From a03ad51622d338d1c116aa8cae3c0effb1b7bcf2 Mon Sep 17 00:00:00 2001 From: "Jason A. Donenfeld" Date: Thu, 28 Oct 2021 19:10:04 +0200 Subject: tunnel: remove kernel module downloader Nathan Chance dropped the ball repeatedly and never maintained this in a consistent way that anybody could use. With Android 12 out now, just drop it all together. A bummer, but I don't see much of a choice. Signed-off-by: Jason A. Donenfeld --- .../main/java/com/wireguard/crypto/Ed25519.java | 2508 -------------------- 1 file changed, 2508 deletions(-) delete mode 100644 tunnel/src/main/java/com/wireguard/crypto/Ed25519.java (limited to 'tunnel/src/main/java/com/wireguard/crypto') diff --git a/tunnel/src/main/java/com/wireguard/crypto/Ed25519.java b/tunnel/src/main/java/com/wireguard/crypto/Ed25519.java deleted file mode 100644 index a60babfb..00000000 --- a/tunnel/src/main/java/com/wireguard/crypto/Ed25519.java +++ /dev/null @@ -1,2508 +0,0 @@ -/* - * Copyright © 2020 WireGuard LLC. All Rights Reserved. - * Copyright 2017 Google Inc. - * - * SPDX-License-Identifier: Apache-2.0 - */ - -package com.wireguard.crypto; - -import java.math.BigInteger; -import java.security.GeneralSecurityException; -import java.security.MessageDigest; -import java.util.Arrays; - -/** - * Implementation of Ed25519 signature verification. - * - *

This implementation is based on the ed25519/ref10 implementation in NaCl.

- * - *

It implements this twisted Edwards curve: - * - *

- * -x^2 + y^2 = 1 + (-121665 / 121666 mod 2^255-19)*x^2*y^2
- * 
- * - * @see Bernstein D.J., Birkner P., Joye M., Lange - * T., Peters C. (2008) Twisted Edwards Curves - * @see Hisil H., Wong K.KH., Carter G., Dawson E. - * (2008) Twisted Edwards Curves Revisited - */ -public final class Ed25519 { - - // d = -121665 / 121666 mod 2^255-19 - private static final long[] D; - // 2d - private static final long[] D2; - // 2^((p-1)/4) mod p where p = 2^255-19 - private static final long[] SQRTM1; - - /** - * Base point for the Edwards twisted curve = (x, 4/5) and its exponentiations. B_TABLE[i][j] = - * (j+1)*256^i*B for i in [0, 32) and j in [0, 8). Base point B = B_TABLE[0][0] - */ - private static final CachedXYT[][] B_TABLE; - private static final CachedXYT[] B2; - - private static final BigInteger P_BI = - BigInteger.valueOf(2).pow(255).subtract(BigInteger.valueOf(19)); - private static final BigInteger D_BI = - BigInteger.valueOf(-121665).multiply(BigInteger.valueOf(121666).modInverse(P_BI)).mod(P_BI); - private static final BigInteger D2_BI = BigInteger.valueOf(2).multiply(D_BI).mod(P_BI); - private static final BigInteger SQRTM1_BI = - BigInteger.valueOf(2).modPow(P_BI.subtract(BigInteger.ONE).divide(BigInteger.valueOf(4)), P_BI); - - private Ed25519() { - } - - private static class Point { - private BigInteger x; - private BigInteger y; - } - - private static BigInteger recoverX(BigInteger y) { - // x^2 = (y^2 - 1) / (d * y^2 + 1) mod 2^255-19 - BigInteger xx = - y.pow(2) - .subtract(BigInteger.ONE) - .multiply(D_BI.multiply(y.pow(2)).add(BigInteger.ONE).modInverse(P_BI)); - BigInteger x = xx.modPow(P_BI.add(BigInteger.valueOf(3)).divide(BigInteger.valueOf(8)), P_BI); - if (!x.pow(2).subtract(xx).mod(P_BI).equals(BigInteger.ZERO)) { - x = x.multiply(SQRTM1_BI).mod(P_BI); - } - if (x.testBit(0)) { - x = P_BI.subtract(x); - } - return x; - } - - private static Point edwards(Point a, Point b) { - Point o = new Point(); - BigInteger xxyy = D_BI.multiply(a.x.multiply(b.x).multiply(a.y).multiply(b.y)).mod(P_BI); - o.x = - (a.x.multiply(b.y).add(b.x.multiply(a.y))) - .multiply(BigInteger.ONE.add(xxyy).modInverse(P_BI)) - .mod(P_BI); - o.y = - (a.y.multiply(b.y).add(a.x.multiply(b.x))) - .multiply(BigInteger.ONE.subtract(xxyy).modInverse(P_BI)) - .mod(P_BI); - return o; - } - - private static byte[] toLittleEndian(BigInteger n) { - byte[] b = new byte[32]; - byte[] nBytes = n.toByteArray(); - System.arraycopy(nBytes, 0, b, 32 - nBytes.length, nBytes.length); - for (int i = 0; i < b.length / 2; i++) { - byte t = b[i]; - b[i] = b[b.length - i - 1]; - b[b.length - i - 1] = t; - } - return b; - } - - private static CachedXYT getCachedXYT(Point p) { - return new CachedXYT( - Field25519.expand(toLittleEndian(p.y.add(p.x).mod(P_BI))), - Field25519.expand(toLittleEndian(p.y.subtract(p.x).mod(P_BI))), - Field25519.expand(toLittleEndian(D2_BI.multiply(p.x).multiply(p.y).mod(P_BI)))); - } - - static { - Point b = new Point(); - b.y = BigInteger.valueOf(4).multiply(BigInteger.valueOf(5).modInverse(P_BI)).mod(P_BI); - b.x = recoverX(b.y); - - D = Field25519.expand(toLittleEndian(D_BI)); - D2 = Field25519.expand(toLittleEndian(D2_BI)); - SQRTM1 = Field25519.expand(toLittleEndian(SQRTM1_BI)); - - Point bi = b; - B_TABLE = new CachedXYT[32][8]; - for (int i = 0; i < 32; i++) { - Point bij = bi; - for (int j = 0; j < 8; j++) { - B_TABLE[i][j] = getCachedXYT(bij); - bij = edwards(bij, bi); - } - for (int j = 0; j < 8; j++) { - bi = edwards(bi, bi); - } - } - bi = b; - Point b2 = edwards(b, b); - B2 = new CachedXYT[8]; - for (int i = 0; i < 8; i++) { - B2[i] = getCachedXYT(bi); - bi = edwards(bi, b2); - } - } - - private static final int PUBLIC_KEY_LEN = Field25519.FIELD_LEN; - private static final int SIGNATURE_LEN = Field25519.FIELD_LEN * 2; - - /** - * Defines field 25519 function based on curve25519-donna C - * implementation (mostly identical). - * - *

Field elements are written as an array of signed, 64-bit limbs (an array of longs), least - * significant first. The value of the field element is: - * - *

-     * x[0] + 2^26·x[1] + 2^51·x[2] + 2^77·x[3] + 2^102·x[4] + 2^128·x[5] + 2^153·x[6] + 2^179·x[7] +
-     * 2^204·x[8] + 2^230·x[9],
-     * 
- * - *

i.e. the limbs are 26, 25, 26, 25, ... bits wide. - */ - private static final class Field25519 { - /** - * During Field25519 computation, the mixed radix representation may be in different forms: - *

- *

- * TODO(quannguyen): - *

- */ - - static final int FIELD_LEN = 32; - static final int LIMB_CNT = 10; - private static final long TWO_TO_25 = 1 << 25; - private static final long TWO_TO_26 = TWO_TO_25 << 1; - - private static final int[] EXPAND_START = {0, 3, 6, 9, 12, 16, 19, 22, 25, 28}; - private static final int[] EXPAND_SHIFT = {0, 2, 3, 5, 6, 0, 1, 3, 4, 6}; - private static final int[] MASK = {0x3ffffff, 0x1ffffff}; - private static final int[] SHIFT = {26, 25}; - - /** - * Sums two numbers: output = in1 + in2 - *

- * On entry: in1, in2 are in reduced-size form. - */ - static void sum(long[] output, long[] in1, long[] in2) { - for (int i = 0; i < LIMB_CNT; i++) { - output[i] = in1[i] + in2[i]; - } - } - - /** - * Sums two numbers: output += in - *

- * On entry: in is in reduced-size form. - */ - static void sum(long[] output, long[] in) { - sum(output, output, in); - } - - /** - * Find the difference of two numbers: output = in1 - in2 - * (note the order of the arguments!). - *

- * On entry: in1, in2 are in reduced-size form. - */ - static void sub(long[] output, long[] in1, long[] in2) { - for (int i = 0; i < LIMB_CNT; i++) { - output[i] = in1[i] - in2[i]; - } - } - - /** - * Find the difference of two numbers: output = in - output - * (note the order of the arguments!). - *

- * On entry: in, output are in reduced-size form. - */ - static void sub(long[] output, long[] in) { - sub(output, in, output); - } - - /** - * Multiply a number by a scalar: output = in * scalar - */ - static void scalarProduct(long[] output, long[] in, long scalar) { - for (int i = 0; i < LIMB_CNT; i++) { - output[i] = in[i] * scalar; - } - } - - /** - * Multiply two numbers: out = in2 * in - *

- * output must be distinct to both inputs. The inputs are reduced coefficient form, - * the output is not. - *

- * out[x] <= 14 * the largest product of the input limbs. - */ - static void product(long[] out, long[] in2, long[] in) { - out[0] = in2[0] * in[0]; - out[1] = in2[0] * in[1] - + in2[1] * in[0]; - out[2] = 2 * in2[1] * in[1] - + in2[0] * in[2] - + in2[2] * in[0]; - out[3] = in2[1] * in[2] - + in2[2] * in[1] - + in2[0] * in[3] - + in2[3] * in[0]; - out[4] = in2[2] * in[2] - + 2 * (in2[1] * in[3] + in2[3] * in[1]) - + in2[0] * in[4] - + in2[4] * in[0]; - out[5] = in2[2] * in[3] - + in2[3] * in[2] - + in2[1] * in[4] - + in2[4] * in[1] - + in2[0] * in[5] - + in2[5] * in[0]; - out[6] = 2 * (in2[3] * in[3] + in2[1] * in[5] + in2[5] * in[1]) - + in2[2] * in[4] - + in2[4] * in[2] - + in2[0] * in[6] - + in2[6] * in[0]; - out[7] = in2[3] * in[4] - + in2[4] * in[3] - + in2[2] * in[5] - + in2[5] * in[2] - + in2[1] * in[6] - + in2[6] * in[1] - + in2[0] * in[7] - + in2[7] * in[0]; - out[8] = in2[4] * in[4] - + 2 * (in2[3] * in[5] + in2[5] * in[3] + in2[1] * in[7] + in2[7] * in[1]) - + in2[2] * in[6] - + in2[6] * in[2] - + in2[0] * in[8] - + in2[8] * in[0]; - out[9] = in2[4] * in[5] - + in2[5] * in[4] - + in2[3] * in[6] - + in2[6] * in[3] - + in2[2] * in[7] - + in2[7] * in[2] - + in2[1] * in[8] - + in2[8] * in[1] - + in2[0] * in[9] - + in2[9] * in[0]; - out[10] = - 2 * (in2[5] * in[5] + in2[3] * in[7] + in2[7] * in[3] + in2[1] * in[9] + in2[9] * in[1]) - + in2[4] * in[6] - + in2[6] * in[4] - + in2[2] * in[8] - + in2[8] * in[2]; - out[11] = in2[5] * in[6] - + in2[6] * in[5] - + in2[4] * in[7] - + in2[7] * in[4] - + in2[3] * in[8] - + in2[8] * in[3] - + in2[2] * in[9] - + in2[9] * in[2]; - out[12] = in2[6] * in[6] - + 2 * (in2[5] * in[7] + in2[7] * in[5] + in2[3] * in[9] + in2[9] * in[3]) - + in2[4] * in[8] - + in2[8] * in[4]; - out[13] = in2[6] * in[7] - + in2[7] * in[6] - + in2[5] * in[8] - + in2[8] * in[5] - + in2[4] * in[9] - + in2[9] * in[4]; - out[14] = 2 * (in2[7] * in[7] + in2[5] * in[9] + in2[9] * in[5]) - + in2[6] * in[8] - + in2[8] * in[6]; - out[15] = in2[7] * in[8] - + in2[8] * in[7] - + in2[6] * in[9] - + in2[9] * in[6]; - out[16] = in2[8] * in[8] - + 2 * (in2[7] * in[9] + in2[9] * in[7]); - out[17] = in2[8] * in[9] - + in2[9] * in[8]; - out[18] = 2 * in2[9] * in[9]; - } - - /** - * Reduce a field element by calling reduceSizeByModularReduction and reduceCoefficients. - * - * @param input An input array of any length. If the array has 19 elements, it will be used as - * temporary buffer and its contents changed. - * @param output An output array of size LIMB_CNT. After the call |output[i]| < 2^26 will hold. - */ - static void reduce(long[] input, long[] output) { - long[] tmp; - if (input.length == 19) { - tmp = input; - } else { - tmp = new long[19]; - System.arraycopy(input, 0, tmp, 0, input.length); - } - reduceSizeByModularReduction(tmp); - reduceCoefficients(tmp); - System.arraycopy(tmp, 0, output, 0, LIMB_CNT); - } - - /** - * Reduce a long form to a reduced-size form by taking the input mod 2^255 - 19. - *

- * On entry: |output[i]| < 14*2^54 - * On exit: |output[0..8]| < 280*2^54 - */ - static void reduceSizeByModularReduction(long[] output) { - // The coefficients x[10], x[11],..., x[18] are eliminated by reduction modulo 2^255 - 19. - // For example, the coefficient x[18] is multiplied by 19 and added to the coefficient x[8]. - // - // Each of these shifts and adds ends up multiplying the value by 19. - // - // For output[0..8], the absolute entry value is < 14*2^54 and we add, at most, 19*14*2^54 thus, - // on exit, |output[0..8]| < 280*2^54. - output[8] += output[18] << 4; - output[8] += output[18] << 1; - output[8] += output[18]; - output[7] += output[17] << 4; - output[7] += output[17] << 1; - output[7] += output[17]; - output[6] += output[16] << 4; - output[6] += output[16] << 1; - output[6] += output[16]; - output[5] += output[15] << 4; - output[5] += output[15] << 1; - output[5] += output[15]; - output[4] += output[14] << 4; - output[4] += output[14] << 1; - output[4] += output[14]; - output[3] += output[13] << 4; - output[3] += output[13] << 1; - output[3] += output[13]; - output[2] += output[12] << 4; - output[2] += output[12] << 1; - output[2] += output[12]; - output[1] += output[11] << 4; - output[1] += output[11] << 1; - output[1] += output[11]; - output[0] += output[10] << 4; - output[0] += output[10] << 1; - output[0] += output[10]; - } - - /** - * Reduce all coefficients of the short form input so that |x| < 2^26. - *

- * On entry: |output[i]| < 280*2^54 - */ - static void reduceCoefficients(long[] output) { - output[10] = 0; - - for (int i = 0; i < LIMB_CNT; i += 2) { - long over = output[i] / TWO_TO_26; - // The entry condition (that |output[i]| < 280*2^54) means that over is, at most, 280*2^28 in - // the first iteration of this loop. This is added to the next limb and we can approximate the - // resulting bound of that limb by 281*2^54. - output[i] -= over << 26; - output[i + 1] += over; - - // For the first iteration, |output[i+1]| < 281*2^54, thus |over| < 281*2^29. When this is - // added to the next limb, the resulting bound can be approximated as 281*2^54. - // - // For subsequent iterations of the loop, 281*2^54 remains a conservative bound and no - // overflow occurs. - over = output[i + 1] / TWO_TO_25; - output[i + 1] -= over << 25; - output[i + 2] += over; - } - // Now |output[10]| < 281*2^29 and all other coefficients are reduced. - output[0] += output[10] << 4; - output[0] += output[10] << 1; - output[0] += output[10]; - - output[10] = 0; - // Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29 so |over| will be no more - // than 2^16. - long over = output[0] / TWO_TO_26; - output[0] -= over << 26; - output[1] += over; - // Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The bound on - // |output[1]| is sufficient to meet our needs. - } - - /** - * A helpful wrapper around {@ref Field25519#product}: output = in * in2. - *

- * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27. - *

- * The output is reduced degree (indeed, one need only provide storage for 10 limbs) and - * |output[i]| < 2^26. - */ - static void mult(long[] output, long[] in, long[] in2) { - long[] t = new long[19]; - product(t, in, in2); - // |t[i]| < 2^26 - reduce(t, output); - } - - /** - * Square a number: out = in**2 - *

- * output must be distinct from the input. The inputs are reduced coefficient form, the output is - * not. - *

- * out[x] <= 14 * the largest product of the input limbs. - */ - private static void squareInner(long[] out, long[] in) { - out[0] = in[0] * in[0]; - out[1] = 2 * in[0] * in[1]; - out[2] = 2 * (in[1] * in[1] + in[0] * in[2]); - out[3] = 2 * (in[1] * in[2] + in[0] * in[3]); - out[4] = in[2] * in[2] - + 4 * in[1] * in[3] - + 2 * in[0] * in[4]; - out[5] = 2 * (in[2] * in[3] + in[1] * in[4] + in[0] * in[5]); - out[6] = 2 * (in[3] * in[3] + in[2] * in[4] + in[0] * in[6] + 2 * in[1] * in[5]); - out[7] = 2 * (in[3] * in[4] + in[2] * in[5] + in[1] * in[6] + in[0] * in[7]); - out[8] = in[4] * in[4] - + 2 * (in[2] * in[6] + in[0] * in[8] + 2 * (in[1] * in[7] + in[3] * in[5])); - out[9] = 2 * (in[4] * in[5] + in[3] * in[6] + in[2] * in[7] + in[1] * in[8] + in[0] * in[9]); - out[10] = 2 * (in[5] * in[5] - + in[4] * in[6] - + in[2] * in[8] - + 2 * (in[3] * in[7] + in[1] * in[9])); - out[11] = 2 * (in[5] * in[6] + in[4] * in[7] + in[3] * in[8] + in[2] * in[9]); - out[12] = in[6] * in[6] - + 2 * (in[4] * in[8] + 2 * (in[5] * in[7] + in[3] * in[9])); - out[13] = 2 * (in[6] * in[7] + in[5] * in[8] + in[4] * in[9]); - out[14] = 2 * (in[7] * in[7] + in[6] * in[8] + 2 * in[5] * in[9]); - out[15] = 2 * (in[7] * in[8] + in[6] * in[9]); - out[16] = in[8] * in[8] + 4 * in[7] * in[9]; - out[17] = 2 * in[8] * in[9]; - out[18] = 2 * in[9] * in[9]; - } - - /** - * Returns in^2. - *

- * On entry: The |in| argument is in reduced coefficients form and |in[i]| < 2^27. - *

- * On exit: The |output| argument is in reduced coefficients form (indeed, one need only provide - * storage for 10 limbs) and |out[i]| < 2^26. - */ - static void square(long[] output, long[] in) { - long[] t = new long[19]; - squareInner(t, in); - // |t[i]| < 14*2^54 because the largest product of two limbs will be < 2^(27+27) and SquareInner - // adds together, at most, 14 of those products. - reduce(t, output); - } - - /** - * Takes a little-endian, 32-byte number and expands it into mixed radix form. - */ - static long[] expand(byte[] input) { - long[] output = new long[LIMB_CNT]; - for (int i = 0; i < LIMB_CNT; i++) { - output[i] = ((((long) (input[EXPAND_START[i]] & 0xff)) - | ((long) (input[EXPAND_START[i] + 1] & 0xff)) << 8 - | ((long) (input[EXPAND_START[i] + 2] & 0xff)) << 16 - | ((long) (input[EXPAND_START[i] + 3] & 0xff)) << 24) >> EXPAND_SHIFT[i]) & MASK[i & 1]; - } - return output; - } - - /** - * Takes a fully reduced mixed radix form number and contract it into a little-endian, 32-byte - * array. - *

- * On entry: |input_limbs[i]| < 2^26 - */ - @SuppressWarnings("NarrowingCompoundAssignment") - static byte[] contract(long[] inputLimbs) { - long[] input = Arrays.copyOf(inputLimbs, LIMB_CNT); - for (int j = 0; j < 2; j++) { - for (int i = 0; i < 9; i++) { - // This calculation is a time-invariant way to make input[i] non-negative by borrowing - // from the next-larger limb. - int carry = -(int) ((input[i] & (input[i] >> 31)) >> SHIFT[i & 1]); - input[i] = input[i] + (carry << SHIFT[i & 1]); - input[i + 1] -= carry; - } - - // There's no greater limb for input[9] to borrow from, but we can multiply by 19 and borrow - // from input[0], which is valid mod 2^255-19. - { - int carry = -(int) ((input[9] & (input[9] >> 31)) >> 25); - input[9] += (carry << 25); - input[0] -= (carry * 19); - } - - // After the first iteration, input[1..9] are non-negative and fit within 25 or 26 bits, - // depending on position. However, input[0] may be negative. - } - - // The first borrow-propagation pass above ended with every limb except (possibly) input[0] - // non-negative. - // - // If input[0] was negative after the first pass, then it was because of a carry from input[9]. - // On entry, input[9] < 2^26 so the carry was, at most, one, since (2**26-1) >> 25 = 1. Thus - // input[0] >= -19. - // - // In the second pass, each limb is decreased by at most one. Thus the second borrow-propagation - // pass could only have wrapped around to decrease input[0] again if the first pass left - // input[0] negative *and* input[1] through input[9] were all zero. In that case, input[1] is - // now 2^25 - 1, and this last borrow-propagation step will leave input[1] non-negative. - { - int carry = -(int) ((input[0] & (input[0] >> 31)) >> 26); - input[0] += (carry << 26); - input[1] -= carry; - } - - // All input[i] are now non-negative. However, there might be values between 2^25 and 2^26 in a - // limb which is, nominally, 25 bits wide. - for (int j = 0; j < 2; j++) { - for (int i = 0; i < 9; i++) { - int carry = (int) (input[i] >> SHIFT[i & 1]); - input[i] &= MASK[i & 1]; - input[i + 1] += carry; - } - } - - { - int carry = (int) (input[9] >> 25); - input[9] &= 0x1ffffff; - input[0] += 19 * carry; - } - - // If the first carry-chain pass, just above, ended up with a carry from input[9], and that - // caused input[0] to be out-of-bounds, then input[0] was < 2^26 + 2*19, because the carry was, - // at most, two. - // - // If the second pass carried from input[9] again then input[0] is < 2*19 and the input[9] -> - // input[0] carry didn't push input[0] out of bounds. - - // It still remains the case that input might be between 2^255-19 and 2^255. In this case, - // input[1..9] must take their maximum value and input[0] must be >= (2^255-19) & 0x3ffffff, - // which is 0x3ffffed. - int mask = gte((int) input[0], 0x3ffffed); - for (int i = 1; i < LIMB_CNT; i++) { - mask &= eq((int) input[i], MASK[i & 1]); - } - - // mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus this conditionally - // subtracts 2^255-19. - input[0] -= mask & 0x3ffffed; - input[1] -= mask & 0x1ffffff; - for (int i = 2; i < LIMB_CNT; i += 2) { - input[i] -= mask & 0x3ffffff; - input[i + 1] -= mask & 0x1ffffff; - } - - for (int i = 0; i < LIMB_CNT; i++) { - input[i] <<= EXPAND_SHIFT[i]; - } - byte[] output = new byte[FIELD_LEN]; - for (int i = 0; i < LIMB_CNT; i++) { - output[EXPAND_START[i]] |= input[i] & 0xff; - output[EXPAND_START[i] + 1] |= (input[i] >> 8) & 0xff; - output[EXPAND_START[i] + 2] |= (input[i] >> 16) & 0xff; - output[EXPAND_START[i] + 3] |= (input[i] >> 24) & 0xff; - } - return output; - } - - /** - * Computes inverse of z = z(2^255 - 21) - *

- * Shamelessly copied from agl's code which was shamelessly copied from djb's code. Only the - * comment format and the variable namings are different from those. - */ - static void inverse(long[] out, long[] z) { - long[] z2 = new long[Field25519.LIMB_CNT]; - long[] z9 = new long[Field25519.LIMB_CNT]; - long[] z11 = new long[Field25519.LIMB_CNT]; - long[] z2To5Minus1 = new long[Field25519.LIMB_CNT]; - long[] z2To10Minus1 = new long[Field25519.LIMB_CNT]; - long[] z2To20Minus1 = new long[Field25519.LIMB_CNT]; - long[] z2To50Minus1 = new long[Field25519.LIMB_CNT]; - long[] z2To100Minus1 = new long[Field25519.LIMB_CNT]; - long[] t0 = new long[Field25519.LIMB_CNT]; - long[] t1 = new long[Field25519.LIMB_CNT]; - - square(z2, z); // 2 - square(t1, z2); // 4 - square(t0, t1); // 8 - mult(z9, t0, z); // 9 - mult(z11, z9, z2); // 11 - square(t0, z11); // 22 - mult(z2To5Minus1, t0, z9); // 2^5 - 2^0 = 31 - - square(t0, z2To5Minus1); // 2^6 - 2^1 - square(t1, t0); // 2^7 - 2^2 - square(t0, t1); // 2^8 - 2^3 - square(t1, t0); // 2^9 - 2^4 - square(t0, t1); // 2^10 - 2^5 - mult(z2To10Minus1, t0, z2To5Minus1); // 2^10 - 2^0 - - square(t0, z2To10Minus1); // 2^11 - 2^1 - square(t1, t0); // 2^12 - 2^2 - for (int i = 2; i < 10; i += 2) { // 2^20 - 2^10 - square(t0, t1); - square(t1, t0); - } - mult(z2To20Minus1, t1, z2To10Minus1); // 2^20 - 2^0 - - square(t0, z2To20Minus1); // 2^21 - 2^1 - square(t1, t0); // 2^22 - 2^2 - for (int i = 2; i < 20; i += 2) { // 2^40 - 2^20 - square(t0, t1); - square(t1, t0); - } - mult(t0, t1, z2To20Minus1); // 2^40 - 2^0 - - square(t1, t0); // 2^41 - 2^1 - square(t0, t1); // 2^42 - 2^2 - for (int i = 2; i < 10; i += 2) { // 2^50 - 2^10 - square(t1, t0); - square(t0, t1); - } - mult(z2To50Minus1, t0, z2To10Minus1); // 2^50 - 2^0 - - square(t0, z2To50Minus1); // 2^51 - 2^1 - square(t1, t0); // 2^52 - 2^2 - for (int i = 2; i < 50; i += 2) { // 2^100 - 2^50 - square(t0, t1); - square(t1, t0); - } - mult(z2To100Minus1, t1, z2To50Minus1); // 2^100 - 2^0 - - square(t1, z2To100Minus1); // 2^101 - 2^1 - square(t0, t1); // 2^102 - 2^2 - for (int i = 2; i < 100; i += 2) { // 2^200 - 2^100 - square(t1, t0); - square(t0, t1); - } - mult(t1, t0, z2To100Minus1); // 2^200 - 2^0 - - square(t0, t1); // 2^201 - 2^1 - square(t1, t0); // 2^202 - 2^2 - for (int i = 2; i < 50; i += 2) { // 2^250 - 2^50 - square(t0, t1); - square(t1, t0); - } - mult(t0, t1, z2To50Minus1); // 2^250 - 2^0 - - square(t1, t0); // 2^251 - 2^1 - square(t0, t1); // 2^252 - 2^2 - square(t1, t0); // 2^253 - 2^3 - square(t0, t1); // 2^254 - 2^4 - square(t1, t0); // 2^255 - 2^5 - mult(out, t1, z11); // 2^255 - 21 - } - - - /** - * Returns 0xffffffff iff a == b and zero otherwise. - */ - private static int eq(int a, int b) { - a = ~(a ^ b); - a &= a << 16; - a &= a << 8; - a &= a << 4; - a &= a << 2; - a &= a << 1; - return a >> 31; - } - - /** - * returns 0xffffffff if a >= b and zero otherwise, where a and b are both non-negative. - */ - private static int gte(int a, int b) { - a -= b; - // a >= 0 iff a >= b. - return ~(a >> 31); - } - } - - // (x = 0, y = 1) point - private static final CachedXYT CACHED_NEUTRAL = new CachedXYT( - new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, - new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, - new long[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); - private static final PartialXYZT NEUTRAL = new PartialXYZT( - new XYZ(new long[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, - new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, - new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}), - new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}); - - /** - * Projective point representation (X:Y:Z) satisfying x = X/Z, y = Y/Z - *

- * Note that this is referred as ge_p2 in ref10 impl. - * Also note that x = X, y = Y and z = Z below following Java coding style. - *

- * See - * Koyama K., Tsuruoka Y. (1993) Speeding up Elliptic Cryptosystems by Using a Signed Binary - * Window Method. - *

- * https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html - */ - private static class XYZ { - - final long[] x; - final long[] y; - final long[] z; - - XYZ() { - this(new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT]); - } - - XYZ(long[] x, long[] y, long[] z) { - this.x = x; - this.y = y; - this.z = z; - } - - XYZ(XYZ xyz) { - x = Arrays.copyOf(xyz.x, Field25519.LIMB_CNT); - y = Arrays.copyOf(xyz.y, Field25519.LIMB_CNT); - z = Arrays.copyOf(xyz.z, Field25519.LIMB_CNT); - } - - XYZ(PartialXYZT partialXYZT) { - this(); - fromPartialXYZT(this, partialXYZT); - } - - /** - * ge_p1p1_to_p2.c - */ - static XYZ fromPartialXYZT(XYZ out, PartialXYZT in) { - Field25519.mult(out.x, in.xyz.x, in.t); - Field25519.mult(out.y, in.xyz.y, in.xyz.z); - Field25519.mult(out.z, in.xyz.z, in.t); - return out; - } - - /** - * Encodes this point to bytes. - */ - byte[] toBytes() { - long[] recip = new long[Field25519.LIMB_CNT]; - long[] x = new long[Field25519.LIMB_CNT]; - long[] y = new long[Field25519.LIMB_CNT]; - Field25519.inverse(recip, z); - Field25519.mult(x, this.x, recip); - Field25519.mult(y, this.y, recip); - byte[] s = Field25519.contract(y); - s[31] = (byte) (s[31] ^ (getLsb(x) << 7)); - return s; - } - - - /** - * Best effort fix-timing array comparison. - * - * @return true if two arrays are equal. - */ - private static boolean bytesEqual(final byte[] x, final byte[] y) { - if (x == null || y == null) { - return false; - } - if (x.length != y.length) { - return false; - } - int res = 0; - for (int i = 0; i < x.length; i++) { - res |= x[i] ^ y[i]; - } - return res == 0; - } - - /** - * Checks that the point is on curve - */ - boolean isOnCurve() { - long[] x2 = new long[Field25519.LIMB_CNT]; - Field25519.square(x2, x); - long[] y2 = new long[Field25519.LIMB_CNT]; - Field25519.square(y2, y); - long[] z2 = new long[Field25519.LIMB_CNT]; - Field25519.square(z2, z); - long[] z4 = new long[Field25519.LIMB_CNT]; - Field25519.square(z4, z2); - long[] lhs = new long[Field25519.LIMB_CNT]; - // lhs = y^2 - x^2 - Field25519.sub(lhs, y2, x2); - // lhs = z^2 * (y2 - x2) - Field25519.mult(lhs, lhs, z2); - long[] rhs = new long[Field25519.LIMB_CNT]; - // rhs = x^2 * y^2 - Field25519.mult(rhs, x2, y2); - // rhs = D * x^2 * y^2 - Field25519.mult(rhs, rhs, D); - // rhs = z^4 + D * x^2 * y^2 - Field25519.sum(rhs, z4); - // Field25519.mult reduces its output, but Field25519.sum does not, so we have to manually - // reduce it here. - Field25519.reduce(rhs, rhs); - // z^2 (y^2 - x^2) == z^4 + D * x^2 * y^2 - return bytesEqual(Field25519.contract(lhs), Field25519.contract(rhs)); - } - } - - /** - * Represents extended projective point representation (X:Y:Z:T) satisfying x = X/Z, y = Y/Z, - * XY = ZT - *

- * Note that this is referred as ge_p3 in ref10 impl. - * Also note that t = T below following Java coding style. - *

- * See - * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. - *

- * https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html - */ - private static class XYZT { - - final XYZ xyz; - final long[] t; - - XYZT() { - this(new XYZ(), new long[Field25519.LIMB_CNT]); - } - - XYZT(XYZ xyz, long[] t) { - this.xyz = xyz; - this.t = t; - } - - XYZT(PartialXYZT partialXYZT) { - this(); - fromPartialXYZT(this, partialXYZT); - } - - /** - * ge_p1p1_to_p2.c - */ - private static XYZT fromPartialXYZT(XYZT out, PartialXYZT in) { - Field25519.mult(out.xyz.x, in.xyz.x, in.t); - Field25519.mult(out.xyz.y, in.xyz.y, in.xyz.z); - Field25519.mult(out.xyz.z, in.xyz.z, in.t); - Field25519.mult(out.t, in.xyz.x, in.xyz.y); - return out; - } - - /** - * Decodes {@code s} into an extented projective point. - * See Section 5.1.3 Decoding in https://tools.ietf.org/html/rfc8032#section-5.1.3 - */ - private static XYZT fromBytesNegateVarTime(byte[] s) throws GeneralSecurityException { - long[] x = new long[Field25519.LIMB_CNT]; - long[] y = Field25519.expand(s); - long[] z = new long[Field25519.LIMB_CNT]; - z[0] = 1; - long[] t = new long[Field25519.LIMB_CNT]; - long[] u = new long[Field25519.LIMB_CNT]; - long[] v = new long[Field25519.LIMB_CNT]; - long[] vxx = new long[Field25519.LIMB_CNT]; - long[] check = new long[Field25519.LIMB_CNT]; - Field25519.square(u, y); - Field25519.mult(v, u, D); - Field25519.sub(u, u, z); // u = y^2 - 1 - Field25519.sum(v, v, z); // v = dy^2 + 1 - - long[] v3 = new long[Field25519.LIMB_CNT]; - Field25519.square(v3, v); - Field25519.mult(v3, v3, v); // v3 = v^3 - Field25519.square(x, v3); - Field25519.mult(x, x, v); - Field25519.mult(x, x, u); // x = uv^7 - - pow2252m3(x, x); // x = (uv^7)^((q-5)/8) - Field25519.mult(x, x, v3); - Field25519.mult(x, x, u); // x = uv^3(uv^7)^((q-5)/8) - - Field25519.square(vxx, x); - Field25519.mult(vxx, vxx, v); - Field25519.sub(check, vxx, u); // vx^2-u - if (isNonZeroVarTime(check)) { - Field25519.sum(check, vxx, u); // vx^2+u - if (isNonZeroVarTime(check)) { - throw new GeneralSecurityException("Cannot convert given bytes to extended projective " - + "coordinates. No square root exists for modulo 2^255-19"); - } - Field25519.mult(x, x, SQRTM1); - } - - if (!isNonZeroVarTime(x) && (s[31] & 0xff) >> 7 != 0) { - throw new GeneralSecurityException("Cannot convert given bytes to extended projective " - + "coordinates. Computed x is zero and encoded x's least significant bit is not zero"); - } - if (getLsb(x) == ((s[31] & 0xff) >> 7)) { - neg(x, x); - } - - Field25519.mult(t, x, y); - return new XYZT(new XYZ(x, y, z), t); - } - } - - /** - * Partial projective point representation ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T - *

- * Note that this is referred as complete form in the original ref10 impl (ge_p1p1). - * Also note that t = T below following Java coding style. - *

- * Although this has the same types as XYZT, it is redefined to have its own type so that it is - * readable and 1:1 corresponds to ref10 impl. - *

- * Can be converted to XYZT as follows: - * X1 = X * T = x * Z * T = x * Z1 - * Y1 = Y * Z = y * T * Z = y * Z1 - * Z1 = Z * T = Z * T - * T1 = X * Y = x * Z * y * T = x * y * Z1 = X1Y1 / Z1 - */ - private static class PartialXYZT { - - final XYZ xyz; - final long[] t; - - PartialXYZT() { - this(new XYZ(), new long[Field25519.LIMB_CNT]); - } - - PartialXYZT(XYZ xyz, long[] t) { - this.xyz = xyz; - this.t = t; - } - - PartialXYZT(PartialXYZT other) { - xyz = new XYZ(other.xyz); - t = Arrays.copyOf(other.t, Field25519.LIMB_CNT); - } - } - - /** - * Corresponds to the caching mentioned in the last paragraph of Section 3.1 of - * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. - * with Z = 1. - */ - private static class CachedXYT { - - final long[] yPlusX; - final long[] yMinusX; - final long[] t2d; - - /** - * Creates a cached XYZT with Z = 1 - * - * @param yPlusX y + x - * @param yMinusX y - x - * @param t2d 2d * xy - */ - CachedXYT(long[] yPlusX, long[] yMinusX, long[] t2d) { - this.yPlusX = yPlusX; - this.yMinusX = yMinusX; - this.t2d = t2d; - } - - CachedXYT(CachedXYT other) { - yPlusX = Arrays.copyOf(other.yPlusX, Field25519.LIMB_CNT); - yMinusX = Arrays.copyOf(other.yMinusX, Field25519.LIMB_CNT); - t2d = Arrays.copyOf(other.t2d, Field25519.LIMB_CNT); - } - - // z is one implicitly, so this just copies {@code in} to {@code output}. - void multByZ(long[] output, long[] in) { - System.arraycopy(in, 0, output, 0, Field25519.LIMB_CNT); - } - - /** - * If icopy is 1, copies {@code other} into this point. Time invariant wrt to icopy value. - */ - void copyConditional(CachedXYT other, int icopy) { - copyConditional(yPlusX, other.yPlusX, icopy); - copyConditional(yMinusX, other.yMinusX, icopy); - copyConditional(t2d, other.t2d, icopy); - } - - /** - * Conditionally copies a reduced-form limb arrays {@code b} into {@code a} if {@code icopy} is 1, - * but leave {@code a} unchanged if 'iswap' is 0. Runs in data-invariant time to avoid - * side-channel attacks. - * - *

NOTE that this function requires that {@code icopy} be 1 or 0; other values give wrong - * results. Also, the two limb arrays must be in reduced-coefficient, reduced-degree form: the - * values in a[10..19] or b[10..19] aren't swapped, and all all values in a[0..9],b[0..9] must - * have magnitude less than Integer.MAX_VALUE. - */ - static void copyConditional(long[] a, long[] b, int icopy) { - int copy = -icopy; - for (int i = 0; i < Field25519.LIMB_CNT; i++) { - int x = copy & (((int) a[i]) ^ ((int) b[i])); - a[i] = ((int) a[i]) ^ x; - } - } - } - - private static class CachedXYZT extends CachedXYT { - - private final long[] z; - - CachedXYZT() { - this(new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT]); - } - - /** - * ge_p3_to_cached.c - */ - CachedXYZT(XYZT xyzt) { - this(); - Field25519.sum(yPlusX, xyzt.xyz.y, xyzt.xyz.x); - Field25519.sub(yMinusX, xyzt.xyz.y, xyzt.xyz.x); - System.arraycopy(xyzt.xyz.z, 0, z, 0, Field25519.LIMB_CNT); - Field25519.mult(t2d, xyzt.t, D2); - } - - /** - * Creates a cached XYZT - * - * @param yPlusX Y + X - * @param yMinusX Y - X - * @param z Z - * @param t2d 2d * (XY/Z) - */ - CachedXYZT(long[] yPlusX, long[] yMinusX, long[] z, long[] t2d) { - super(yPlusX, yMinusX, t2d); - this.z = z; - } - - @Override - public void multByZ(long[] output, long[] in) { - Field25519.mult(output, in, z); - } - } - - /** - * Addition defined in Section 3.1 of - * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. - *

- * Please note that this is a partial of the operation listed there leaving out the final - * conversion from PartialXYZT to XYZT. - * - * @param extended extended projective point input - * @param cached cached projective point input - */ - private static void add(PartialXYZT partialXYZT, XYZT extended, CachedXYT cached) { - long[] t = new long[Field25519.LIMB_CNT]; - - // Y1 + X1 - Field25519.sum(partialXYZT.xyz.x, extended.xyz.y, extended.xyz.x); - - // Y1 - X1 - Field25519.sub(partialXYZT.xyz.y, extended.xyz.y, extended.xyz.x); - - // A = (Y1 - X1) * (Y2 - X2) - Field25519.mult(partialXYZT.xyz.y, partialXYZT.xyz.y, cached.yMinusX); - - // B = (Y1 + X1) * (Y2 + X2) - Field25519.mult(partialXYZT.xyz.z, partialXYZT.xyz.x, cached.yPlusX); - - // C = T1 * 2d * T2 = 2d * T1 * T2 (2d is written as k in the paper) - Field25519.mult(partialXYZT.t, extended.t, cached.t2d); - - // Z1 * Z2 - cached.multByZ(partialXYZT.xyz.x, extended.xyz.z); - - // D = 2 * Z1 * Z2 - Field25519.sum(t, partialXYZT.xyz.x, partialXYZT.xyz.x); - - // X3 = B - A - Field25519.sub(partialXYZT.xyz.x, partialXYZT.xyz.z, partialXYZT.xyz.y); - - // Y3 = B + A - Field25519.sum(partialXYZT.xyz.y, partialXYZT.xyz.z, partialXYZT.xyz.y); - - // Z3 = D + C - Field25519.sum(partialXYZT.xyz.z, t, partialXYZT.t); - - // T3 = D - C - Field25519.sub(partialXYZT.t, t, partialXYZT.t); - } - - /** - * Based on the addition defined in Section 3.1 of - * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. - *

- * Please note that this is a partial of the operation listed there leaving out the final - * conversion from PartialXYZT to XYZT. - * - * @param extended extended projective point input - * @param cached cached projective point input - */ - private static void sub(PartialXYZT partialXYZT, XYZT extended, CachedXYT cached) { - long[] t = new long[Field25519.LIMB_CNT]; - - // Y1 + X1 - Field25519.sum(partialXYZT.xyz.x, extended.xyz.y, extended.xyz.x); - - // Y1 - X1 - Field25519.sub(partialXYZT.xyz.y, extended.xyz.y, extended.xyz.x); - - // A = (Y1 - X1) * (Y2 + X2) - Field25519.mult(partialXYZT.xyz.y, partialXYZT.xyz.y, cached.yPlusX); - - // B = (Y1 + X1) * (Y2 - X2) - Field25519.mult(partialXYZT.xyz.z, partialXYZT.xyz.x, cached.yMinusX); - - // C = T1 * 2d * T2 = 2d * T1 * T2 (2d is written as k in the paper) - Field25519.mult(partialXYZT.t, extended.t, cached.t2d); - - // Z1 * Z2 - cached.multByZ(partialXYZT.xyz.x, extended.xyz.z); - - // D = 2 * Z1 * Z2 - Field25519.sum(t, partialXYZT.xyz.x, partialXYZT.xyz.x); - - // X3 = B - A - Field25519.sub(partialXYZT.xyz.x, partialXYZT.xyz.z, partialXYZT.xyz.y); - - // Y3 = B + A - Field25519.sum(partialXYZT.xyz.y, partialXYZT.xyz.z, partialXYZT.xyz.y); - - // Z3 = D - C - Field25519.sub(partialXYZT.xyz.z, t, partialXYZT.t); - - // T3 = D + C - Field25519.sum(partialXYZT.t, t, partialXYZT.t); - } - - /** - * Doubles {@code p} and puts the result into this PartialXYZT. - *

- * This is based on the addition defined in formula 7 in Section 3.3 of - * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. - *

- * Please note that this is a partial of the operation listed there leaving out the final - * conversion from PartialXYZT to XYZT and also this fixes a typo in calculation of Y3 and T3 in - * the paper, H should be replaced with A+B. - */ - private static void doubleXYZ(PartialXYZT partialXYZT, XYZ p) { - long[] t0 = new long[Field25519.LIMB_CNT]; - - // XX = X1^2 - Field25519.square(partialXYZT.xyz.x, p.x); - - // YY = Y1^2 - Field25519.square(partialXYZT.xyz.z, p.y); - - // B' = Z1^2 - Field25519.square(partialXYZT.t, p.z); - - // B = 2 * B' - Field25519.sum(partialXYZT.t, partialXYZT.t, partialXYZT.t); - - // A = X1 + Y1 - Field25519.sum(partialXYZT.xyz.y, p.x, p.y); - - // AA = A^2 - Field25519.square(t0, partialXYZT.xyz.y); - - // Y3 = YY + XX - Field25519.sum(partialXYZT.xyz.y, partialXYZT.xyz.z, partialXYZT.xyz.x); - - // Z3 = YY - XX - Field25519.sub(partialXYZT.xyz.z, partialXYZT.xyz.z, partialXYZT.xyz.x); - - // X3 = AA - Y3 - Field25519.sub(partialXYZT.xyz.x, t0, partialXYZT.xyz.y); - - // T3 = B - Z3 - Field25519.sub(partialXYZT.t, partialXYZT.t, partialXYZT.xyz.z); - } - - /** - * Doubles {@code p} and puts the result into this PartialXYZT. - */ - private static void doubleXYZT(PartialXYZT partialXYZT, XYZT p) { - doubleXYZ(partialXYZT, p.xyz); - } - - /** - * Compares two byte values in constant time. - */ - private static int eq(int a, int b) { - int r = ~(a ^ b) & 0xff; - r &= r << 4; - r &= r << 2; - r &= r << 1; - return (r >> 7) & 1; - } - - /** - * This is a constant time operation where point b*B*256^pos is stored in {@code t}. - * When b is 0, t remains the same (i.e., neutral point). - *

- * Although B_TABLE[32][8] (B_TABLE[i][j] = (j+1)*B*256^i) has j values in [0, 7], the select - * method negates the corresponding point if b is negative (which is straight forward in elliptic - * curves by just negating y coordinate). Therefore we can get multiples of B with the half of - * memory requirements. - * - * @param t neutral element (i.e., point 0), also serves as output. - * @param pos in B[pos][j] = (j+1)*B*256^pos - * @param b value in [-8, 8] range. - */ - private static void select(CachedXYT t, int pos, byte b) { - int bnegative = (b & 0xff) >> 7; - int babs = b - (((-bnegative) & b) << 1); - - t.copyConditional(B_TABLE[pos][0], eq(babs, 1)); - t.copyConditional(B_TABLE[pos][1], eq(babs, 2)); - t.copyConditional(B_TABLE[pos][2], eq(babs, 3)); - t.copyConditional(B_TABLE[pos][3], eq(babs, 4)); - t.copyConditional(B_TABLE[pos][4], eq(babs, 5)); - t.copyConditional(B_TABLE[pos][5], eq(babs, 6)); - t.copyConditional(B_TABLE[pos][6], eq(babs, 7)); - t.copyConditional(B_TABLE[pos][7], eq(babs, 8)); - - long[] yPlusX = Arrays.copyOf(t.yMinusX, Field25519.LIMB_CNT); - long[] yMinusX = Arrays.copyOf(t.yPlusX, Field25519.LIMB_CNT); - long[] t2d = Arrays.copyOf(t.t2d, Field25519.LIMB_CNT); - neg(t2d, t2d); - CachedXYT minust = new CachedXYT(yPlusX, yMinusX, t2d); - t.copyConditional(minust, bnegative); - } - - /** - * Computes {@code a}*B - * where a = a[0]+256*a[1]+...+256^31 a[31] and - * B is the Ed25519 base point (x,4/5) with x positive. - *

- * Preconditions: - * a[31] <= 127 - * - * @throws IllegalStateException iff there is arithmetic error. - */ - @SuppressWarnings("NarrowingCompoundAssignment") - private static XYZ scalarMultWithBase(byte[] a) { - byte[] e = new byte[2 * Field25519.FIELD_LEN]; - for (int i = 0; i < Field25519.FIELD_LEN; i++) { - e[2 * i + 0] = (byte) (((a[i] & 0xff) >> 0) & 0xf); - e[2 * i + 1] = (byte) (((a[i] & 0xff) >> 4) & 0xf); - } - // each e[i] is between 0 and 15 - // e[63] is between 0 and 7 - - // Rewrite e in a way that each e[i] is in [-8, 8]. - // This can be done since a[63] is in [0, 7], the carry-over onto the most significant byte - // a[63] can be at most 1. - int carry = 0; - for (int i = 0; i < e.length - 1; i++) { - e[i] += carry; - carry = e[i] + 8; - carry >>= 4; - e[i] -= carry << 4; - } - e[e.length - 1] += carry; - - PartialXYZT ret = new PartialXYZT(NEUTRAL); - XYZT xyzt = new XYZT(); - // Although B_TABLE's i can be at most 31 (stores only 32 4bit multiples of B) and we have 64 - // 4bit values in e array, the below for loop adds cached values by iterating e by two in odd - // indices. After the result, we can double the result point 4 times to shift the multiplication - // scalar by 4 bits. - for (int i = 1; i < e.length; i += 2) { - CachedXYT t = new CachedXYT(CACHED_NEUTRAL); - select(t, i / 2, e[i]); - add(ret, XYZT.fromPartialXYZT(xyzt, ret), t); - } - - // Doubles the result 4 times to shift the multiplication scalar 4 bits to get the actual result - // for the odd indices in e. - XYZ xyz = new XYZ(); - doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); - doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); - doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); - doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); - - // Add multiples of B for even indices of e. - for (int i = 0; i < e.length; i += 2) { - CachedXYT t = new CachedXYT(CACHED_NEUTRAL); - select(t, i / 2, e[i]); - add(ret, XYZT.fromPartialXYZT(xyzt, ret), t); - } - - // This check is to protect against flaws, i.e. if there is a computation error through a - // faulty CPU or if the implementation contains a bug. - XYZ result = new XYZ(ret); - if (!result.isOnCurve()) { - throw new IllegalStateException("arithmetic error in scalar multiplication"); - } - return result; - } - - @SuppressWarnings("NarrowingCompoundAssignment") - private static byte[] slide(byte[] a) { - byte[] r = new byte[256]; - // Writes each bit in a[0..31] into r[0..255]: - // a = a[0]+256*a[1]+...+256^31*a[31] is equal to - // r = r[0]+2*r[1]+...+2^255*r[255] - for (int i = 0; i < 256; i++) { - r[i] = (byte) (1 & ((a[i >> 3] & 0xff) >> (i & 7))); - } - - // Transforms r[i] as odd values in [-15, 15] - for (int i = 0; i < 256; i++) { - if (r[i] != 0) { - for (int b = 1; b <= 6 && i + b < 256; b++) { - if (r[i + b] != 0) { - if (r[i] + (r[i + b] << b) <= 15) { - r[i] += r[i + b] << b; - r[i + b] = 0; - } else if (r[i] - (r[i + b] << b) >= -15) { - r[i] -= r[i + b] << b; - for (int k = i + b; k < 256; k++) { - if (r[k] == 0) { - r[k] = 1; - break; - } - r[k] = 0; - } - } else { - break; - } - } - } - } - } - return r; - } - - /** - * Computes {@code a}*{@code pointA}+{@code b}*B - * where a = a[0]+256*a[1]+...+256^31*a[31]. - * and b = b[0]+256*b[1]+...+256^31*b[31]. - * B is the Ed25519 base point (x,4/5) with x positive. - *

- * Note that execution time varies based on the input since this will only be used in verification - * of signatures. - */ - private static XYZ doubleScalarMultVarTime(byte[] a, XYZT pointA, byte[] b) { - // pointA, 3*pointA, 5*pointA, 7*pointA, 9*pointA, 11*pointA, 13*pointA, 15*pointA - CachedXYZT[] pointAArray = new CachedXYZT[8]; - pointAArray[0] = new CachedXYZT(pointA); - PartialXYZT t = new PartialXYZT(); - doubleXYZT(t, pointA); - XYZT doubleA = new XYZT(t); - for (int i = 1; i < pointAArray.length; i++) { - add(t, doubleA, pointAArray[i - 1]); - pointAArray[i] = new CachedXYZT(new XYZT(t)); - } - - byte[] aSlide = slide(a); - byte[] bSlide = slide(b); - t = new PartialXYZT(NEUTRAL); - XYZT u = new XYZT(); - int i = 255; - for (; i >= 0; i--) { - if (aSlide[i] != 0 || bSlide[i] != 0) { - break; - } - } - for (; i >= 0; i--) { - doubleXYZ(t, new XYZ(t)); - if (aSlide[i] > 0) { - add(t, XYZT.fromPartialXYZT(u, t), pointAArray[aSlide[i] / 2]); - } else if (aSlide[i] < 0) { - sub(t, XYZT.fromPartialXYZT(u, t), pointAArray[-aSlide[i] / 2]); - } - if (bSlide[i] > 0) { - add(t, XYZT.fromPartialXYZT(u, t), B2[bSlide[i] / 2]); - } else if (bSlide[i] < 0) { - sub(t, XYZT.fromPartialXYZT(u, t), B2[-bSlide[i] / 2]); - } - } - - return new XYZ(t); - } - - /** - * Returns true if {@code in} is nonzero. - *

- * Note that execution time might depend on the input {@code in}. - */ - private static boolean isNonZeroVarTime(long[] in) { - long[] inCopy = new long[in.length + 1]; - System.arraycopy(in, 0, inCopy, 0, in.length); - Field25519.reduceCoefficients(inCopy); - byte[] bytes = Field25519.contract(inCopy); - for (byte b : bytes) { - if (b != 0) { - return true; - } - } - return false; - } - - /** - * Returns the least significant bit of {@code in}. - */ - private static int getLsb(long[] in) { - return Field25519.contract(in)[0] & 1; - } - - /** - * Negates all values in {@code in} and store it in {@code out}. - */ - private static void neg(long[] out, long[] in) { - for (int i = 0; i < in.length; i++) { - out[i] = -in[i]; - } - } - - /** - * Computes {@code in}^(2^252-3) mod 2^255-19 and puts the result in {@code out}. - */ - private static void pow2252m3(long[] out, long[] in) { - long[] t0 = new long[Field25519.LIMB_CNT]; - long[] t1 = new long[Field25519.LIMB_CNT]; - long[] t2 = new long[Field25519.LIMB_CNT]; - - // z2 = z1^2^1 - Field25519.square(t0, in); - - // z8 = z2^2^2 - Field25519.square(t1, t0); - for (int i = 1; i < 2; i++) { - Field25519.square(t1, t1); - } - - // z9 = z1*z8 - Field25519.mult(t1, in, t1); - - // z11 = z2*z9 - Field25519.mult(t0, t0, t1); - - // z22 = z11^2^1 - Field25519.square(t0, t0); - - // z_5_0 = z9*z22 - Field25519.mult(t0, t1, t0); - - // z_10_5 = z_5_0^2^5 - Field25519.square(t1, t0); - for (int i = 1; i < 5; i++) { - Field25519.square(t1, t1); - } - - // z_10_0 = z_10_5*z_5_0 - Field25519.mult(t0, t1, t0); - - // z_20_10 = z_10_0^2^10 - Field25519.square(t1, t0); - for (int i = 1; i < 10; i++) { - Field25519.square(t1, t1); - } - - // z_20_0 = z_20_10*z_10_0 - Field25519.mult(t1, t1, t0); - - // z_40_20 = z_20_0^2^20 - Field25519.square(t2, t1); - for (int i = 1; i < 20; i++) { - Field25519.square(t2, t2); - } - - // z_40_0 = z_40_20*z_20_0 - Field25519.mult(t1, t2, t1); - - // z_50_10 = z_40_0^2^10 - Field25519.square(t1, t1); - for (int i = 1; i < 10; i++) { - Field25519.square(t1, t1); - } - - // z_50_0 = z_50_10*z_10_0 - Field25519.mult(t0, t1, t0); - - // z_100_50 = z_50_0^2^50 - Field25519.square(t1, t0); - for (int i = 1; i < 50; i++) { - Field25519.square(t1, t1); - } - - // z_100_0 = z_100_50*z_50_0 - Field25519.mult(t1, t1, t0); - - // z_200_100 = z_100_0^2^100 - Field25519.square(t2, t1); - for (int i = 1; i < 100; i++) { - Field25519.square(t2, t2); - } - - // z_200_0 = z_200_100*z_100_0 - Field25519.mult(t1, t2, t1); - - // z_250_50 = z_200_0^2^50 - Field25519.square(t1, t1); - for (int i = 1; i < 50; i++) { - Field25519.square(t1, t1); - } - - // z_250_0 = z_250_50*z_50_0 - Field25519.mult(t0, t1, t0); - - // z_252_2 = z_250_0^2^2 - Field25519.square(t0, t0); - for (int i = 1; i < 2; i++) { - Field25519.square(t0, t0); - } - - // z_252_3 = z_252_2*z1 - Field25519.mult(out, t0, in); - } - - /** - * Returns 3 bytes of {@code in} starting from {@code idx} in Little-Endian format. - */ - private static long load3(byte[] in, int idx) { - long result; - result = (long) in[idx] & 0xff; - result |= (long) (in[idx + 1] & 0xff) << 8; - result |= (long) (in[idx + 2] & 0xff) << 16; - return result; - } - - /** - * Returns 4 bytes of {@code in} starting from {@code idx} in Little-Endian format. - */ - private static long load4(byte[] in, int idx) { - long result = load3(in, idx); - result |= (long) (in[idx + 3] & 0xff) << 24; - return result; - } - - /** - * Input: - * s[0]+256*s[1]+...+256^63*s[63] = s - *

- * Output: - * s[0]+256*s[1]+...+256^31*s[31] = s mod l - * where l = 2^252 + 27742317777372353535851937790883648493. - * Overwrites s in place. - */ - private static void reduce(byte[] s) { - // Observation: - // 2^252 mod l is equivalent to -27742317777372353535851937790883648493 mod l - // Let m = -27742317777372353535851937790883648493 - // Thus a*2^252+b mod l is equivalent to a*m+b mod l - // - // First s is divided into chunks of 21 bits as follows: - // s0+2^21*s1+2^42*s3+...+2^462*s23 = s[0]+256*s[1]+...+256^63*s[63] - long s0 = 2097151 & load3(s, 0); - long s1 = 2097151 & (load4(s, 2) >> 5); - long s2 = 2097151 & (load3(s, 5) >> 2); - long s3 = 2097151 & (load4(s, 7) >> 7); - long s4 = 2097151 & (load4(s, 10) >> 4); - long s5 = 2097151 & (load3(s, 13) >> 1); - long s6 = 2097151 & (load4(s, 15) >> 6); - long s7 = 2097151 & (load3(s, 18) >> 3); - long s8 = 2097151 & load3(s, 21); - long s9 = 2097151 & (load4(s, 23) >> 5); - long s10 = 2097151 & (load3(s, 26) >> 2); - long s11 = 2097151 & (load4(s, 28) >> 7); - long s12 = 2097151 & (load4(s, 31) >> 4); - long s13 = 2097151 & (load3(s, 34) >> 1); - long s14 = 2097151 & (load4(s, 36) >> 6); - long s15 = 2097151 & (load3(s, 39) >> 3); - long s16 = 2097151 & load3(s, 42); - long s17 = 2097151 & (load4(s, 44) >> 5); - long s18 = 2097151 & (load3(s, 47) >> 2); - long s19 = 2097151 & (load4(s, 49) >> 7); - long s20 = 2097151 & (load4(s, 52) >> 4); - long s21 = 2097151 & (load3(s, 55) >> 1); - long s22 = 2097151 & (load4(s, 57) >> 6); - long s23 = (load4(s, 60) >> 3); - long carry0; - long carry1; - long carry2; - long carry3; - long carry4; - long carry5; - long carry6; - long carry7; - long carry8; - long carry9; - long carry10; - long carry11; - long carry12; - long carry13; - long carry14; - long carry15; - long carry16; - - // s23*2^462 = s23*2^210*2^252 is equivalent to s23*2^210*m in mod l - // As m is a 125 bit number, the result needs to scattered to 6 limbs (125/21 ceil is 6) - // starting from s11 (s11*2^210) - // m = [666643, 470296, 654183, -997805, 136657, -683901] in 21-bit limbs - s11 += s23 * 666643; - s12 += s23 * 470296; - s13 += s23 * 654183; - s14 -= s23 * 997805; - s15 += s23 * 136657; - s16 -= s23 * 683901; - // s23 = 0; - - s10 += s22 * 666643; - s11 += s22 * 470296; - s12 += s22 * 654183; - s13 -= s22 * 997805; - s14 += s22 * 136657; - s15 -= s22 * 683901; - // s22 = 0; - - s9 += s21 * 666643; - s10 += s21 * 470296; - s11 += s21 * 654183; - s12 -= s21 * 997805; - s13 += s21 * 136657; - s14 -= s21 * 683901; - // s21 = 0; - - s8 += s20 * 666643; - s9 += s20 * 470296; - s10 += s20 * 654183; - s11 -= s20 * 997805; - s12 += s20 * 136657; - s13 -= s20 * 683901; - // s20 = 0; - - s7 += s19 * 666643; - s8 += s19 * 470296; - s9 += s19 * 654183; - s10 -= s19 * 997805; - s11 += s19 * 136657; - s12 -= s19 * 683901; - // s19 = 0; - - s6 += s18 * 666643; - s7 += s18 * 470296; - s8 += s18 * 654183; - s9 -= s18 * 997805; - s10 += s18 * 136657; - s11 -= s18 * 683901; - // s18 = 0; - - // Reduce the bit length of limbs from s6 to s15 to 21-bits. - carry6 = (s6 + (1 << 20)) >> 21; - s7 += carry6; - s6 -= carry6 << 21; - carry8 = (s8 + (1 << 20)) >> 21; - s9 += carry8; - s8 -= carry8 << 21; - carry10 = (s10 + (1 << 20)) >> 21; - s11 += carry10; - s10 -= carry10 << 21; - carry12 = (s12 + (1 << 20)) >> 21; - s13 += carry12; - s12 -= carry12 << 21; - carry14 = (s14 + (1 << 20)) >> 21; - s15 += carry14; - s14 -= carry14 << 21; - carry16 = (s16 + (1 << 20)) >> 21; - s17 += carry16; - s16 -= carry16 << 21; - - carry7 = (s7 + (1 << 20)) >> 21; - s8 += carry7; - s7 -= carry7 << 21; - carry9 = (s9 + (1 << 20)) >> 21; - s10 += carry9; - s9 -= carry9 << 21; - carry11 = (s11 + (1 << 20)) >> 21; - s12 += carry11; - s11 -= carry11 << 21; - carry13 = (s13 + (1 << 20)) >> 21; - s14 += carry13; - s13 -= carry13 << 21; - carry15 = (s15 + (1 << 20)) >> 21; - s16 += carry15; - s15 -= carry15 << 21; - - // Resume reduction where we left off. - s5 += s17 * 666643; - s6 += s17 * 470296; - s7 += s17 * 654183; - s8 -= s17 * 997805; - s9 += s17 * 136657; - s10 -= s17 * 683901; - // s17 = 0; - - s4 += s16 * 666643; - s5 += s16 * 470296; - s6 += s16 * 654183; - s7 -= s16 * 997805; - s8 += s16 * 136657; - s9 -= s16 * 683901; - // s16 = 0; - - s3 += s15 * 666643; - s4 += s15 * 470296; - s5 += s15 * 654183; - s6 -= s15 * 997805; - s7 += s15 * 136657; - s8 -= s15 * 683901; - // s15 = 0; - - s2 += s14 * 666643; - s3 += s14 * 470296; - s4 += s14 * 654183; - s5 -= s14 * 997805; - s6 += s14 * 136657; - s7 -= s14 * 683901; - // s14 = 0; - - s1 += s13 * 666643; - s2 += s13 * 470296; - s3 += s13 * 654183; - s4 -= s13 * 997805; - s5 += s13 * 136657; - s6 -= s13 * 683901; - // s13 = 0; - - s0 += s12 * 666643; - s1 += s12 * 470296; - s2 += s12 * 654183; - s3 -= s12 * 997805; - s4 += s12 * 136657; - s5 -= s12 * 683901; - s12 = 0; - - // Reduce the range of limbs from s0 to s11 to 21-bits. - carry0 = (s0 + (1 << 20)) >> 21; - s1 += carry0; - s0 -= carry0 << 21; - carry2 = (s2 + (1 << 20)) >> 21; - s3 += carry2; - s2 -= carry2 << 21; - carry4 = (s4 + (1 << 20)) >> 21; - s5 += carry4; - s4 -= carry4 << 21; - carry6 = (s6 + (1 << 20)) >> 21; - s7 += carry6; - s6 -= carry6 << 21; - carry8 = (s8 + (1 << 20)) >> 21; - s9 += carry8; - s8 -= carry8 << 21; - carry10 = (s10 + (1 << 20)) >> 21; - s11 += carry10; - s10 -= carry10 << 21; - - carry1 = (s1 + (1 << 20)) >> 21; - s2 += carry1; - s1 -= carry1 << 21; - carry3 = (s3 + (1 << 20)) >> 21; - s4 += carry3; - s3 -= carry3 << 21; - carry5 = (s5 + (1 << 20)) >> 21; - s6 += carry5; - s5 -= carry5 << 21; - carry7 = (s7 + (1 << 20)) >> 21; - s8 += carry7; - s7 -= carry7 << 21; - carry9 = (s9 + (1 << 20)) >> 21; - s10 += carry9; - s9 -= carry9 << 21; - carry11 = (s11 + (1 << 20)) >> 21; - s12 += carry11; - s11 -= carry11 << 21; - - s0 += s12 * 666643; - s1 += s12 * 470296; - s2 += s12 * 654183; - s3 -= s12 * 997805; - s4 += s12 * 136657; - s5 -= s12 * 683901; - s12 = 0; - - // Carry chain reduction to propagate excess bits from s0 to s5 to the most significant limbs. - carry0 = s0 >> 21; - s1 += carry0; - s0 -= carry0 << 21; - carry1 = s1 >> 21; - s2 += carry1; - s1 -= carry1 << 21; - carry2 = s2 >> 21; - s3 += carry2; - s2 -= carry2 << 21; - carry3 = s3 >> 21; - s4 += carry3; - s3 -= carry3 << 21; - carry4 = s4 >> 21; - s5 += carry4; - s4 -= carry4 << 21; - carry5 = s5 >> 21; - s6 += carry5; - s5 -= carry5 << 21; - carry6 = s6 >> 21; - s7 += carry6; - s6 -= carry6 << 21; - carry7 = s7 >> 21; - s8 += carry7; - s7 -= carry7 << 21; - carry8 = s8 >> 21; - s9 += carry8; - s8 -= carry8 << 21; - carry9 = s9 >> 21; - s10 += carry9; - s9 -= carry9 << 21; - carry10 = s10 >> 21; - s11 += carry10; - s10 -= carry10 << 21; - carry11 = s11 >> 21; - s12 += carry11; - s11 -= carry11 << 21; - - // Do one last reduction as s12 might be 1. - s0 += s12 * 666643; - s1 += s12 * 470296; - s2 += s12 * 654183; - s3 -= s12 * 997805; - s4 += s12 * 136657; - s5 -= s12 * 683901; - // s12 = 0; - - carry0 = s0 >> 21; - s1 += carry0; - s0 -= carry0 << 21; - carry1 = s1 >> 21; - s2 += carry1; - s1 -= carry1 << 21; - carry2 = s2 >> 21; - s3 += carry2; - s2 -= carry2 << 21; - carry3 = s3 >> 21; - s4 += carry3; - s3 -= carry3 << 21; - carry4 = s4 >> 21; - s5 += carry4; - s4 -= carry4 << 21; - carry5 = s5 >> 21; - s6 += carry5; - s5 -= carry5 << 21; - carry6 = s6 >> 21; - s7 += carry6; - s6 -= carry6 << 21; - carry7 = s7 >> 21; - s8 += carry7; - s7 -= carry7 << 21; - carry8 = s8 >> 21; - s9 += carry8; - s8 -= carry8 << 21; - carry9 = s9 >> 21; - s10 += carry9; - s9 -= carry9 << 21; - carry10 = s10 >> 21; - s11 += carry10; - s10 -= carry10 << 21; - - // Serialize the result into the s. - s[0] = (byte) s0; - s[1] = (byte) (s0 >> 8); - s[2] = (byte) ((s0 >> 16) | (s1 << 5)); - s[3] = (byte) (s1 >> 3); - s[4] = (byte) (s1 >> 11); - s[5] = (byte) ((s1 >> 19) | (s2 << 2)); - s[6] = (byte) (s2 >> 6); - s[7] = (byte) ((s2 >> 14) | (s3 << 7)); - s[8] = (byte) (s3 >> 1); - s[9] = (byte) (s3 >> 9); - s[10] = (byte) ((s3 >> 17) | (s4 << 4)); - s[11] = (byte) (s4 >> 4); - s[12] = (byte) (s4 >> 12); - s[13] = (byte) ((s4 >> 20) | (s5 << 1)); - s[14] = (byte) (s5 >> 7); - s[15] = (byte) ((s5 >> 15) | (s6 << 6)); - s[16] = (byte) (s6 >> 2); - s[17] = (byte) (s6 >> 10); - s[18] = (byte) ((s6 >> 18) | (s7 << 3)); - s[19] = (byte) (s7 >> 5); - s[20] = (byte) (s7 >> 13); - s[21] = (byte) s8; - s[22] = (byte) (s8 >> 8); - s[23] = (byte) ((s8 >> 16) | (s9 << 5)); - s[24] = (byte) (s9 >> 3); - s[25] = (byte) (s9 >> 11); - s[26] = (byte) ((s9 >> 19) | (s10 << 2)); - s[27] = (byte) (s10 >> 6); - s[28] = (byte) ((s10 >> 14) | (s11 << 7)); - s[29] = (byte) (s11 >> 1); - s[30] = (byte) (s11 >> 9); - s[31] = (byte) (s11 >> 17); - } - - /** - * Input: - * a[0]+256*a[1]+...+256^31*a[31] = a - * b[0]+256*b[1]+...+256^31*b[31] = b - * c[0]+256*c[1]+...+256^31*c[31] = c - *

- * Output: - * s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l - * where l = 2^252 + 27742317777372353535851937790883648493. - */ - private static void mulAdd(byte[] s, byte[] a, byte[] b, byte[] c) { - // This is very similar to Ed25519.reduce, the difference in here is that it computes ab+c - // See Ed25519.reduce for related comments. - long a0 = 2097151 & load3(a, 0); - long a1 = 2097151 & (load4(a, 2) >> 5); - long a2 = 2097151 & (load3(a, 5) >> 2); - long a3 = 2097151 & (load4(a, 7) >> 7); - long a4 = 2097151 & (load4(a, 10) >> 4); - long a5 = 2097151 & (load3(a, 13) >> 1); - long a6 = 2097151 & (load4(a, 15) >> 6); - long a7 = 2097151 & (load3(a, 18) >> 3); - long a8 = 2097151 & load3(a, 21); - long a9 = 2097151 & (load4(a, 23) >> 5); - long a10 = 2097151 & (load3(a, 26) >> 2); - long a11 = (load4(a, 28) >> 7); - long b0 = 2097151 & load3(b, 0); - long b1 = 2097151 & (load4(b, 2) >> 5); - long b2 = 2097151 & (load3(b, 5) >> 2); - long b3 = 2097151 & (load4(b, 7) >> 7); - long b4 = 2097151 & (load4(b, 10) >> 4); - long b5 = 2097151 & (load3(b, 13) >> 1); - long b6 = 2097151 & (load4(b, 15) >> 6); - long b7 = 2097151 & (load3(b, 18) >> 3); - long b8 = 2097151 & load3(b, 21); - long b9 = 2097151 & (load4(b, 23) >> 5); - long b10 = 2097151 & (load3(b, 26) >> 2); - long b11 = (load4(b, 28) >> 7); - long c0 = 2097151 & load3(c, 0); - long c1 = 2097151 & (load4(c, 2) >> 5); - long c2 = 2097151 & (load3(c, 5) >> 2); - long c3 = 2097151 & (load4(c, 7) >> 7); - long c4 = 2097151 & (load4(c, 10) >> 4); - long c5 = 2097151 & (load3(c, 13) >> 1); - long c6 = 2097151 & (load4(c, 15) >> 6); - long c7 = 2097151 & (load3(c, 18) >> 3); - long c8 = 2097151 & load3(c, 21); - long c9 = 2097151 & (load4(c, 23) >> 5); - long c10 = 2097151 & (load3(c, 26) >> 2); - long c11 = (load4(c, 28) >> 7); - long s0; - long s1; - long s2; - long s3; - long s4; - long s5; - long s6; - long s7; - long s8; - long s9; - long s10; - long s11; - long s12; - long s13; - long s14; - long s15; - long s16; - long s17; - long s18; - long s19; - long s20; - long s21; - long s22; - long s23; - long carry0; - long carry1; - long carry2; - long carry3; - long carry4; - long carry5; - long carry6; - long carry7; - long carry8; - long carry9; - long carry10; - long carry11; - long carry12; - long carry13; - long carry14; - long carry15; - long carry16; - long carry17; - long carry18; - long carry19; - long carry20; - long carry21; - long carry22; - - s0 = c0 + a0 * b0; - s1 = c1 + a0 * b1 + a1 * b0; - s2 = c2 + a0 * b2 + a1 * b1 + a2 * b0; - s3 = c3 + a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0; - s4 = c4 + a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0; - s5 = c5 + a0 * b5 + a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 + a5 * b0; - s6 = c6 + a0 * b6 + a1 * b5 + a2 * b4 + a3 * b3 + a4 * b2 + a5 * b1 + a6 * b0; - s7 = c7 + a0 * b7 + a1 * b6 + a2 * b5 + a3 * b4 + a4 * b3 + a5 * b2 + a6 * b1 + a7 * b0; - s8 = c8 + a0 * b8 + a1 * b7 + a2 * b6 + a3 * b5 + a4 * b4 + a5 * b3 + a6 * b2 + a7 * b1 - + a8 * b0; - s9 = c9 + a0 * b9 + a1 * b8 + a2 * b7 + a3 * b6 + a4 * b5 + a5 * b4 + a6 * b3 + a7 * b2 - + a8 * b1 + a9 * b0; - s10 = c10 + a0 * b10 + a1 * b9 + a2 * b8 + a3 * b7 + a4 * b6 + a5 * b5 + a6 * b4 + a7 * b3 - + a8 * b2 + a9 * b1 + a10 * b0; - s11 = c11 + a0 * b11 + a1 * b10 + a2 * b9 + a3 * b8 + a4 * b7 + a5 * b6 + a6 * b5 + a7 * b4 - + a8 * b3 + a9 * b2 + a10 * b1 + a11 * b0; - s12 = a1 * b11 + a2 * b10 + a3 * b9 + a4 * b8 + a5 * b7 + a6 * b6 + a7 * b5 + a8 * b4 + a9 * b3 - + a10 * b2 + a11 * b1; - s13 = a2 * b11 + a3 * b10 + a4 * b9 + a5 * b8 + a6 * b7 + a7 * b6 + a8 * b5 + a9 * b4 + a10 * b3 - + a11 * b2; - s14 = a3 * b11 + a4 * b10 + a5 * b9 + a6 * b8 + a7 * b7 + a8 * b6 + a9 * b5 + a10 * b4 - + a11 * b3; - s15 = a4 * b11 + a5 * b10 + a6 * b9 + a7 * b8 + a8 * b7 + a9 * b6 + a10 * b5 + a11 * b4; - s16 = a5 * b11 + a6 * b10 + a7 * b9 + a8 * b8 + a9 * b7 + a10 * b6 + a11 * b5; - s17 = a6 * b11 + a7 * b10 + a8 * b9 + a9 * b8 + a10 * b7 + a11 * b6; - s18 = a7 * b11 + a8 * b10 + a9 * b9 + a10 * b8 + a11 * b7; - s19 = a8 * b11 + a9 * b10 + a10 * b9 + a11 * b8; - s20 = a9 * b11 + a10 * b10 + a11 * b9; - s21 = a10 * b11 + a11 * b10; - s22 = a11 * b11; - s23 = 0; - - carry0 = (s0 + (1 << 20)) >> 21; - s1 += carry0; - s0 -= carry0 << 21; - carry2 = (s2 + (1 << 20)) >> 21; - s3 += carry2; - s2 -= carry2 << 21; - carry4 = (s4 + (1 << 20)) >> 21; - s5 += carry4; - s4 -= carry4 << 21; - carry6 = (s6 + (1 << 20)) >> 21; - s7 += carry6; - s6 -= carry6 << 21; - carry8 = (s8 + (1 << 20)) >> 21; - s9 += carry8; - s8 -= carry8 << 21; - carry10 = (s10 + (1 << 20)) >> 21; - s11 += carry10; - s10 -= carry10 << 21; - carry12 = (s12 + (1 << 20)) >> 21; - s13 += carry12; - s12 -= carry12 << 21; - carry14 = (s14 + (1 << 20)) >> 21; - s15 += carry14; - s14 -= carry14 << 21; - carry16 = (s16 + (1 << 20)) >> 21; - s17 += carry16; - s16 -= carry16 << 21; - carry18 = (s18 + (1 << 20)) >> 21; - s19 += carry18; - s18 -= carry18 << 21; - carry20 = (s20 + (1 << 20)) >> 21; - s21 += carry20; - s20 -= carry20 << 21; - carry22 = (s22 + (1 << 20)) >> 21; - s23 += carry22; - s22 -= carry22 << 21; - - carry1 = (s1 + (1 << 20)) >> 21; - s2 += carry1; - s1 -= carry1 << 21; - carry3 = (s3 + (1 << 20)) >> 21; - s4 += carry3; - s3 -= carry3 << 21; - carry5 = (s5 + (1 << 20)) >> 21; - s6 += carry5; - s5 -= carry5 << 21; - carry7 = (s7 + (1 << 20)) >> 21; - s8 += carry7; - s7 -= carry7 << 21; - carry9 = (s9 + (1 << 20)) >> 21; - s10 += carry9; - s9 -= carry9 << 21; - carry11 = (s11 + (1 << 20)) >> 21; - s12 += carry11; - s11 -= carry11 << 21; - carry13 = (s13 + (1 << 20)) >> 21; - s14 += carry13; - s13 -= carry13 << 21; - carry15 = (s15 + (1 << 20)) >> 21; - s16 += carry15; - s15 -= carry15 << 21; - carry17 = (s17 + (1 << 20)) >> 21; - s18 += carry17; - s17 -= carry17 << 21; - carry19 = (s19 + (1 << 20)) >> 21; - s20 += carry19; - s19 -= carry19 << 21; - carry21 = (s21 + (1 << 20)) >> 21; - s22 += carry21; - s21 -= carry21 << 21; - - s11 += s23 * 666643; - s12 += s23 * 470296; - s13 += s23 * 654183; - s14 -= s23 * 997805; - s15 += s23 * 136657; - s16 -= s23 * 683901; - // s23 = 0; - - s10 += s22 * 666643; - s11 += s22 * 470296; - s12 += s22 * 654183; - s13 -= s22 * 997805; - s14 += s22 * 136657; - s15 -= s22 * 683901; - // s22 = 0; - - s9 += s21 * 666643; - s10 += s21 * 470296; - s11 += s21 * 654183; - s12 -= s21 * 997805; - s13 += s21 * 136657; - s14 -= s21 * 683901; - // s21 = 0; - - s8 += s20 * 666643; - s9 += s20 * 470296; - s10 += s20 * 654183; - s11 -= s20 * 997805; - s12 += s20 * 136657; - s13 -= s20 * 683901; - // s20 = 0; - - s7 += s19 * 666643; - s8 += s19 * 470296; - s9 += s19 * 654183; - s10 -= s19 * 997805; - s11 += s19 * 136657; - s12 -= s19 * 683901; - // s19 = 0; - - s6 += s18 * 666643; - s7 += s18 * 470296; - s8 += s18 * 654183; - s9 -= s18 * 997805; - s10 += s18 * 136657; - s11 -= s18 * 683901; - // s18 = 0; - - carry6 = (s6 + (1 << 20)) >> 21; - s7 += carry6; - s6 -= carry6 << 21; - carry8 = (s8 + (1 << 20)) >> 21; - s9 += carry8; - s8 -= carry8 << 21; - carry10 = (s10 + (1 << 20)) >> 21; - s11 += carry10; - s10 -= carry10 << 21; - carry12 = (s12 + (1 << 20)) >> 21; - s13 += carry12; - s12 -= carry12 << 21; - carry14 = (s14 + (1 << 20)) >> 21; - s15 += carry14; - s14 -= carry14 << 21; - carry16 = (s16 + (1 << 20)) >> 21; - s17 += carry16; - s16 -= carry16 << 21; - - carry7 = (s7 + (1 << 20)) >> 21; - s8 += carry7; - s7 -= carry7 << 21; - carry9 = (s9 + (1 << 20)) >> 21; - s10 += carry9; - s9 -= carry9 << 21; - carry11 = (s11 + (1 << 20)) >> 21; - s12 += carry11; - s11 -= carry11 << 21; - carry13 = (s13 + (1 << 20)) >> 21; - s14 += carry13; - s13 -= carry13 << 21; - carry15 = (s15 + (1 << 20)) >> 21; - s16 += carry15; - s15 -= carry15 << 21; - - s5 += s17 * 666643; - s6 += s17 * 470296; - s7 += s17 * 654183; - s8 -= s17 * 997805; - s9 += s17 * 136657; - s10 -= s17 * 683901; - // s17 = 0; - - s4 += s16 * 666643; - s5 += s16 * 470296; - s6 += s16 * 654183; - s7 -= s16 * 997805; - s8 += s16 * 136657; - s9 -= s16 * 683901; - // s16 = 0; - - s3 += s15 * 666643; - s4 += s15 * 470296; - s5 += s15 * 654183; - s6 -= s15 * 997805; - s7 += s15 * 136657; - s8 -= s15 * 683901; - // s15 = 0; - - s2 += s14 * 666643; - s3 += s14 * 470296; - s4 += s14 * 654183; - s5 -= s14 * 997805; - s6 += s14 * 136657; - s7 -= s14 * 683901; - // s14 = 0; - - s1 += s13 * 666643; - s2 += s13 * 470296; - s3 += s13 * 654183; - s4 -= s13 * 997805; - s5 += s13 * 136657; - s6 -= s13 * 683901; - // s13 = 0; - - s0 += s12 * 666643; - s1 += s12 * 470296; - s2 += s12 * 654183; - s3 -= s12 * 997805; - s4 += s12 * 136657; - s5 -= s12 * 683901; - s12 = 0; - - carry0 = (s0 + (1 << 20)) >> 21; - s1 += carry0; - s0 -= carry0 << 21; - carry2 = (s2 + (1 << 20)) >> 21; - s3 += carry2; - s2 -= carry2 << 21; - carry4 = (s4 + (1 << 20)) >> 21; - s5 += carry4; - s4 -= carry4 << 21; - carry6 = (s6 + (1 << 20)) >> 21; - s7 += carry6; - s6 -= carry6 << 21; - carry8 = (s8 + (1 << 20)) >> 21; - s9 += carry8; - s8 -= carry8 << 21; - carry10 = (s10 + (1 << 20)) >> 21; - s11 += carry10; - s10 -= carry10 << 21; - - carry1 = (s1 + (1 << 20)) >> 21; - s2 += carry1; - s1 -= carry1 << 21; - carry3 = (s3 + (1 << 20)) >> 21; - s4 += carry3; - s3 -= carry3 << 21; - carry5 = (s5 + (1 << 20)) >> 21; - s6 += carry5; - s5 -= carry5 << 21; - carry7 = (s7 + (1 << 20)) >> 21; - s8 += carry7; - s7 -= carry7 << 21; - carry9 = (s9 + (1 << 20)) >> 21; - s10 += carry9; - s9 -= carry9 << 21; - carry11 = (s11 + (1 << 20)) >> 21; - s12 += carry11; - s11 -= carry11 << 21; - - s0 += s12 * 666643; - s1 += s12 * 470296; - s2 += s12 * 654183; - s3 -= s12 * 997805; - s4 += s12 * 136657; - s5 -= s12 * 683901; - s12 = 0; - - carry0 = s0 >> 21; - s1 += carry0; - s0 -= carry0 << 21; - carry1 = s1 >> 21; - s2 += carry1; - s1 -= carry1 << 21; - carry2 = s2 >> 21; - s3 += carry2; - s2 -= carry2 << 21; - carry3 = s3 >> 21; - s4 += carry3; - s3 -= carry3 << 21; - carry4 = s4 >> 21; - s5 += carry4; - s4 -= carry4 << 21; - carry5 = s5 >> 21; - s6 += carry5; - s5 -= carry5 << 21; - carry6 = s6 >> 21; - s7 += carry6; - s6 -= carry6 << 21; - carry7 = s7 >> 21; - s8 += carry7; - s7 -= carry7 << 21; - carry8 = s8 >> 21; - s9 += carry8; - s8 -= carry8 << 21; - carry9 = s9 >> 21; - s10 += carry9; - s9 -= carry9 << 21; - carry10 = s10 >> 21; - s11 += carry10; - s10 -= carry10 << 21; - carry11 = s11 >> 21; - s12 += carry11; - s11 -= carry11 << 21; - - s0 += s12 * 666643; - s1 += s12 * 470296; - s2 += s12 * 654183; - s3 -= s12 * 997805; - s4 += s12 * 136657; - s5 -= s12 * 683901; - // s12 = 0; - - carry0 = s0 >> 21; - s1 += carry0; - s0 -= carry0 << 21; - carry1 = s1 >> 21; - s2 += carry1; - s1 -= carry1 << 21; - carry2 = s2 >> 21; - s3 += carry2; - s2 -= carry2 << 21; - carry3 = s3 >> 21; - s4 += carry3; - s3 -= carry3 << 21; - carry4 = s4 >> 21; - s5 += carry4; - s4 -= carry4 << 21; - carry5 = s5 >> 21; - s6 += carry5; - s5 -= carry5 << 21; - carry6 = s6 >> 21; - s7 += carry6; - s6 -= carry6 << 21; - carry7 = s7 >> 21; - s8 += carry7; - s7 -= carry7 << 21; - carry8 = s8 >> 21; - s9 += carry8; - s8 -= carry8 << 21; - carry9 = s9 >> 21; - s10 += carry9; - s9 -= carry9 << 21; - carry10 = s10 >> 21; - s11 += carry10; - s10 -= carry10 << 21; - - s[0] = (byte) s0; - s[1] = (byte) (s0 >> 8); - s[2] = (byte) ((s0 >> 16) | (s1 << 5)); - s[3] = (byte) (s1 >> 3); - s[4] = (byte) (s1 >> 11); - s[5] = (byte) ((s1 >> 19) | (s2 << 2)); - s[6] = (byte) (s2 >> 6); - s[7] = (byte) ((s2 >> 14) | (s3 << 7)); - s[8] = (byte) (s3 >> 1); - s[9] = (byte) (s3 >> 9); - s[10] = (byte) ((s3 >> 17) | (s4 << 4)); - s[11] = (byte) (s4 >> 4); - s[12] = (byte) (s4 >> 12); - s[13] = (byte) ((s4 >> 20) | (s5 << 1)); - s[14] = (byte) (s5 >> 7); - s[15] = (byte) ((s5 >> 15) | (s6 << 6)); - s[16] = (byte) (s6 >> 2); - s[17] = (byte) (s6 >> 10); - s[18] = (byte) ((s6 >> 18) | (s7 << 3)); - s[19] = (byte) (s7 >> 5); - s[20] = (byte) (s7 >> 13); - s[21] = (byte) s8; - s[22] = (byte) (s8 >> 8); - s[23] = (byte) ((s8 >> 16) | (s9 << 5)); - s[24] = (byte) (s9 >> 3); - s[25] = (byte) (s9 >> 11); - s[26] = (byte) ((s9 >> 19) | (s10 << 2)); - s[27] = (byte) (s10 >> 6); - s[28] = (byte) ((s10 >> 14) | (s11 << 7)); - s[29] = (byte) (s11 >> 1); - s[30] = (byte) (s11 >> 9); - s[31] = (byte) (s11 >> 17); - } - - // The order of the generator as unsigned bytes in little endian order. - // (2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed, cf. RFC 7748) - private static final byte[] GROUP_ORDER = { - (byte) 0xed, (byte) 0xd3, (byte) 0xf5, (byte) 0x5c, - (byte) 0x1a, (byte) 0x63, (byte) 0x12, (byte) 0x58, - (byte) 0xd6, (byte) 0x9c, (byte) 0xf7, (byte) 0xa2, - (byte) 0xde, (byte) 0xf9, (byte) 0xde, (byte) 0x14, - (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, - (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, - (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, - (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x10}; - - // Checks whether s represents an integer smaller than the order of the group. - // This is needed to ensure that EdDSA signatures are non-malleable, as failing to check - // the range of S allows to modify signatures (cf. RFC 8032, Section 5.2.7 and Section 8.4.) - // @param s an integer in little-endian order. - private static boolean isSmallerThanGroupOrder(byte[] s) { - for (int j = Field25519.FIELD_LEN - 1; j >= 0; j--) { - // compare unsigned bytes - int a = s[j] & 0xff; - int b = GROUP_ORDER[j] & 0xff; - if (a != b) { - return a < b; - } - } - return false; - } - - /** - * Returns true if the EdDSA {@code signature} with {@code message}, can be verified with - * {@code publicKey}. - */ - public static boolean verify(final byte[] message, final byte[] signature, - final byte[] publicKey) { - try { - if (signature.length != SIGNATURE_LEN) { - return false; - } - if (publicKey.length != PUBLIC_KEY_LEN) { - return false; - } - byte[] s = Arrays.copyOfRange(signature, Field25519.FIELD_LEN, SIGNATURE_LEN); - if (!isSmallerThanGroupOrder(s)) { - return false; - } - MessageDigest digest = MessageDigest.getInstance("SHA-512"); - digest.update(signature, 0, Field25519.FIELD_LEN); - digest.update(publicKey); - digest.update(message); - byte[] h = digest.digest(); - reduce(h); - - XYZT negPublicKey = XYZT.fromBytesNegateVarTime(publicKey); - XYZ xyz = doubleScalarMultVarTime(h, negPublicKey, s); - byte[] expectedR = xyz.toBytes(); - for (int i = 0; i < Field25519.FIELD_LEN; i++) { - if (expectedR[i] != signature[i]) { - return false; - } - } - return true; - } catch (final GeneralSecurityException ignored) { - return false; - } - } -} -- cgit v1.2.3