipv4 header checksum + srcAddrOffset = ipv4SrcAddrOffset + addrLen = 4 + } + transportCsumAt := int(hdr.csumStart + hdr.csumOffset) + in[transportCsumAt], in[transportCsumAt+1] = 0, 0 // clear tcp/udp checksum + var firstTCPSeqNum uint32 + var protocol uint8 + if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 || hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV6 { + protocol = unix.IPPROTO_TCP + firstTCPSeqNum = binary.BigEndian.Uint32(in[hdr.csumStart+4:]) + } else { + protocol = unix.IPPROTO_UDP + } + nextSegmentDataAt := int(hdr.hdrLen) + i := 0 + for ; nextSegmentDataAt < len(in); i++ { + if i == len(outBuffs) { + return i - 1, ErrTooManySegments + } + nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize) + if nextSegmentEnd > len(in) { + nextSegmentEnd = len(in) + } + segmentDataLen := nextSegmentEnd - nextSegmentDataAt + totalLen := int(hdr.hdrLen) + segmentDataLen + sizes[i] = totalLen + out := outBuffs[i][outOffset:] + + copy(out, in[:iphLen]) + if !isV6 { + // For IPv4 we are responsible for incrementing the ID field, + // updating the total len field, and recalculating the header + // checksum. + if i > 0 { + id := binary.BigEndian.Uint16(out[4:]) + id += uint16(i) + binary.BigEndian.PutUint16(out[4:], id) + } + binary.BigEndian.PutUint16(out[2:], uint16(totalLen)) + ipv4CSum := ^checksum(out[:iphLen], 0) + binary.BigEndian.PutUint16(out[10:], ipv4CSum) + } else { + // For IPv6 we are responsible for updating the payload length field. + binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen)) + } + + // copy transport header + copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen]) + + if protocol == unix.IPPROTO_TCP { + // set TCP seq and adjust TCP flags + tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i)) + binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq) + if nextSegmentEnd != len(in) { + // FIN and PSH should only be set on last segment + clearFlags := tcpFlagFIN | tcpFlagPSH + out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags + } + } else { + // set UDP header len + binary.BigEndian.PutUint16(out[hdr.csumStart+4:], uint16(segmentDataLen)+(hdr.hdrLen-hdr.csumStart)) + } + + // payload + copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd]) + + // transport checksum + transportHeaderLen := int(hdr.hdrLen - hdr.csumStart) + lenForPseudo := uint16(transportHeaderLen + segmentDataLen) + transportCSumNoFold := pseudoHeaderChecksumNoFold(protocol, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], lenForPseudo) + transportCSum := ^checksum(out[hdr.csumStart:totalLen], transportCSumNoFold) + binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], transportCSum) + + nextSegmentDataAt += int(hdr.gsoSize) + } + return i, nil +} + +func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error { + cSumAt := cSumStart + cSumOffset + // The initial value at the checksum offset should be summed with the + // checksum we compute. This is typically the pseudo-header checksum. + initial := binary.BigEndian.Uint16(in[cSumAt:]) + in[cSumAt], in[cSumAt+1] = 0, 0 + binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial))) + return nil +} |