summaryrefslogtreecommitdiffhomepage
path: root/parser.y
blob: 204b09116ff4bf2a18234aa0cc29b4b68362ff7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*
 * Copyright (C) 2020 Jo-Philipp Wich <jo@mein.io>
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

%token_type {struct ut_opcode *}
%extra_argument {struct ut_state *s}

%nonassoc T_LEXP T_REXP T_LSTM T_RSTM.

%nonassoc T_IF.
%nonassoc T_ELSE.

%left T_COMMA.
%right T_ASBAND T_ASBXOR T_ASBOR.
%right T_ASLEFT T_ASRIGHT.
%right T_ASMUL T_ASDIV T_ASMOD.
%right T_ASADD T_ASSUB.
%right T_ASSIGN.
%right T_QMARK T_COLON.
%left T_OR.
%left T_AND.
%left T_BOR.
%left T_BXOR.
%left T_BAND.
%left T_IN.
%left T_EQ T_NE.
%left T_LT T_LE T_GT T_GE.
%left T_LSHIFT T_RSHIFT.
%left T_ADD T_SUB.
%left T_MUL T_DIV T_MOD.
%right T_NOT T_COMPL.
%right T_INC T_DEC.
%left T_LPAREN T_LBRACK.


%include {
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

#include "ast.h"
#include "lexer.h"
#include "parser.h"

#define YYSTACKDEPTH 0
#define YYNOERRORRECOVERY

#define new_op(type, val, ...) \
	ut_new_op(s, type, val, ##__VA_ARGS__, (void *)1)

#define wrap_op(op, ...) \
	ut_wrap_op(op, ##__VA_ARGS__, (void *)1)

#define append_op ut_append_op

#define no_empty_obj(op) \
	((!op || op->type != T_LBRACE || op->operand[0]) ? op : NULL)

#define new_func(name, args, body) \
	ut_new_func(s, name, args, body)

}

%syntax_error {
	int i;

	s->error.code = UT_ERROR_UNEXPECTED_TOKEN;

	if (TOKEN)
		s->off = TOKEN->off;

	for (i = 0; i < sizeof(tokennames) / sizeof(tokennames[0]); i++)
		if (yy_find_shift_action(yypParser, (YYCODETYPE)i) < YYNSTATE + YYNRULE)
			s->error.info.tokens[i / 64] |= ((unsigned)1 << (i % 64));
}


input ::= chunks(A).									{ s->main = new_func(NULL, NULL, A); }
input ::= .												{ s->main = new_func(NULL, NULL, new_op(T_TEXT, json_object_new_string(""))); }

chunks(A) ::= chunks(B) T_TEXT(C).						{ A = B ? append_op(B, C) : C; }
chunks(A) ::= chunks(B) tplexp(C).						{ A = B ? append_op(B, C) : C; }
chunks(A) ::= chunks(B) stmt(C).						{ A = B ? append_op(B, C) : C; }
chunks(A) ::= T_TEXT(B).								{ A = B; }
chunks(A) ::= tplexp(B).								{ A = B; }
chunks(A) ::= stmt(B).									{ A = B; }

tplexp(A) ::= T_LEXP(B) exp_stmt(C) T_REXP.				{ A = wrap_op(B, C); }

stmts(A) ::= stmts(B) stmt(C).							{ A = B ? append_op(B, C) : C; }
stmts(A) ::= stmt(B).									{ A = B; }

stmt(A) ::= cpd_stmt(B).								{ A = B; }
stmt(A) ::= exp_stmt(B).								{ A = B; }
stmt(A) ::= sel_stmt(B).								{ A = B; }
stmt(A) ::= iter_stmt(B).								{ A = B; }
stmt(A) ::= func_stmt(B).								{ A = B; }
stmt(A) ::= ret_stmt(B).								{ A = B; }
stmt(A) ::= break_stmt(B).								{ A = B; }
stmt(A) ::= decl_stmt(B).								{ A = B; }

//cpd_stmt(A) ::= T_LBRACE T_RBRACE.						{ A = NULL; }
cpd_stmt(A) ::= T_LBRACE stmts(B) T_RBRACE.				{ A = B; }

exp_stmt(A) ::= exp(B) T_SCOL.							{ A = B; }
exp_stmt(A) ::= T_SCOL.									{ A = NULL; }

sel_stmt(A) ::= T_IF(B) T_LPAREN exp(C) T_RPAREN stmt(D) T_ELSE stmt(E).
														{ A = wrap_op(B, C, no_empty_obj(D), no_empty_obj(E)); }
sel_stmt(A) ::= T_IF(B) T_LPAREN exp(C) T_RPAREN stmt(D). [T_IF]
														{ A = wrap_op(B, C, no_empty_obj(D)); }
sel_stmt(A) ::= T_IF(B) T_LPAREN exp(C) T_RPAREN T_COLON chunks(D) T_ELSE chunks(E) T_ENDIF.
														{ A = wrap_op(B, C, D, E); }
sel_stmt(A) ::= T_IF(B) T_LPAREN exp(C) T_RPAREN T_COLON chunks(D) T_ENDIF. [T_IF]
														{ A = wrap_op(B, C, D); }

iter_stmt(A) ::= T_WHILE(B) T_LPAREN exp(C) T_RPAREN stmt(D).
														{ A = wrap_op(B, C, no_empty_obj(D)); }
iter_stmt(A) ::= T_WHILE(B) T_LPAREN exp(C) T_RPAREN T_COLON chunks(D) T_ENDWHILE.
														{ A = wrap_op(B, C, D); }
iter_stmt(A) ::= T_FOR(B) T_LPAREN exp(C) T_RPAREN stmt(D).
														{ A = wrap_op(B, C, NULL, NULL, no_empty_obj(D)); }
iter_stmt(A) ::= T_FOR(B) T_LPAREN exp(C) T_RPAREN T_COLON chunks(D) T_ENDFOR.
														{ A = wrap_op(B, C, NULL, NULL, no_empty_obj(D)); }
iter_stmt(A) ::= T_FOR(B) T_LPAREN exp_stmt(C) exp_stmt(D) T_RPAREN stmt(E).
														{ A = wrap_op(B, C, D, NULL, no_empty_obj(E)); }
iter_stmt(A) ::= T_FOR(B) T_LPAREN exp_stmt(C) exp_stmt(D) exp(E) T_RPAREN stmt(F).
														{ A = wrap_op(B, C, D, E, no_empty_obj(F)); }
iter_stmt(A) ::= T_FOR(B) T_LPAREN exp_stmt(C) exp_stmt(D) T_RPAREN T_COLON chunks(E) T_ENDFOR.
														{ A = wrap_op(B, C, D, NULL, E); }
iter_stmt(A) ::= T_FOR(B) T_LPAREN exp_stmt(C) exp_stmt(D) exp(E) T_RPAREN T_COLON chunks(F) T_ENDFOR.
														{ A = wrap_op(B, C, D, E, F); }

func_stmt(A) ::= T_FUNC T_LABEL(B) T_LPAREN T_RPAREN cpd_stmt(C).
														{ A = new_func(B, NULL, C); }
func_stmt(A) ::= T_FUNC T_LABEL(B) T_LPAREN T_RPAREN empty_object.
														{ A = new_func(B, NULL, NULL); }
func_stmt(A) ::= T_FUNC T_LABEL(B) T_LPAREN T_RPAREN T_COLON chunks(C) T_ENDFUNC.
														{ A = new_func(B, NULL, C); }
func_stmt(A) ::= T_FUNC T_LABEL(B) T_LPAREN args(C) T_RPAREN cpd_stmt(D).
														{ A = new_func(B, C, D); }
func_stmt(A) ::= T_FUNC T_LABEL(B) T_LPAREN args(C) T_RPAREN empty_object.
														{ A = new_func(B, C, NULL); }
func_stmt(A) ::= T_FUNC T_LABEL(B) T_LPAREN args(C) T_RPAREN T_COLON chunks(D) T_ENDFUNC.
														{ A = new_func(B, C, D); }

args(A) ::= args(B) T_COMMA T_LABEL(C).					{ A = append_op(B, C); }
args(A) ::= T_LABEL(B).									{ A = B; }

ret_stmt(A) ::= T_RETURN(B) exp(C) T_SCOL.				{ A = wrap_op(B, C); }
ret_stmt(A) ::= T_RETURN(B) T_SCOL.						{ A = B; }

break_stmt(A) ::= T_BREAK(B) T_SCOL.					{ A = B; }
break_stmt(A) ::= T_CONTINUE(B) T_SCOL.					{ A = B; }

decl_stmt(A) ::= T_LOCAL(B) decls(C) T_SCOL.			{ A = wrap_op(B, C); }

decls(A) ::= decls(B) T_COMMA decl(C).					{ A = append_op(B, C); }
decls(A) ::= decl(B).									{ A = B; }

decl(A) ::= T_LABEL(B) T_ASSIGN(C) ternary_exp(D).		{ A = wrap_op(C, B, D); }
decl(A) ::= T_LABEL(B).									{ A = new_op(T_ASSIGN, NULL, B); }

exp(A) ::= exp(B) T_COMMA assign_exp(C).				{ A = append_op(B, C); }
exp(A) ::= assign_exp(B).								{ A = B; }

assign_exp(A) ::= unary_exp(B) T_ASSIGN(C) ternary_exp(D).
														{ A = wrap_op(C, B, D); }
assign_exp(A) ::= unary_exp(B) T_ASADD ternary_exp(C).	{ A = new_op(T_ADD, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASSUB ternary_exp(C).	{ A = new_op(T_SUB, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASMUL ternary_exp(C).	{ A = new_op(T_MUL, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASDIV ternary_exp(C).	{ A = new_op(T_DIV, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASMOD ternary_exp(C).	{ A = new_op(T_MOD, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASLEFT ternary_exp(C).	{ A = new_op(T_LSHIFT, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASRIGHT ternary_exp(C).
														{ A = new_op(T_RSHIFT, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASBAND ternary_exp(C).	{ A = new_op(T_BAND, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASBXOR ternary_exp(C).	{ A = new_op(T_BXOR, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= unary_exp(B) T_ASBOR ternary_exp(C).	{ A = new_op(T_BOR, NULL, B, C); A = new_op(T_ASSIGN, NULL, B, A); }
assign_exp(A) ::= ternary_exp(B).						{ A = B; }

ternary_exp(A) ::= or_exp(B) T_QMARK(C) assign_exp(D) T_COLON ternary_exp(E).
														{ A = wrap_op(C, B, D, E); }
ternary_exp(A) ::= or_exp(B).							{ A = B; }

or_exp(A) ::= or_exp(B) T_OR(C) and_exp(D).				{ A = wrap_op(C, B, D); }
or_exp(A) ::= and_exp(B).								{ A = B; }

and_exp(A) ::= and_exp(B) T_AND(C) bor_exp(D).			{ A = wrap_op(C, B, D); }
and_exp(A) ::= bor_exp(B).								{ A = B; }

bor_exp(A) ::= bor_exp(B) T_BOR(C) bxor_exp(D).			{ A = wrap_op(C, B, D); }
bor_exp(A) ::= bxor_exp(B).								{ A = B; }

bxor_exp(A) ::= bxor_exp(B) T_BXOR(C) band_exp(D).		{ A = wrap_op(C, B, D); }
bxor_exp(A) ::= band_exp(B).							{ A = B; }

band_exp(A) ::= band_exp(B) T_BAND(C) in_exp(D).		{ A = wrap_op(C, B, D); }
band_exp(A) ::= in_exp(B).								{ A = B; }

in_exp(A) ::= equal_exp(B) T_IN(C) equal_exp(D).		{ A = wrap_op(C, B, D); }
in_exp(A) ::= equal_exp(B).								{ A = B; }

equal_exp(A) ::= equal_exp(B) T_EQ(C) rel_exp(D).		{ A = wrap_op(C, B, D); }
equal_exp(A) ::= equal_exp(B) T_NE(C) rel_exp(D).		{ A = wrap_op(C, B, D); }
equal_exp(A) ::= rel_exp(B).							{ A = B; }

rel_exp(A) ::= rel_exp(B) T_LT(C) shift_exp(D).			{ A = wrap_op(C, B, D); }
rel_exp(A) ::= rel_exp(B) T_LE(C) shift_exp(D).			{ A = wrap_op(C, B, D); }
rel_exp(A) ::= rel_exp(B) T_GT(C) shift_exp(D).			{ A = wrap_op(C, B, D); }
rel_exp(A) ::= rel_exp(B) T_GE(C) shift_exp(D).			{ A = wrap_op(C, B, D); }
rel_exp(A) ::= shift_exp(B).							{ A = B; }

shift_exp(A) ::= shift_exp(B) T_LSHIFT(C) add_exp(D).	{ A = wrap_op(C, B, D); }
shift_exp(A) ::= shift_exp(B) T_RSHIFT(C) add_exp(D).	{ A = wrap_op(C, B, D); }
shift_exp(A) ::= add_exp(B).							{ A = B; }

add_exp(A) ::= add_exp(B) T_ADD(C) mul_exp(D).			{ A = wrap_op(C, B, D); }
add_exp(A) ::= add_exp(B) T_SUB(C) mul_exp(D).			{ A = wrap_op(C, B, D); }
add_exp(A) ::= mul_exp(B).								{ A = B; }

mul_exp(A) ::= mul_exp(B) T_MUL(C) unary_exp(D).		{ A = wrap_op(C, B, D); }
mul_exp(A) ::= mul_exp(B) T_DIV(C) unary_exp(D).		{ A = wrap_op(C, B, D); }
mul_exp(A) ::= mul_exp(B) T_MOD(C) unary_exp(D).		{ A = wrap_op(C, B, D); }
mul_exp(A) ::= unary_exp(B).							{ A = B; }

unary_exp(A) ::= T_INC(B) unary_exp(C). [T_LPAREN]		{ A = wrap_op(B, C); }
unary_exp(A) ::= T_DEC(B) unary_exp(C). [T_LPAREN]		{ A = wrap_op(B, C); }
unary_exp(A) ::= T_ADD(B) unary_exp(C). [T_NOT]			{ A = wrap_op(B, C); }
unary_exp(A) ::= T_SUB(B) unary_exp(C). [T_NOT]			{ A = wrap_op(B, C); }
unary_exp(A) ::= T_COMPL(B) unary_exp(C).				{ A = wrap_op(B, C); }
unary_exp(A) ::= T_NOT(B) unary_exp(C).					{ A = wrap_op(B, C); }
unary_exp(A) ::= postfix_exp(B).						{ A = B; }

postfix_exp(A) ::= unary_exp(B) T_INC(C).				{ A = wrap_op(C, B); A->val = (void *)1; }
postfix_exp(A) ::= unary_exp(B) T_DEC(C).				{ A = wrap_op(C, B); A->val = (void *)1; }
postfix_exp(A) ::= unary_exp(B) T_LPAREN(C) T_RPAREN.	{ A = wrap_op(C, B); }
postfix_exp(A) ::= unary_exp(B) T_LPAREN(C) arg_exp(D) T_RPAREN.
														{ A = wrap_op(C, B, D); }
postfix_exp(A) ::= postfix_exp(B) T_DOT(C) T_LABEL(D).	{ A = wrap_op(C, B, D); }
postfix_exp(A) ::= postfix_exp(B) T_LBRACK(C) assign_exp(D) T_RBRACK.
														{ A = wrap_op(C, B, D); A->val = (void *)1; }
postfix_exp(A) ::= primary_exp(B).						{ A = B; }

primary_exp(A) ::= T_BOOL(B).							{ A = B; }
primary_exp(A) ::= T_NUMBER(B).							{ A = B; }
primary_exp(A) ::= T_DOUBLE(B).							{ A = B; }
primary_exp(A) ::= T_STRING(B).							{ A = B; }
primary_exp(A) ::= T_LABEL(B).							{ A = B; }
primary_exp(A) ::= T_THIS(B).							{ A = B; }
primary_exp(A) ::= array(B).							{ A = B; }
primary_exp(A) ::= object(B).							{ A = B; }
primary_exp(A) ::= T_LPAREN assign_exp(B) T_RPAREN.		{ A = B; }
primary_exp(A) ::= T_FUNC T_LPAREN T_RPAREN empty_object.
														{ A = new_func(NULL, NULL, NULL); }
primary_exp(A) ::= T_FUNC T_LPAREN args(B) T_RPAREN empty_object.
														{ A = new_func(NULL, B, NULL); }
primary_exp(A) ::= T_FUNC T_LPAREN T_RPAREN cpd_stmt(B).
														{ A = new_func(NULL, NULL, B); }
primary_exp(A) ::= T_FUNC T_LPAREN args(B) T_RPAREN cpd_stmt(C).
														{ A = new_func(NULL, B, C); }

array(A) ::= T_LBRACK(B) T_RBRACK.						{ A = B; }
array(A) ::= T_LBRACK(B) exp(C) T_RBRACK.				{ A = wrap_op(B, C); }

object(A) ::= empty_object(B).							{ A = B; }
object(A) ::= T_LBRACE(B) tuples(C) T_RBRACE.			{ A = wrap_op(B, C); }

empty_object(A) ::= T_LBRACE(B) T_RBRACE.				{ A = B; }

tuples(A) ::= tuples(B) T_COMMA tuple(C).				{ A = append_op(B, C); }
tuples(A) ::= tuple(B).									{ A = B; }

tuple(A) ::= T_LABEL(B) T_COLON exp(C).					{ A = append_op(B, C); }
tuple(A) ::= T_STRING(B) T_COLON exp(C).				{ A = append_op(B, C); }

arg_exp(A) ::= arg_exp(B) T_COMMA assign_exp(C).		{ A = append_op(B, C); }
arg_exp(A) ::= assign_exp(B).							{ A = B; }