/* * Copyright (C) 2020-2021 Jo-Philipp Wich * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "compiler.h" #include "chunk.h" #include "vm.h" /* I_* */ #include "source.h" #include "lib.h" /* format_error_context() */ static void uc_compiler_compile_unary(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_binary(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_paren(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_call(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_post_inc(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_constant(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_comma(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_labelexpr(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_function(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_and(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_or(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_dot(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_subscript(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_ternary(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_array(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_object(uc_compiler *compiler, bool assignable); static void uc_compiler_compile_declaration(uc_compiler *compiler); static void uc_compiler_compile_statement(uc_compiler *compiler); static void uc_compiler_compile_expstmt(uc_compiler *compiler); static uc_parse_rule uc_compiler_parse_rules[TK_ERROR + 1] = { [TK_LPAREN] = { uc_compiler_compile_paren, uc_compiler_compile_call, P_CALL }, [TK_SUB] = { uc_compiler_compile_unary, uc_compiler_compile_binary, P_ADD }, [TK_ADD] = { uc_compiler_compile_unary, uc_compiler_compile_binary, P_ADD }, [TK_COMPL] = { uc_compiler_compile_unary, NULL, P_UNARY }, [TK_NOT] = { uc_compiler_compile_unary, NULL, P_UNARY }, [TK_INC] = { uc_compiler_compile_unary, uc_compiler_compile_post_inc, P_INC }, [TK_DEC] = { uc_compiler_compile_unary, uc_compiler_compile_post_inc, P_INC }, [TK_DIV] = { NULL, uc_compiler_compile_binary, P_MUL }, [TK_MUL] = { NULL, uc_compiler_compile_binary, P_MUL }, [TK_MOD] = { NULL, uc_compiler_compile_binary, P_MUL }, [TK_NUMBER] = { uc_compiler_compile_constant, NULL, P_NONE }, [TK_DOUBLE] = { uc_compiler_compile_constant, NULL, P_NONE }, [TK_STRING] = { uc_compiler_compile_constant, NULL, P_NONE }, [TK_BOOL] = { uc_compiler_compile_constant, NULL, P_NONE }, [TK_NULL] = { uc_compiler_compile_constant, NULL, P_NONE }, [TK_THIS] = { uc_compiler_compile_constant, NULL, P_NONE }, [TK_REGEXP] = { uc_compiler_compile_constant, NULL, P_NONE }, [TK_COMMA] = { NULL, uc_compiler_compile_comma, P_COMMA }, [TK_LABEL] = { uc_compiler_compile_labelexpr, NULL, P_NONE }, [TK_FUNC] = { uc_compiler_compile_function, NULL, P_NONE }, [TK_AND] = { NULL, uc_compiler_compile_and, P_AND }, [TK_OR] = { NULL, uc_compiler_compile_or, P_OR }, [TK_BOR] = { NULL, uc_compiler_compile_binary, P_BOR }, [TK_BXOR] = { NULL, uc_compiler_compile_binary, P_BXOR }, [TK_BAND] = { NULL, uc_compiler_compile_binary, P_BAND }, [TK_EQ] = { NULL, uc_compiler_compile_binary, P_EQUAL }, [TK_EQS] = { NULL, uc_compiler_compile_binary, P_EQUAL }, [TK_NE] = { NULL, uc_compiler_compile_binary, P_EQUAL }, [TK_NES] = { NULL, uc_compiler_compile_binary, P_EQUAL }, [TK_LT] = { NULL, uc_compiler_compile_binary, P_COMPARE }, [TK_LE] = { NULL, uc_compiler_compile_binary, P_COMPARE }, [TK_GT] = { NULL, uc_compiler_compile_binary, P_COMPARE }, [TK_GE] = { NULL, uc_compiler_compile_binary, P_COMPARE }, [TK_IN] = { NULL, uc_compiler_compile_binary, P_COMPARE }, [TK_LSHIFT] = { NULL, uc_compiler_compile_binary, P_SHIFT }, [TK_RSHIFT] = { NULL, uc_compiler_compile_binary, P_SHIFT }, [TK_DOT] = { NULL, uc_compiler_compile_dot, P_CALL }, [TK_LBRACK] = { uc_compiler_compile_array, uc_compiler_compile_subscript, P_CALL }, [TK_QMARK] = { NULL, uc_compiler_compile_ternary, P_TERNARY }, [TK_LBRACE] = { uc_compiler_compile_object, NULL, P_NONE }, }; static ssize_t uc_compiler_declare_local(uc_compiler *compiler, json_object *name); static ssize_t uc_compiler_initialize_local(uc_compiler *compiler); static void uc_compiler_init(uc_compiler *compiler, const char *name, size_t srcpos, uc_source *source) { json_object *varname = xjs_new_string("(callee)"); compiler->scope_depth = 0; compiler->function = uc_function_new(name, srcpos, source); compiler->locals.count = 0; compiler->locals.entries = NULL; compiler->upvals.count = 0; compiler->upvals.entries = NULL; compiler->patchlist = NULL; compiler->parent = NULL; compiler->current_srcpos = srcpos; /* reserve stack slot 0 */ uc_compiler_declare_local(compiler, varname); uc_compiler_initialize_local(compiler); uc_value_put(varname); } static uc_chunk * uc_compiler_current_chunk(uc_compiler *compiler) { return &compiler->function->chunk; } __attribute__((format(printf, 3, 0))) static void uc_compiler_syntax_error(uc_compiler *compiler, size_t off, const char *fmt, ...) { size_t line = 0, byte = 0, len = 0; char *context = NULL; char *s, *tmp; va_list ap; if (compiler->parser->synchronizing) return; compiler->parser->synchronizing = true; if (!off) off = uc_function_get_srcpos(compiler->function, uc_compiler_current_chunk(compiler)->count); if (off) { byte = off; line = uc_source_get_line(compiler->function->source, &byte); format_error_context(&context, &len, compiler->function->source, NULL, off); } va_start(ap, fmt); xvasprintf(&s, fmt, ap); va_end(ap); xasprintf(&tmp, "Syntax error: %s\n", s); free(s); s = tmp; if (line) { xasprintf(&tmp, "%sIn line %zu, byte %zu:\n", s, line, byte); free(s); s = tmp; } if (context) { xasprintf(&tmp, "%s%s\n\n", s, context); free(context); free(s); s = tmp; } if (compiler->parser->error) { xasprintf(&tmp, "%s%s", compiler->parser->error, s); free(compiler->parser->error); free(s); compiler->parser->error = tmp; } else { compiler->parser->error = s; } } static size_t uc_compiler_set_srcpos(uc_compiler *compiler, size_t srcpos) { size_t delta; /* ensure that lines counts are strictly increasing */ assert(srcpos == 0 || srcpos >= compiler->current_srcpos); delta = srcpos ? srcpos - compiler->current_srcpos : 0; compiler->current_srcpos += delta; return delta; } static void uc_compiler_parse_advance(uc_compiler *compiler) { bool no_regexp; uc_value_put(compiler->parser->prev.val); compiler->parser->prev = compiler->parser->curr; while (true) { /* Follow JSLint logic and treat a slash after any of the * `(,=:[!&|?{};` characters as the beginning of a regex * literal... */ switch (compiler->parser->prev.type) { case TK_LPAREN: case TK_COMMA: case TK_ASADD: case TK_ASBAND: case TK_ASBOR: case TK_ASBXOR: case TK_ASDIV: case TK_ASLEFT: case TK_ASMOD: case TK_ASMUL: case TK_ASRIGHT: case TK_ASSIGN: case TK_ASSUB: case TK_EQ: case TK_EQS: case TK_GE: case TK_LE: case TK_NE: case TK_NES: case TK_COLON: case TK_LBRACK: case TK_NOT: case TK_AND: case TK_BAND: case TK_OR: case TK_BOR: case TK_QMARK: case TK_LBRACE: case TK_RBRACE: case TK_LSTM: case TK_LEXP: case TK_SCOL: no_regexp = false; break; default: no_regexp = (compiler->parser->prev.type != 0); } compiler->parser->curr = *uc_lexer_next_token(&compiler->parser->lex, no_regexp); if (compiler->parser->curr.type != TK_ERROR) break; uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, "%s", json_object_get_string(compiler->parser->curr.val)); uc_value_put(compiler->parser->curr.val); compiler->parser->curr.val = NULL; } } static void uc_compiler_parse_consume(uc_compiler *compiler, uc_tokentype_t type) { if (compiler->parser->curr.type == type) { uc_compiler_parse_advance(compiler); return; } uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, "Unexpected token\nExpecting %s", uc_get_tokenname(type)); } static bool uc_compiler_parse_check(uc_compiler *compiler, uc_tokentype_t type) { return (compiler->parser->curr.type == type); } static bool uc_compiler_parse_match(uc_compiler *compiler, uc_tokentype_t type) { if (!uc_compiler_parse_check(compiler, type)) return false; uc_compiler_parse_advance(compiler); return true; } static void uc_compiler_parse_synchronize(uc_compiler *compiler) { compiler->parser->synchronizing = false; while (compiler->parser->curr.type != TK_EOF) { if (compiler->parser->prev.type == TK_SCOL) return; switch (compiler->parser->curr.type) { case TK_IF: case TK_FOR: case TK_WHILE: case TK_SWITCH: case TK_FUNC: case TK_TRY: case TK_RETURN: case TK_BREAK: case TK_CONTINUE: case TK_LOCAL: return; default: break; } uc_compiler_parse_advance(compiler); } } static uc_parse_rule * uc_compiler_parse_rule(uc_tokentype_t type) { return &uc_compiler_parse_rules[type]; } static bool uc_compiler_parse_at_assignment_op(uc_compiler *compiler) { switch (compiler->parser->curr.type) { case TK_ASBAND: case TK_ASBXOR: case TK_ASBOR: case TK_ASLEFT: case TK_ASRIGHT: case TK_ASMUL: case TK_ASDIV: case TK_ASMOD: case TK_ASADD: case TK_ASSUB: case TK_ASSIGN: return true; default: return false; } } static void uc_compiler_parse_precedence(uc_compiler *compiler, uc_precedence_t precedence) { uc_parse_rule *rule; bool assignable; uc_compiler_parse_advance(compiler); rule = uc_compiler_parse_rule(compiler->parser->prev.type); if (!rule->prefix) { uc_compiler_syntax_error(compiler, compiler->parser->prev.pos, "Expecting expression"); return; } assignable = (precedence <= P_ASSIGN); rule->prefix(compiler, assignable); while (precedence <= uc_compiler_parse_rule(compiler->parser->curr.type)->precedence) { uc_compiler_parse_advance(compiler); uc_compiler_parse_rule(compiler->parser->prev.type)->infix(compiler, assignable); } if (assignable && uc_compiler_parse_at_assignment_op(compiler)) uc_compiler_syntax_error(compiler, compiler->parser->prev.pos, "Invalid left-hand side expression for assignment"); } static size_t uc_compiler_reladdr(uc_compiler *compiler, size_t from, size_t to) { ssize_t delta = to - from; if (delta < -0x7fffffff || delta > 0x7fffffff) { uc_compiler_syntax_error(compiler, 0, "Jump address too far"); return 0; } return (size_t)(delta + 0x7fffffff); } static size_t uc_compiler_emit_insn(uc_compiler *compiler, size_t srcpos, enum insn_type insn) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t lineoff = uc_compiler_set_srcpos(compiler, srcpos); compiler->last_insn = uc_chunk_add(chunk, (uint8_t)insn, lineoff); return compiler->last_insn; } static size_t uc_compiler_emit_u8(uc_compiler *compiler, size_t srcpos, uint8_t n) { return uc_chunk_add( uc_compiler_current_chunk(compiler), n, uc_compiler_set_srcpos(compiler, srcpos)); } static size_t uc_compiler_emit_s8(uc_compiler *compiler, size_t srcpos, int8_t n) { return uc_chunk_add( uc_compiler_current_chunk(compiler), n + 0x7f, uc_compiler_set_srcpos(compiler, srcpos)); } static size_t uc_compiler_emit_u16(uc_compiler *compiler, size_t srcpos, uint16_t n) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t lineoff = uc_compiler_set_srcpos(compiler, srcpos); uc_chunk_add(chunk, n / 0x100, lineoff); uc_chunk_add(chunk, n % 0x100, 0); return chunk->count - 2; } static size_t uc_compiler_emit_s16(uc_compiler *compiler, size_t srcpos, int16_t n) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t lineoff = uc_compiler_set_srcpos(compiler, srcpos); uint16_t v = n + 0x7fff; uc_chunk_add(chunk, v / 0x100, lineoff); uc_chunk_add(chunk, v % 0x100, 0); return chunk->count - 2; } static size_t uc_compiler_emit_u32(uc_compiler *compiler, size_t srcpos, uint32_t n) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t lineoff = uc_compiler_set_srcpos(compiler, srcpos); uc_chunk_add(chunk, n / 0x1000000, lineoff); uc_chunk_add(chunk, (n / 0x10000) % 0x100, 0); uc_chunk_add(chunk, (n / 0x100) % 0x100, 0); uc_chunk_add(chunk, n % 0x100, 0); return chunk->count - 4; } static size_t uc_compiler_emit_s32(uc_compiler *compiler, size_t srcpos, int32_t n) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t lineoff = uc_compiler_set_srcpos(compiler, srcpos); uint32_t v = n + 0x7fffffff; uc_chunk_add(chunk, v / 0x1000000, lineoff); uc_chunk_add(chunk, (v / 0x10000) % 0x100, 0); uc_chunk_add(chunk, (v / 0x100) % 0x100, 0); uc_chunk_add(chunk, v % 0x100, 0); return chunk->count - 4; } static uint32_t uc_compiler_get_u32(uc_compiler *compiler, size_t off) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); return chunk->entries[off + 0] * 0x1000000 + chunk->entries[off + 1] * 0x10000 + chunk->entries[off + 2] * 0x100 + chunk->entries[off + 3]; } static void uc_compiler_set_u32(uc_compiler *compiler, size_t off, uint32_t n) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); chunk->entries[off + 0] = n / 0x1000000; chunk->entries[off + 1] = (n / 0x10000) % 0x100; chunk->entries[off + 2] = (n / 0x100) % 0x100; chunk->entries[off + 3] = n % 0x100; } static size_t uc_compiler_emit_constant(uc_compiler *compiler, size_t srcpos, json_object *val) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t cidx = uc_chunk_add_constant(chunk, val); uc_compiler_emit_insn(compiler, srcpos, I_LOAD); uc_compiler_emit_u32(compiler, 0, cidx); return cidx; } static size_t uc_compiler_emit_regexp(uc_compiler *compiler, size_t srcpos, json_object *val) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t cidx = uc_chunk_add_constant(chunk, val); uc_compiler_emit_insn(compiler, srcpos, I_LREXP); uc_compiler_emit_u32(compiler, 0, cidx); return cidx; } static size_t uc_compiler_emit_jmp(uc_compiler *compiler, size_t srcpos, uint32_t dest) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); uc_compiler_emit_insn(compiler, srcpos, I_JMP); uc_compiler_emit_u32(compiler, 0, dest ? uc_compiler_reladdr(compiler, chunk->count - 1, dest) : 0); return chunk->count - 5; } static size_t uc_compiler_emit_jmpz(uc_compiler *compiler, size_t srcpos, uint32_t dest) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); uc_compiler_emit_insn(compiler, srcpos, I_JMPZ); uc_compiler_emit_u32(compiler, 0, dest ? uc_compiler_reladdr(compiler, chunk->count - 1, dest) : 0); return chunk->count - 5; } static ssize_t uc_compiler_get_jmpaddr(uc_compiler *compiler, size_t off) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); assert(chunk->entries[off] == I_JMP || chunk->entries[off] == I_JMPZ); assert(off + 4 < chunk->count); return ( chunk->entries[off + 1] * 0x1000000 + chunk->entries[off + 2] * 0x10000 + chunk->entries[off + 3] * 0x100 + chunk->entries[off + 4] ) - 0x7fffffff; } static void uc_compiler_set_jmpaddr(uc_compiler *compiler, size_t off, uint32_t dest) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t addr = uc_compiler_reladdr(compiler, off, dest); assert(chunk->entries[off] == I_JMP || chunk->entries[off] == I_JMPZ); assert(off + 4 < chunk->count); chunk->entries[off + 1] = addr / 0x1000000; chunk->entries[off + 2] = (addr / 0x10000) % 0x100; chunk->entries[off + 3] = (addr / 0x100) % 0x100; chunk->entries[off + 4] = addr % 0x100; } static uc_function * uc_compiler_finish(uc_compiler *compiler) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); uc_locals *locals = &compiler->locals; uc_upvals *upvals = &compiler->upvals; size_t i; uc_compiler_emit_insn(compiler, 0, I_LNULL); uc_compiler_emit_insn(compiler, 0, I_RETURN); for (i = 0; i < locals->count; i++) { uc_chunk_debug_add_variable(chunk, locals->entries[i].from, chunk->count, i, false, locals->entries[i].name); uc_value_put(locals->entries[i].name); } for (i = 0; i < upvals->count; i++) { uc_chunk_debug_add_variable(chunk, 0, chunk->count, i, true, upvals->entries[i].name); uc_value_put(upvals->entries[i].name); } uc_vector_clear(locals); uc_vector_clear(upvals); if (compiler->parser->error) { uc_value_put(compiler->function->header.jso); return NULL; } return compiler->function; } static void uc_compiler_enter_scope(uc_compiler *compiler) { compiler->scope_depth++; } static void uc_compiler_leave_scope(uc_compiler *compiler) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); uc_locals *locals = &compiler->locals; compiler->scope_depth--; while (locals->count > 0 && locals->entries[locals->count - 1].depth > compiler->scope_depth) { locals->count--; uc_chunk_debug_add_variable(chunk, locals->entries[locals->count].from, chunk->count, locals->count, false, locals->entries[locals->count].name); uc_value_put(locals->entries[locals->count].name); locals->entries[locals->count].name = NULL; uc_compiler_emit_insn(compiler, 0, locals->entries[locals->count].captured ? I_CUPV : I_POP); } } static ssize_t uc_compiler_declare_local(uc_compiler *compiler, json_object *name) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); uc_locals *locals = &compiler->locals; const char *str1, *str2; size_t i, len1, len2; //if (compiler->scope_depth == 0) // return; if (locals->count >= 0x00FFFFFF) { uc_compiler_syntax_error(compiler, 0, "Too many local variables"); return -1; } str1 = json_object_get_string(name); len1 = json_object_get_string_len(name); for (i = locals->count; i > 0; i--) { if (locals->entries[i - 1].depth != -1 && locals->entries[i - 1].depth < compiler->scope_depth) break; str2 = json_object_get_string(locals->entries[i - 1].name); len2 = json_object_get_string_len(locals->entries[i - 1].name); if (len1 == len2 && !strcmp(str1, str2)) { if (compiler->parser->config && compiler->parser->config->strict_declarations) { uc_compiler_syntax_error(compiler, 0, "Variable '%s' redeclared", str2); return -1; } return i - 1; } } uc_vector_grow(locals); locals->entries[locals->count].name = uc_value_get(name); locals->entries[locals->count].depth = -1; locals->entries[locals->count].captured = false; locals->entries[locals->count].from = chunk->count; locals->count++; return -1; } static ssize_t uc_compiler_initialize_local(uc_compiler *compiler) { uc_locals *locals = &compiler->locals; locals->entries[locals->count - 1].depth = compiler->scope_depth; return locals->count - 1; } static ssize_t uc_compiler_resolve_local(uc_compiler *compiler, json_object *name) { uc_locals *locals = &compiler->locals; const char *str1, *str2; size_t i, len1, len2; str1 = json_object_get_string(name); len1 = json_object_get_string_len(name); for (i = locals->count; i > 0; i--) { str2 = json_object_get_string(locals->entries[i - 1].name); len2 = json_object_get_string_len(locals->entries[i - 1].name); if (len1 != len2 || strcmp(str1, str2)) continue; if (locals->entries[i - 1].depth == -1) { uc_compiler_syntax_error(compiler, 0, "Can't access lexical declaration '%s' before initialization", str2); return -1; } return i - 1; } return -1; } static ssize_t uc_compiler_add_upval(uc_compiler *compiler, ssize_t idx, bool local, json_object *name) { uc_function *function = compiler->function; uc_upvals *upvals = &compiler->upvals; uc_upval *uv; size_t i; for (i = 0, uv = upvals->entries; i < upvals->count; i++, uv = upvals->entries + i) if (uv->index == idx && uv->local == local) return i; /* XXX: encoding... */ if (upvals->count >= (2 << 14)) { uc_compiler_syntax_error(compiler, 0, "Too many upvalues"); return -1; } uc_vector_grow(upvals); upvals->entries[upvals->count].local = local; upvals->entries[upvals->count].index = idx; upvals->entries[upvals->count].name = uc_value_get(name); function->nupvals++; return upvals->count++; } static ssize_t uc_compiler_resolve_upval(uc_compiler *compiler, json_object *name) { ssize_t idx; if (!compiler->parent) return -1; idx = uc_compiler_resolve_local(compiler->parent, name); if (idx > -1) { compiler->parent->locals.entries[idx].captured = true; return uc_compiler_add_upval(compiler, idx, true, name); } idx = uc_compiler_resolve_upval(compiler->parent, name); if (idx > -1) return uc_compiler_add_upval(compiler, idx, false, name); return -1; } static void uc_compiler_backpatch(uc_compiler *compiler, size_t break_addr, size_t next_addr) { uc_patchlist *pl = compiler->patchlist; uc_patchlist *pp = pl->parent; volatile ssize_t jmpaddr; size_t i; for (i = 0; i < pl->count; i++) { jmpaddr = uc_compiler_get_jmpaddr(compiler, pl->entries[i]); switch (jmpaddr) { case TK_BREAK: /* if we have a break addr, patch instruction */ if (break_addr) { uc_compiler_set_jmpaddr(compiler, pl->entries[i], break_addr); continue; } break; case TK_CONTINUE: /* if we have a continue addr, patch instruction */ if (next_addr) { uc_compiler_set_jmpaddr(compiler, pl->entries[i], next_addr); continue; } break; } /* propagate unhandled patch instructions to parent patch list */ if (pp) { uc_vector_grow(pp); pp->entries[pp->count++] = pl->entries[i]; } } free(pl->entries); compiler->patchlist = pl->parent; } static void uc_compiler_emit_inc_dec(uc_compiler *compiler, uc_tokentype_t toktype, bool is_postfix) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); enum insn_type type; uint32_t cidx = 0; /* determine kind of emitted load instruction and operand value (if any) */ type = chunk->entries[compiler->last_insn]; if (type == I_LVAR || type == I_LLOC || type == I_LUPV) { cidx = uc_compiler_get_u32(compiler, compiler->last_insn + 1); uc_chunk_pop(chunk); uc_chunk_pop(chunk); uc_chunk_pop(chunk); uc_chunk_pop(chunk); uc_chunk_pop(chunk); } /* if we're mutating an object or array field, pop the last lval instruction * to leave object + last field name value on stack */ else if (type == I_LVAL) { uc_chunk_pop(chunk); } else { uc_compiler_syntax_error(compiler, 0, "Invalid increment/decrement operand"); return; } /* add / substract 1 */ uc_compiler_emit_insn(compiler, 0, I_LOAD8); uc_compiler_emit_s8(compiler, 0, (toktype == TK_INC) ? 1 : -1); /* depending on variable type, emit corresponding increment instruction */ switch (type) { case I_LVAR: uc_compiler_emit_insn(compiler, 0, I_UVAR); uc_compiler_emit_u32(compiler, 0, (I_PLUS << 24) | cidx); break; case I_LLOC: uc_compiler_emit_insn(compiler, 0, I_ULOC); uc_compiler_emit_u32(compiler, 0, (I_PLUS << 24) | cidx); break; case I_LUPV: uc_compiler_emit_insn(compiler, 0, I_UUPV); uc_compiler_emit_u32(compiler, 0, (I_PLUS << 24) | cidx); break; case I_LVAL: uc_compiler_emit_insn(compiler, 0, I_UVAL); uc_compiler_emit_u8(compiler, 0, I_PLUS); break; default: break; } /* for post increment or decrement, add/substract 1 to yield final value */ if (is_postfix) { uc_compiler_emit_insn(compiler, 0, I_LOAD8); uc_compiler_emit_s8(compiler, 0, 1); uc_compiler_emit_insn(compiler, 0, (toktype == TK_INC) ? I_SUB : I_ADD); } } static void uc_compiler_compile_unary(uc_compiler *compiler, bool assignable) { uc_tokentype_t type = compiler->parser->prev.type; uc_compiler_parse_precedence(compiler, P_UNARY); switch (type) { case TK_SUB: uc_compiler_emit_insn(compiler, 0, I_MINUS); break; case TK_ADD: uc_compiler_emit_insn(compiler, 0, I_PLUS); break; case TK_NOT: uc_compiler_emit_insn(compiler, 0, I_NOT); break; case TK_COMPL: uc_compiler_emit_insn(compiler, 0, I_COMPL); break; case TK_INC: case TK_DEC: uc_compiler_emit_inc_dec(compiler, type, false); break; default: return; } } static void uc_compiler_compile_binary(uc_compiler *compiler, bool assignable) { uc_tokentype_t type = compiler->parser->prev.type; uc_compiler_parse_precedence(compiler, uc_compiler_parse_rule(type)->precedence + 1); switch (type) { case TK_ADD: uc_compiler_emit_insn(compiler, 0, I_ADD); break; case TK_SUB: uc_compiler_emit_insn(compiler, 0, I_SUB); break; case TK_MUL: uc_compiler_emit_insn(compiler, 0, I_MUL); break; case TK_DIV: uc_compiler_emit_insn(compiler, 0, I_DIV); break; case TK_MOD: uc_compiler_emit_insn(compiler, 0, I_MOD); break; case TK_LSHIFT: uc_compiler_emit_insn(compiler, 0, I_LSHIFT); break; case TK_RSHIFT: uc_compiler_emit_insn(compiler, 0, I_RSHIFT); break; case TK_BAND: uc_compiler_emit_insn(compiler, 0, I_BAND); break; case TK_BXOR: uc_compiler_emit_insn(compiler, 0, I_BXOR); break; case TK_BOR: uc_compiler_emit_insn(compiler, 0, I_BOR); break; case TK_LT: uc_compiler_emit_insn(compiler, 0, I_LT); break; case TK_LE: uc_compiler_emit_insn(compiler, 0, I_GT); uc_compiler_emit_insn(compiler, 0, I_NOT); break; case TK_GT: uc_compiler_emit_insn(compiler, 0, I_GT); break; case TK_GE: uc_compiler_emit_insn(compiler, 0, I_LT); uc_compiler_emit_insn(compiler, 0, I_NOT); break; case TK_EQ: uc_compiler_emit_insn(compiler, 0, I_EQ); break; case TK_NE: uc_compiler_emit_insn(compiler, 0, I_NE); break; case TK_EQS: uc_compiler_emit_insn(compiler, 0, I_EQS); break; case TK_NES: uc_compiler_emit_insn(compiler, 0, I_NES); break; case TK_IN: uc_compiler_emit_insn(compiler, 0, I_IN); break; default: return; } } static enum insn_type uc_compiler_emit_variable_rw(uc_compiler *compiler, json_object *varname, uc_tokentype_t type) { enum insn_type insn; uint32_t sub_insn; ssize_t idx; switch (type) { case TK_ASADD: sub_insn = I_ADD; break; case TK_ASSUB: sub_insn = I_SUB; break; case TK_ASMUL: sub_insn = I_MUL; break; case TK_ASDIV: sub_insn = I_DIV; break; case TK_ASMOD: sub_insn = I_MOD; break; case TK_ASBAND: sub_insn = I_BAND; break; case TK_ASBXOR: sub_insn = I_BXOR; break; case TK_ASBOR: sub_insn = I_BOR; break; case TK_ASLEFT: sub_insn = I_LSHIFT; break; case TK_ASRIGHT: sub_insn = I_RSHIFT; break; default: sub_insn = 0; break; } if (!varname) { insn = sub_insn ? I_UVAL : (type ? I_SVAL : I_LVAL); uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, insn); if (sub_insn) uc_compiler_emit_u8(compiler, compiler->parser->prev.pos, sub_insn); } else if ((idx = uc_compiler_resolve_local(compiler, varname)) > -1) { insn = sub_insn ? I_ULOC : (type ? I_SLOC : I_LLOC); uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, insn); uc_compiler_emit_u32(compiler, compiler->parser->prev.pos, ((sub_insn & 0xff) << 24) | idx); } else if ((idx = uc_compiler_resolve_upval(compiler, varname)) > -1) { insn = sub_insn ? I_UUPV : (type ? I_SUPV : I_LUPV); uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, insn); uc_compiler_emit_u32(compiler, compiler->parser->prev.pos, ((sub_insn & 0xff) << 24) | idx); } else { idx = uc_chunk_add_constant(uc_compiler_current_chunk(compiler), varname); insn = sub_insn ? I_UVAR : (type ? I_SVAR : I_LVAR); uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, insn); uc_compiler_emit_u32(compiler, compiler->parser->prev.pos, ((sub_insn & 0xff) << 24) | idx); } return insn; } static void uc_compiler_compile_expression(uc_compiler *compiler) { uc_compiler_parse_precedence(compiler, P_COMMA); } static bool uc_compiler_compile_assignment(uc_compiler *compiler, json_object *var) { uc_tokentype_t type = compiler->parser->curr.type; if (uc_compiler_parse_at_assignment_op(compiler)) { uc_compiler_parse_advance(compiler); uc_compiler_parse_precedence(compiler, P_ASSIGN); uc_compiler_emit_variable_rw(compiler, var, type); return true; } return false; } static bool uc_compiler_compile_arrowfn(uc_compiler *compiler, json_object *args, bool restarg) { bool array = json_object_is_type(args, json_type_array); uc_compiler fncompiler = {}; size_t i, pos, load_off; uc_function *fn; ssize_t slot; if (!uc_compiler_parse_match(compiler, TK_ARROW)) return false; pos = compiler->parser->prev.pos; uc_compiler_init(&fncompiler, NULL, compiler->parser->prev.pos, compiler->function->source); fncompiler.parent = compiler; fncompiler.parser = compiler->parser; fncompiler.function->arrow = true; fncompiler.function->vararg = args ? restarg : false; fncompiler.function->nargs = array ? json_object_array_length(args) : !!args; uc_compiler_enter_scope(&fncompiler); /* declare local variables for arguments */ for (i = 0; i < fncompiler.function->nargs; i++) { slot = uc_compiler_declare_local(&fncompiler, array ? json_object_array_get_idx(args, i) : args); if (slot != -1) uc_compiler_syntax_error(&fncompiler, pos, "Duplicate argument names are not allowed in this context"); uc_compiler_initialize_local(&fncompiler); } /* parse and compile body */ if (uc_compiler_parse_match(&fncompiler, TK_LBRACE)) { while (!uc_compiler_parse_check(&fncompiler, TK_RBRACE) && !uc_compiler_parse_check(&fncompiler, TK_EOF)) uc_compiler_compile_declaration(&fncompiler); uc_compiler_parse_consume(&fncompiler, TK_RBRACE); /* overwrite last pop result with return */ if (fncompiler.function->chunk.count) { uc_chunk_pop(&fncompiler.function->chunk); uc_compiler_emit_insn(&fncompiler, 0, I_RETURN); } } else { uc_compiler_parse_precedence(&fncompiler, P_ASSIGN); uc_compiler_emit_insn(&fncompiler, 0, I_RETURN); } /* emit load instruction for function value */ uc_compiler_emit_insn(compiler, pos, I_ARFN); load_off = uc_compiler_emit_u32(compiler, 0, 0); /* encode upvalue information */ for (i = 0; i < fncompiler.function->nupvals; i++) uc_compiler_emit_s32(compiler, 0, fncompiler.upvals.entries[i].local ? -(fncompiler.upvals.entries[i].index + 1) : fncompiler.upvals.entries[i].index); /* finalize function compiler */ fn = uc_compiler_finish(&fncompiler); if (fn) uc_compiler_set_u32(compiler, load_off, uc_chunk_add_constant(uc_compiler_current_chunk(compiler), fn->header.jso)); return true; } static uc_tokentype_t uc_compiler_compile_var_or_arrowfn(uc_compiler *compiler, bool assignable, json_object *name) { uc_tokentype_t rv; if (assignable && uc_compiler_compile_assignment(compiler, name)) { rv = TK_ASSIGN; } else if (uc_compiler_compile_arrowfn(compiler, name, false)) { rv = TK_ARROW; } else { uc_compiler_emit_variable_rw(compiler, name, 0); rv = TK_LABEL; } return rv; } static void uc_compiler_compile_paren(uc_compiler *compiler, bool assignable) { json_object *varnames = NULL, *varname; bool maybe_arrowfn = false; bool restarg = false; /* First try to parse a complete parameter expression and remember the * consumed label tokens as we go. */ while (true) { if (uc_compiler_parse_match(compiler, TK_LABEL)) { if (!varnames) varnames = xjs_new_array(); json_object_array_add(varnames, uc_value_get(compiler->parser->prev.val)); } else if (uc_compiler_parse_match(compiler, TK_ELLIP)) { uc_compiler_parse_consume(compiler, TK_LABEL); if (!varnames) varnames = xjs_new_array(); json_object_array_add(varnames, uc_value_get(compiler->parser->prev.val)); uc_compiler_parse_consume(compiler, TK_RPAREN); maybe_arrowfn = true; restarg = true; break; } else if (uc_compiler_parse_check(compiler, TK_COMMA)) { /* Reject consecutive commas */ if (compiler->parser->prev.type == TK_COMMA) uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, "Expecting expression"); uc_compiler_parse_advance(compiler); continue; } else { maybe_arrowfn = uc_compiler_parse_match(compiler, TK_RPAREN); break; } } /* The lhs we parsed so far is elligible for an arrow function arg list, * try to continue compiling into arrow function... */ if (maybe_arrowfn) { /* If we can parse the remainder as arrow function, we're done */ if (uc_compiler_compile_arrowfn(compiler, varnames, restarg)) goto out; /* ... otherwise disallow the `...` spread operator and empty * parenthesized expressions */ if (restarg || !varnames) { uc_compiler_syntax_error(compiler, compiler->parser->prev.pos, "Expecting '=>' after parameter list"); goto out; } } /* If we reach this, the expression we parsed so far cannot be a parameter * list for an arrow function and we might have consumed one or multiple * consecutive labels. */ if (varnames) { /* Get last variable name */ varname = json_object_array_get_idx(varnames, json_object_array_length(varnames) - 1); /* If we consumed the right paren, the expression is complete and we * only need to emit a variable read operation for the last parsed * label since previous read operations are shadowed by subsequent ones * in comma expressions and since pure variable reads are without * side effects. */ if (maybe_arrowfn) { uc_compiler_emit_variable_rw(compiler, varname, 0); goto out; } /* ... otherwise if the last token was a label, try continue parsing as * assignment or arrow function expression and if that fails, as * relational one */ if (compiler->parser->prev.type == TK_LABEL) { if (uc_compiler_compile_var_or_arrowfn(compiler, true, varname) == TK_LABEL) { /* parse operand and rhs */ while (P_TERNARY <= uc_compiler_parse_rule(compiler->parser->curr.type)->precedence) { uc_compiler_parse_advance(compiler); uc_compiler_parse_rule(compiler->parser->prev.type)->infix(compiler, true); } } /* If we're not at the end of the expression, we require a comma. * Also pop intermediate result in this case. */ if (!uc_compiler_parse_check(compiler, TK_RPAREN)) { uc_compiler_emit_insn(compiler, 0, I_POP); uc_compiler_parse_consume(compiler, TK_COMMA); } } } /* When we reach this point, all already complete expression possibilities * have been eliminated and we either need to compile the next, non-label * expression or reached the closing paren. If neither applies, we have a * syntax error. */ if (!uc_compiler_parse_check(compiler, TK_RPAREN)) uc_compiler_compile_expression(compiler); /* At this point we expect the end of the parenthesized expression, anything * else is a syntax error */ uc_compiler_parse_consume(compiler, TK_RPAREN); out: uc_value_put(varnames); } static void uc_compiler_compile_call(uc_compiler *compiler, bool assignable) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); uc_jmplist spreads = {}; enum insn_type type; size_t i, nargs = 0; /* determine the kind of the lhs */ type = chunk->entries[compiler->last_insn]; /* if lhs is a dot or bracket expression, pop the LVAL instruction */ if (type == I_LVAL) uc_chunk_pop(chunk); /* compile arguments */ if (!uc_compiler_parse_check(compiler, TK_RPAREN)) { do { /* if this is a spread arg, remember the argument index */ if (uc_compiler_parse_match(compiler, TK_ELLIP)) { uc_vector_grow(&spreads); spreads.entries[spreads.count++] = nargs; } /* compile argument expression */ uc_compiler_parse_precedence(compiler, P_ASSIGN); nargs++; } while (uc_compiler_parse_match(compiler, TK_COMMA)); } uc_compiler_parse_consume(compiler, TK_RPAREN); /* if lhs is a dot or bracket expression, emit a method call */ if (type == I_LVAL) uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_MCALL); /* else ordinary call */ else uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_CALL); if (nargs > 0xffff || spreads.count > 0xffff) uc_compiler_syntax_error(compiler, compiler->parser->prev.pos, "Too many function call arguments"); /* encode ordinary (low 16 bit) and spread argument (high 16 bit) count */ uc_compiler_emit_u32(compiler, 0, ((spreads.count & 0xffff) << 16) | nargs); /* encode spread arg positions */ for (i = 0; i < spreads.count; i++) uc_compiler_emit_u16(compiler, 0, nargs - spreads.entries[i] - 1); uc_vector_clear(&spreads); } static void uc_compiler_compile_post_inc(uc_compiler *compiler, bool assignable) { uc_compiler_emit_inc_dec(compiler, compiler->parser->prev.type, true); } static void uc_compiler_compile_constant(uc_compiler *compiler, bool assignable) { int64_t n; switch (compiler->parser->prev.type) { case TK_THIS: uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_LTHIS); break; case TK_NULL: uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_LNULL); break; case TK_BOOL: uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, json_object_get_boolean(compiler->parser->prev.val) ? I_LTRUE : I_LFALSE); break; case TK_DOUBLE: case TK_STRING: uc_compiler_emit_constant(compiler, compiler->parser->prev.pos, compiler->parser->prev.val); break; case TK_REGEXP: uc_compiler_emit_regexp(compiler, compiler->parser->prev.pos, compiler->parser->prev.val); break; case TK_NUMBER: n = json_object_get_int64(compiler->parser->prev.val); if (n >= -0x7f && n <= 0x7f) { uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_LOAD8); uc_compiler_emit_s8(compiler, compiler->parser->prev.pos, n); } else if (n >= -0x7fff && n <= 0x7fff) { uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_LOAD16); uc_compiler_emit_s16(compiler, compiler->parser->prev.pos, n); } else if (n >= -0x7fffffff && n <= 0x7fffffff) { uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_LOAD32); uc_compiler_emit_s32(compiler, compiler->parser->prev.pos, n); } else { uc_compiler_emit_constant(compiler, compiler->parser->prev.pos, compiler->parser->prev.val); } break; default: break; } } static void uc_compiler_compile_comma(uc_compiler *compiler, bool assignable) { uc_compiler_emit_insn(compiler, 0, I_POP); uc_compiler_parse_precedence(compiler, P_ASSIGN); } static void uc_compiler_compile_labelexpr(uc_compiler *compiler, bool assignable) { json_object *label = uc_value_get(compiler->parser->prev.val); uc_compiler_compile_var_or_arrowfn(compiler, assignable, label); uc_value_put(label); } static bool uc_compiler_compile_delimitted_block(uc_compiler *compiler, uc_tokentype_t endtype) { while (!uc_compiler_parse_check(compiler, endtype) && !uc_compiler_parse_check(compiler, TK_EOF)) uc_compiler_compile_declaration(compiler); return uc_compiler_parse_check(compiler, endtype); } static void uc_compiler_compile_function(uc_compiler *compiler, bool assignable) { uc_compiler fncompiler = {}; json_object *name = NULL; ssize_t slot = -1, pos; uc_tokentype_t type; size_t i, load_off; uc_function *fn; pos = compiler->parser->prev.pos; type = compiler->parser->prev.type; if (uc_compiler_parse_match(compiler, TK_LABEL)) { name = compiler->parser->prev.val; /* Named functions are syntactic sugar for local variable declaration * with function value assignment. If a name token was encountered, * initialize a local variable for it... */ slot = uc_compiler_declare_local(compiler, name); if (slot == -1) uc_compiler_initialize_local(compiler); } uc_compiler_init(&fncompiler, name ? json_object_get_string(name) : NULL, compiler->parser->prev.pos, compiler->function->source); fncompiler.parent = compiler; fncompiler.parser = compiler->parser; uc_compiler_parse_consume(&fncompiler, TK_LPAREN); uc_compiler_enter_scope(&fncompiler); /* compile argument specification */ while (true) { if (uc_compiler_parse_check(&fncompiler, TK_RPAREN)) break; if (uc_compiler_parse_match(&fncompiler, TK_ELLIP)) fncompiler.function->vararg = true; if (uc_compiler_parse_match(&fncompiler, TK_LABEL)) { fncompiler.function->nargs++; uc_compiler_declare_local(&fncompiler, fncompiler.parser->prev.val); uc_compiler_initialize_local(&fncompiler); if (fncompiler.function->vararg || !uc_compiler_parse_match(&fncompiler, TK_COMMA)) break; } else { uc_compiler_syntax_error(&fncompiler, fncompiler.parser->curr.pos, "Expecting Label"); return; } } uc_compiler_parse_consume(&fncompiler, TK_RPAREN); /* parse and compile function body */ if (uc_compiler_parse_match(&fncompiler, TK_COLON)) { uc_compiler_compile_delimitted_block(&fncompiler, TK_ENDFUNC); uc_compiler_parse_consume(&fncompiler, TK_ENDFUNC); } else if (uc_compiler_parse_match(&fncompiler, TK_LBRACE)) { uc_compiler_compile_delimitted_block(&fncompiler, TK_RBRACE); uc_compiler_parse_consume(&fncompiler, TK_RBRACE); } else { uc_compiler_syntax_error(&fncompiler, fncompiler.parser->curr.pos, "Expecting '{' or ':' after function parameters"); } /* emit load instruction for function value */ uc_compiler_emit_insn(compiler, pos, (type == TK_ARROW) ? I_ARFN : I_CLFN); load_off = uc_compiler_emit_u32(compiler, 0, 0); /* encode upvalue information */ for (i = 0; i < fncompiler.function->nupvals; i++) uc_compiler_emit_s32(compiler, 0, fncompiler.upvals.entries[i].local ? -(fncompiler.upvals.entries[i].index + 1) : fncompiler.upvals.entries[i].index); /* finalize function compiler */ fn = uc_compiler_finish(&fncompiler); if (fn) uc_compiler_set_u32(compiler, load_off, uc_chunk_add_constant(uc_compiler_current_chunk(compiler), fn->header.jso)); /* if a local variable of the same name already existed, overwrite its value * with the compiled function here */ if (slot != -1) { uc_compiler_emit_insn(compiler, 0, I_SLOC); uc_compiler_emit_u32(compiler, 0, slot); uc_compiler_emit_insn(compiler, 0, I_POP); } } static void uc_compiler_compile_and(uc_compiler *compiler, bool assignable) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t jmpz_off; uc_compiler_emit_insn(compiler, 0, I_COPY); uc_compiler_emit_u8(compiler, 0, 0); jmpz_off = uc_compiler_emit_jmpz(compiler, 0, 0); uc_compiler_emit_insn(compiler, 0, I_POP); uc_compiler_parse_precedence(compiler, P_AND); uc_compiler_set_jmpaddr(compiler, jmpz_off, chunk->count); } static void uc_compiler_compile_or(uc_compiler *compiler, bool assignable) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t jmpz_off, jmp_off; uc_compiler_emit_insn(compiler, 0, I_COPY); uc_compiler_emit_u8(compiler, 0, 0); jmpz_off = uc_compiler_emit_jmpz(compiler, 0, 0); jmp_off = uc_compiler_emit_jmp(compiler, 0, 0); uc_compiler_set_jmpaddr(compiler, jmpz_off, chunk->count); uc_compiler_emit_insn(compiler, 0, I_POP); uc_compiler_parse_precedence(compiler, P_OR); uc_compiler_set_jmpaddr(compiler, jmp_off, chunk->count); } static void uc_compiler_compile_dot(uc_compiler *compiler, bool assignable) { /* parse label lhs */ uc_compiler_parse_consume(compiler, TK_LABEL); uc_compiler_emit_constant(compiler, compiler->parser->prev.pos, compiler->parser->prev.val); /* depending on context, compile into I_UVAL, I_SVAL or I_LVAL operation */ if (!assignable || !uc_compiler_compile_assignment(compiler, NULL)) uc_compiler_emit_variable_rw(compiler, NULL, 0); } static void uc_compiler_compile_subscript(uc_compiler *compiler, bool assignable) { /* compile lhs */ uc_compiler_compile_expression(compiler); uc_compiler_parse_consume(compiler, TK_RBRACK); /* depending on context, compile into I_UVAL, I_SVAL or I_LVAL operation */ if (!assignable || !uc_compiler_compile_assignment(compiler, NULL)) uc_compiler_emit_variable_rw(compiler, NULL, 0); } static void uc_compiler_compile_ternary(uc_compiler *compiler, bool assignable) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t jmpz_off, jmp_off; /* jump to false branch */ jmpz_off = uc_compiler_emit_jmpz(compiler, 0, 0); /* compile true branch */ uc_compiler_parse_precedence(compiler, P_ASSIGN); /* jump after false branch */ jmp_off = uc_compiler_emit_jmp(compiler, 0, 0); uc_compiler_parse_consume(compiler, TK_COLON); /* compile false branch */ uc_compiler_set_jmpaddr(compiler, jmpz_off, chunk->count); uc_compiler_parse_precedence(compiler, P_TERNARY); uc_compiler_set_jmpaddr(compiler, jmp_off, chunk->count); } static void uc_compiler_compile_array(uc_compiler *compiler, bool assignable) { size_t hint_off, hint_count = 0, len = 0; /* create empty array on stack */ uc_compiler_emit_insn(compiler, 0, I_NARR); hint_off = uc_compiler_emit_u32(compiler, 0, 0); /* parse initializer values */ do { if (uc_compiler_parse_check(compiler, TK_RBRACK)) { break; } else if (uc_compiler_parse_match(compiler, TK_ELLIP)) { /* push items on stack so far... */ if (len > 0) { uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_PARR); uc_compiler_emit_u32(compiler, 0, len); len = 0; } /* compile spread value expression */ uc_compiler_parse_precedence(compiler, P_ASSIGN); /* emit merge operation */ uc_compiler_emit_insn(compiler, 0, I_MARR); } else { /* push items on stack so far... */ if (len >= 0xffffffff) { uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_PARR); uc_compiler_emit_u32(compiler, 0, len); len = 0; } /* compile item value expression */ uc_compiler_parse_precedence(compiler, P_ASSIGN); hint_count++; len++; } } while (uc_compiler_parse_match(compiler, TK_COMMA)); uc_compiler_parse_consume(compiler, TK_RBRACK); /* push items on stack */ if (len > 0) { uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_PARR); uc_compiler_emit_u32(compiler, 0, len); } /* set initial size hint */ uc_compiler_set_u32(compiler, hint_off, hint_count); } static void uc_compiler_compile_object(uc_compiler *compiler, bool assignable) { size_t hint_off, hint_count = 0, len = 0; /* create empty object on stack */ uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_NOBJ); hint_off = uc_compiler_emit_u32(compiler, 0, 0); /* parse initializer values */ do { /* End of object literal */ if (uc_compiler_parse_check(compiler, TK_RBRACE)) break; /* Spread operator */ if (uc_compiler_parse_match(compiler, TK_ELLIP)) { /* set items on stack so far... */ if (len > 0) { uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_SOBJ); uc_compiler_emit_u32(compiler, 0, len); len = 0; } /* compile spread value expression */ uc_compiler_parse_precedence(compiler, P_ASSIGN); /* emit merge operation */ uc_compiler_emit_insn(compiler, 0, I_MOBJ); continue; } /* Computed property name */ if (uc_compiler_parse_match(compiler, TK_LBRACK)) { /* parse property name expression */ uc_compiler_parse_precedence(compiler, P_ASSIGN); /* cosume closing bracket and colon */ uc_compiler_parse_consume(compiler, TK_RBRACK); uc_compiler_parse_consume(compiler, TK_COLON); /* parse value expression */ uc_compiler_parse_precedence(compiler, P_ASSIGN); } /* Property/value tuple or property shorthand */ else { /* parse key expression */ if (!uc_compiler_parse_match(compiler, TK_LABEL) && !uc_compiler_parse_match(compiler, TK_STRING)) uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, "Expecting label"); /* load label */ uc_compiler_emit_constant(compiler, compiler->parser->prev.pos, compiler->parser->prev.val); /* If the property name is a plain label followed by a comma or * closing curly brace, treat it as ES2015 property shorthand * notation... */ if (compiler->parser->prev.type == TK_LABEL && (uc_compiler_parse_check(compiler, TK_COMMA) || uc_compiler_parse_check(compiler, TK_RBRACE))) { uc_compiler_emit_variable_rw(compiler, compiler->parser->prev.val, 0); } /* ... otherwise treat it as ordinary `key: value` tuple */ else { uc_compiler_parse_consume(compiler, TK_COLON); /* parse value expression */ uc_compiler_parse_precedence(compiler, P_ASSIGN); } } /* set items on stack so far... */ if (len >= 0xfffffffe) { uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_SOBJ); uc_compiler_emit_u32(compiler, 0, len); len = 0; } hint_count += 2; len += 2; } while (uc_compiler_parse_match(compiler, TK_COMMA)); uc_compiler_parse_consume(compiler, TK_RBRACE); /* set items on stack */ if (len > 0) { uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_SOBJ); uc_compiler_emit_u32(compiler, 0, len); len = 0; } /* set initial size hint */ uc_compiler_set_u32(compiler, hint_off, hint_count); } static void uc_compiler_declare_local_null(uc_compiler *compiler, size_t srcpos, json_object *varname) { ssize_t existing_slot = uc_compiler_declare_local(compiler, varname); uc_compiler_emit_insn(compiler, srcpos, I_LNULL); if (existing_slot == -1) { uc_compiler_initialize_local(compiler); } else { uc_compiler_emit_insn(compiler, 0, I_SLOC); uc_compiler_emit_u32(compiler, 0, existing_slot); uc_compiler_emit_insn(compiler, 0, I_POP); } } static size_t uc_compiler_declare_internal(uc_compiler *compiler, size_t srcpos, const char *name) { #if 0 ssize_t existing_slot; json_object *n; bool strict; n = xjs_new_string(name); strict = compiler->strict_declarations; compiler->strict_declarations = false; existing_slot = uc_compiler_declare_local(compiler, n); compiler->strict_declarations = strict; uc_compiler_emit_insn(compiler, srcpos, I_LNULL); if (existing_slot == -1) { uc_value_put(n); return uc_compiler_initialize_local(compiler); } else { uc_value_put(n); uc_compiler_emit_insn(compiler, 0, I_SLOC); uc_compiler_emit_u32(compiler, 0, existing_slot); uc_compiler_emit_insn(compiler, 0, I_POP); return existing_slot; } #else uc_chunk *chunk = uc_compiler_current_chunk(compiler); uc_locals *locals = &compiler->locals; //uc_compiler_emit_insn(compiler, srcpos, I_LNULL); uc_vector_grow(locals); locals->entries[locals->count].name = xjs_new_string(name); locals->entries[locals->count].depth = compiler->scope_depth; locals->entries[locals->count].captured = false; locals->entries[locals->count].from = chunk->count; return locals->count++; #endif } static void uc_compiler_compile_local(uc_compiler *compiler) { ssize_t slot; do { /* parse variable name */ uc_compiler_parse_consume(compiler, TK_LABEL); /* declare local variable */ slot = uc_compiler_declare_local(compiler, compiler->parser->prev.val); /* if followed by '=', parse initializer expression */ if (uc_compiler_parse_match(compiler, TK_ASSIGN)) uc_compiler_parse_precedence(compiler, P_ASSIGN); /* otherwise load implicit null */ else uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_LNULL); /* initialize local */ if (slot == -1) { uc_compiler_initialize_local(compiler); } /* if the variable was redeclared, overwrite it */ else { uc_compiler_emit_insn(compiler, 0, I_SLOC); uc_compiler_emit_u32(compiler, 0, slot); uc_compiler_emit_insn(compiler, 0, I_POP); } } while (uc_compiler_parse_match(compiler, TK_COMMA)); uc_compiler_parse_consume(compiler, TK_SCOL); } static uc_tokentype_t uc_compiler_compile_altifblock(uc_compiler *compiler) { while (true) { switch (compiler->parser->curr.type) { case TK_ELIF: case TK_ELSE: case TK_ENDIF: case TK_EOF: return compiler->parser->curr.type; default: uc_compiler_compile_declaration(compiler); break; } } return 0; } static void uc_compiler_compile_if(uc_compiler *compiler) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t jmpz_off, jmp_off, i; bool expect_endif = false; uc_jmplist elifs = {}; uc_tokentype_t type; /* parse & compile condition expression */ uc_compiler_parse_consume(compiler, TK_LPAREN); uc_compiler_compile_expression(compiler); uc_compiler_parse_consume(compiler, TK_RPAREN); /* conditional jump to else/elif branch */ jmpz_off = uc_compiler_emit_jmpz(compiler, 0, 0); if (uc_compiler_parse_match(compiler, TK_COLON)) { while (true) { /* compile elsif or else branch */ type = uc_compiler_compile_altifblock(compiler); /* we just compiled an elsif block */ if (!expect_endif && type == TK_ELIF) { /* emit jump to skip to the end */ uc_vector_grow(&elifs); elifs.entries[elifs.count++] = uc_compiler_emit_jmp(compiler, 0, 0); /* point previous conditional jump to beginning of branch */ uc_compiler_set_jmpaddr(compiler, jmpz_off, chunk->count); /* parse & compile elsif condition */ uc_compiler_parse_advance(compiler); uc_compiler_parse_consume(compiler, TK_LPAREN); uc_compiler_compile_expression(compiler); uc_compiler_parse_consume(compiler, TK_RPAREN); uc_compiler_parse_consume(compiler, TK_COLON); /* conditional jump to else/elif branch */ jmpz_off = uc_compiler_emit_jmpz(compiler, 0, 0); } else if (!expect_endif && type == TK_ELSE) { /* emit jump to skip to the end */ uc_vector_grow(&elifs); elifs.entries[elifs.count++] = uc_compiler_emit_jmp(compiler, 0, 0); /* point previous conditional jump to beginning of branch */ uc_compiler_set_jmpaddr(compiler, jmpz_off, chunk->count); jmpz_off = 0; /* skip "else" keyword */ uc_compiler_parse_advance(compiler); expect_endif = true; } else if (type == TK_ENDIF) { /* if no else clause, point previous conditional jump after block */ if (jmpz_off) uc_compiler_set_jmpaddr(compiler, jmpz_off, chunk->count); /* patch the elif branch jumps to point here after the else */ for (i = 0; i < elifs.count; i++) uc_compiler_set_jmpaddr(compiler, elifs.entries[i], chunk->count); /* skip the "endif" keyword */ uc_compiler_parse_advance(compiler); break; } else { uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, expect_endif ? "Expecting 'endif'" : "Expecting 'elif', 'else' or 'endif'"); break; } } uc_vector_clear(&elifs); } else { /* compile true branch */ uc_compiler_compile_statement(compiler); /* ... when present, handle false branch */ if (uc_compiler_parse_match(compiler, TK_ELSE)) { /* jump to skip else branch */ jmp_off = uc_compiler_emit_jmp(compiler, 0, 0); /* set conditional jump address */ uc_compiler_set_jmpaddr(compiler, jmpz_off, chunk->count); /* compile false branch */ uc_compiler_compile_statement(compiler); /* set else skip jump address */ uc_compiler_set_jmpaddr(compiler, jmp_off, chunk->count); } /* ... otherwise point the conditional jump after the true branch */ else { uc_compiler_set_jmpaddr(compiler, jmpz_off, chunk->count); } } } static void uc_compiler_compile_while(uc_compiler *compiler) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t cond_off, jmpz_off, end_off; uc_patchlist p = {}; p.parent = compiler->patchlist; compiler->patchlist = &p; cond_off = chunk->count; /* parse & compile loop condition */ uc_compiler_parse_consume(compiler, TK_LPAREN); uc_compiler_compile_expression(compiler); uc_compiler_parse_consume(compiler, TK_RPAREN); /* conditional jump to end */ jmpz_off = uc_compiler_emit_jmpz(compiler, 0, 0); /* compile loop body */ if (uc_compiler_parse_match(compiler, TK_COLON)) { if (!uc_compiler_compile_delimitted_block(compiler, TK_ENDWHILE)) uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, "Expecting 'endwhile'"); else uc_compiler_parse_advance(compiler); } else { uc_compiler_compile_statement(compiler); } end_off = chunk->count; /* jump back to condition */ uc_compiler_emit_jmp(compiler, 0, cond_off); /* set conditional jump target */ uc_compiler_set_jmpaddr(compiler, jmpz_off, chunk->count); /* patch up break/continue */ uc_compiler_backpatch(compiler, chunk->count, end_off); } static void uc_compiler_compile_for_in(uc_compiler *compiler, bool local, uc_token *kvar, uc_token *vvar) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t skip_jmp, test_jmp, key_slot, val_slot; uc_patchlist p = {}; p.parent = compiler->patchlist; compiler->patchlist = &p; uc_compiler_enter_scope(compiler); /* declare internal loop variables */ uc_compiler_emit_insn(compiler, 0, I_LNULL); key_slot = uc_compiler_declare_internal(compiler, 0, "(for in key)"); uc_compiler_emit_insn(compiler, 0, I_LNULL); val_slot = uc_compiler_declare_internal(compiler, 0, "(for in value)"); /* declare loop variables */ if (local) { uc_compiler_declare_local_null(compiler, kvar->pos, kvar->val); if (vvar) uc_compiler_declare_local_null(compiler, vvar->pos, vvar->val); } /* value to iterate */ uc_compiler_compile_expression(compiler); uc_compiler_parse_consume(compiler, TK_RPAREN); uc_compiler_emit_insn(compiler, 0, I_SLOC); uc_compiler_emit_u32(compiler, 0, val_slot); /* initial key value */ uc_compiler_emit_insn(compiler, 0, I_LNULL); uc_compiler_emit_insn(compiler, 0, I_SLOC); uc_compiler_emit_u32(compiler, 0, key_slot); /* jump over variable read for first cycle */ skip_jmp = uc_compiler_emit_jmp(compiler, 0, 0); /* read value */ uc_compiler_emit_insn(compiler, 0, I_LLOC); uc_compiler_emit_u32(compiler, 0, val_slot); /* read key */ uc_compiler_emit_insn(compiler, 0, I_LLOC); uc_compiler_emit_u32(compiler, 0, key_slot); /* backpatch skip jump */ uc_compiler_set_jmpaddr(compiler, skip_jmp, chunk->count); /* load loop variable and get next key from object */ uc_compiler_emit_insn(compiler, 0, vvar ? I_NEXTKV : I_NEXTK); /* set internal key variable */ uc_compiler_emit_insn(compiler, 0, I_SLOC); uc_compiler_emit_u32(compiler, 0, key_slot); /* test for != null */ uc_compiler_emit_insn(compiler, 0, I_LNULL); uc_compiler_emit_insn(compiler, 0, I_NES); /* jump after loop body if no next key */ test_jmp = uc_compiler_emit_jmpz(compiler, 0, 0); /* set key and value variables */ if (vvar) { uc_compiler_emit_variable_rw(compiler, vvar->val, TK_ASSIGN); uc_compiler_emit_insn(compiler, 0, I_POP); } /* set key variable */ uc_compiler_emit_variable_rw(compiler, kvar->val, TK_ASSIGN); uc_compiler_emit_insn(compiler, 0, I_POP); /* compile loop body */ if (uc_compiler_parse_match(compiler, TK_COLON)) { if (!uc_compiler_compile_delimitted_block(compiler, TK_ENDFOR)) uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, "Expecting 'endfor'"); else uc_compiler_parse_advance(compiler); } else { uc_compiler_compile_statement(compiler); } /* jump back to retrieve next key */ uc_compiler_emit_jmp(compiler, 0, skip_jmp + 5); /* back patch conditional jump */ uc_compiler_set_jmpaddr(compiler, test_jmp, chunk->count); /* patch up break/continue */ uc_compiler_backpatch(compiler, chunk->count, skip_jmp + 5); /* pop loop variables */ uc_compiler_emit_insn(compiler, 0, I_POP); if (vvar) uc_compiler_emit_insn(compiler, 0, I_POP); uc_compiler_leave_scope(compiler); } static void uc_compiler_compile_for_count(uc_compiler *compiler, bool local, uc_token *var) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t test_off = 0, incr_off, skip_off, cond_off = 0; uc_patchlist p = {}; p.parent = compiler->patchlist; compiler->patchlist = &p; uc_compiler_enter_scope(compiler); /* Initializer ---------------------------------------------------------- */ /* We parsed a `local x` or `local x, y` expression, so (re)declare * last label as local initializer variable */ if (local) uc_compiler_declare_local_null(compiler, var->pos, var->val); /* If we parsed at least on label, try continue parsing as variable * expression... */ if (var) { uc_compiler_compile_labelexpr(compiler, true); uc_compiler_emit_insn(compiler, 0, I_POP); /* If followed by a comma, continue parsing expression */ if (uc_compiler_parse_match(compiler, TK_COMMA)) { uc_compiler_compile_expression(compiler); uc_compiler_emit_insn(compiler, 0, I_POP); } } /* ... otherwise try parsing an entire expression (which might be absent) */ else if (!uc_compiler_parse_check(compiler, TK_SCOL)) { uc_compiler_compile_expression(compiler); uc_compiler_emit_insn(compiler, 0, I_POP); } uc_compiler_parse_consume(compiler, TK_SCOL); /* Condition ------------------------------------------------------------ */ if (!uc_compiler_parse_check(compiler, TK_SCOL)) { cond_off = chunk->count; uc_compiler_compile_expression(compiler); test_off = uc_compiler_emit_jmpz(compiler, 0, 0); } uc_compiler_parse_consume(compiler, TK_SCOL); /* jump over incrementer */ skip_off = uc_compiler_emit_jmp(compiler, 0, 0); /* Incrementer ---------------------------------------------------------- */ incr_off = chunk->count; if (!uc_compiler_parse_check(compiler, TK_RPAREN)) { uc_compiler_compile_expression(compiler); uc_compiler_emit_insn(compiler, 0, I_POP); } uc_compiler_parse_consume(compiler, TK_RPAREN); /* if we have a condition, jump back to it, else continue to the loop body */ if (cond_off) uc_compiler_emit_jmp(compiler, 0, cond_off); /* back patch skip address */ uc_compiler_set_jmpaddr(compiler, skip_off, chunk->count); /* Body ----------------------------------------------------------------- */ if (uc_compiler_parse_match(compiler, TK_COLON)) { if (!uc_compiler_compile_delimitted_block(compiler, TK_ENDFOR)) uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, "Expecting 'endfor'"); else uc_compiler_parse_advance(compiler); } else { uc_compiler_compile_statement(compiler); } /* jump back to incrementer */ uc_compiler_emit_jmp(compiler, 0, incr_off); /* back patch conditional jump */ if (test_off) uc_compiler_set_jmpaddr(compiler, test_off, chunk->count); /* patch up break/continue */ uc_compiler_backpatch(compiler, chunk->count, incr_off); uc_compiler_leave_scope(compiler); } static void uc_compiler_compile_for(uc_compiler *compiler) { uc_token keyvar = {}, valvar = {}; bool local; uc_compiler_parse_consume(compiler, TK_LPAREN); /* check the next few tokens and see if we have either a * `let x in` / `let x, y` expression or an ordinary initializer * statement */ local = uc_compiler_parse_match(compiler, TK_LOCAL); if (local && !uc_compiler_parse_check(compiler, TK_LABEL)) uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, "Expecting label after 'local'"); if (uc_compiler_parse_match(compiler, TK_LABEL)) { keyvar = compiler->parser->prev; uc_value_get(keyvar.val); if (uc_compiler_parse_match(compiler, TK_COMMA)) { uc_compiler_parse_consume(compiler, TK_LABEL); valvar = compiler->parser->prev; uc_value_get(valvar.val); } /* is a for-in loop */ if (uc_compiler_parse_match(compiler, TK_IN)) { uc_compiler_compile_for_in(compiler, local, &keyvar, valvar.type ? &valvar : NULL); goto out; } } /* * The previous expression ruled out a for-in loop, so continue parsing * as counting for loop... */ uc_compiler_compile_for_count(compiler, local, valvar.val ? &valvar : (keyvar.val ? &keyvar : NULL)); out: uc_value_put(keyvar.val); uc_value_put(valvar.val); } static void uc_compiler_compile_switch(uc_compiler *compiler) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t i, first_jmp, skip_jmp, next_jmp, default_off = 0; bool in_case = false; uc_jmplist jmps = {}; uc_patchlist p = {}; p.parent = compiler->patchlist; compiler->patchlist = &p; uc_compiler_enter_scope(compiler); /* parse and compile match value */ uc_compiler_parse_consume(compiler, TK_LPAREN); uc_compiler_compile_expression(compiler); uc_compiler_parse_consume(compiler, TK_RPAREN); uc_compiler_parse_consume(compiler, TK_LBRACE); uc_compiler_declare_internal(compiler, 0, "(switch value)"); /* skip over first condition */ first_jmp = uc_compiler_emit_jmp(compiler, 0, 0); /* parse and compile case matches */ while (!uc_compiler_parse_check(compiler, TK_RBRACE) && !uc_compiler_parse_check(compiler, TK_EOF)) { /* handle `default:` */ if (uc_compiler_parse_match(compiler, TK_DEFAULT)) { if (default_off) { uc_compiler_syntax_error(compiler, compiler->parser->prev.pos, "more than one switch default case"); return; } uc_compiler_parse_consume(compiler, TK_COLON); /* remember address of default branch */ default_off = chunk->count; in_case = true; } /* handle `case …:` */ else if (uc_compiler_parse_match(compiler, TK_CASE)) { /* jump over `case …:` label */ uc_vector_grow(&jmps); jmps.entries[jmps.count++] = uc_compiler_emit_jmp(compiler, 0, 0); /* copy condition value */ uc_compiler_emit_insn(compiler, 0, I_COPY); uc_compiler_emit_u8(compiler, 0, 0); /* compile case value expression */ uc_compiler_compile_expression(compiler); uc_compiler_parse_consume(compiler, TK_COLON); /* strict equality test */ uc_compiler_emit_insn(compiler, 0, I_EQS); /* on inequality, jump to next condition */ uc_vector_grow(&jmps); jmps.entries[jmps.count++] = uc_compiler_emit_jmpz(compiler, 0, 0); in_case = true; } /* handle interleaved statement */ else if (in_case) { uc_compiler_compile_declaration(compiler); } /* a statement or expression preceeding any `default` or `case` is a * syntax error */ else { uc_compiler_syntax_error(compiler, compiler->parser->curr.pos, "Expecting 'case' or 'default'"); return; } } uc_compiler_parse_consume(compiler, TK_RBRACE); /* patch jump targets for cases */ for (i = 0; i < jmps.count; i += 2) { skip_jmp = jmps.entries[i + 0]; next_jmp = jmps.entries[i + 1]; uc_compiler_set_jmpaddr(compiler, skip_jmp, next_jmp + 5); /* have a subsequent case, patch next jump to it */ if (i + 2 < jmps.count) uc_compiler_set_jmpaddr(compiler, next_jmp, jmps.entries[i + 2] + 5); /* case was last in switch, jump to default */ else if (default_off) uc_compiler_set_jmpaddr(compiler, next_jmp, default_off); /* if no default, jump to end */ else uc_compiler_set_jmpaddr(compiler, next_jmp, chunk->count); } /* if we have cases, patch initial jump after the first case condition */ if (jmps.count) uc_compiler_set_jmpaddr(compiler, first_jmp, jmps.entries[0] + 5); /* ... otherwise jump into default */ else if (default_off) uc_compiler_set_jmpaddr(compiler, first_jmp, default_off); /* ... otherwise if no defualt, turn into no-op */ else uc_compiler_set_jmpaddr(compiler, first_jmp, first_jmp + 5); uc_vector_clear(&jmps); uc_compiler_leave_scope(compiler); uc_compiler_backpatch(compiler, chunk->count, 0); } static void uc_compiler_compile_try(uc_compiler *compiler) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t try_from = 0, try_to = 0, jmp_off = 0, ehvar_slot = 0; uc_ehranges *ranges = &chunk->ehranges; try_from = chunk->count; ehvar_slot = compiler->locals.count; /* Try block ------------------------------------------------------------ */ uc_compiler_enter_scope(compiler); uc_compiler_parse_consume(compiler, TK_LBRACE); while (!uc_compiler_parse_check(compiler, TK_RBRACE) && !uc_compiler_parse_check(compiler, TK_EOF)) uc_compiler_compile_declaration(compiler); uc_compiler_parse_consume(compiler, TK_RBRACE); uc_compiler_leave_scope(compiler); /* jump beyond catch branch */ try_to = chunk->count; jmp_off = uc_compiler_emit_jmp(compiler, 0, 0); /* Catch block ---------------------------------------------------------- */ if (try_to > try_from) { uc_vector_grow(ranges); ranges->entries[ranges->count].from = try_from; ranges->entries[ranges->count].to = try_to; ranges->entries[ranges->count].target = chunk->count; ranges->entries[ranges->count].slot = ehvar_slot; ranges->count++; } uc_compiler_enter_scope(compiler); uc_compiler_parse_consume(compiler, TK_CATCH); /* have exception variable */ if (uc_compiler_parse_match(compiler, TK_LPAREN)) { uc_compiler_parse_consume(compiler, TK_LABEL); uc_compiler_declare_local(compiler, compiler->parser->prev.val); uc_compiler_initialize_local(compiler); uc_compiler_parse_consume(compiler, TK_RPAREN); } /* ... else pop exception object from stack */ else { uc_compiler_emit_insn(compiler, 0, I_POP); } uc_compiler_parse_consume(compiler, TK_LBRACE); while (!uc_compiler_parse_check(compiler, TK_RBRACE) && !uc_compiler_parse_check(compiler, TK_EOF)) uc_compiler_compile_declaration(compiler); uc_compiler_parse_consume(compiler, TK_RBRACE); uc_compiler_leave_scope(compiler); uc_compiler_set_jmpaddr(compiler, jmp_off, chunk->count); } static void uc_compiler_compile_control(uc_compiler *compiler) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); uc_tokentype_t type = compiler->parser->prev.type; uc_patchlist *p = compiler->patchlist; uc_locals *locals = &compiler->locals; size_t i, pos = compiler->parser->prev.pos; if (!p) { uc_compiler_syntax_error(compiler, pos, (type == TK_BREAK) ? "break must be inside loop or switch" : "continue must be inside loop"); return; } /* pop locals in scope up to this point */ for (i = locals->count; i > 0 && locals->entries[i - 1].depth == compiler->scope_depth; i--) uc_compiler_emit_insn(compiler, 0, I_POP); uc_vector_grow(p); p->entries[p->count++] = uc_compiler_emit_jmp(compiler, pos, chunk->count + type); uc_compiler_parse_consume(compiler, TK_SCOL); } static void uc_compiler_compile_return(uc_compiler *compiler) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t off = chunk->count; uc_compiler_compile_expstmt(compiler); /* if we compiled an empty expression statement (`;`), load implicit null */ if (chunk->count == off) uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_LNULL); /* otherwise overwrite the final I_POP instruction with I_RETURN */ else uc_chunk_pop(chunk); uc_compiler_emit_insn(compiler, compiler->parser->prev.pos, I_RETURN); } static void uc_compiler_compile_tplexp(uc_compiler *compiler) { uc_chunk *chunk = uc_compiler_current_chunk(compiler); size_t off = chunk->count; uc_compiler_compile_expression(compiler); /* XXX: the lexer currently emits a superfluous trailing semicolon... */ uc_compiler_parse_match(compiler, TK_SCOL); uc_compiler_parse_consume(compiler, TK_REXP); if (chunk->count > off) uc_compiler_emit_insn(compiler, 0, I_PRINT); } static void uc_compiler_compile_text(uc_compiler *compiler) { uc_compiler_emit_constant(compiler, compiler->parser->prev.pos, compiler->parser->prev.val); uc_compiler_emit_insn(compiler, 0, I_PRINT); } static void uc_compiler_compile_block(uc_compiler *compiler) { uc_compiler_enter_scope(compiler); while (!uc_compiler_parse_check(compiler, TK_RBRACE) && !uc_compiler_parse_check(compiler, TK_EOF)) uc_compiler_compile_declaration(compiler); uc_compiler_parse_consume(compiler, TK_RBRACE); uc_compiler_leave_scope(compiler); } static void uc_compiler_compile_expstmt(uc_compiler *compiler) { /* empty statement */ if (uc_compiler_parse_match(compiler, TK_SCOL)) return; uc_compiler_compile_expression(compiler); /* allow omitting final semicolon */ switch (compiler->parser->curr.type) { case TK_RBRACE: case TK_ELSE: /* fixme: only in altblockmode */ case TK_ELIF: case TK_ENDIF: case TK_ENDFOR: case TK_ENDWHILE: case TK_ENDFUNC: case TK_EOF: break; default: uc_compiler_parse_consume(compiler, TK_SCOL); break; } uc_compiler_emit_insn(compiler, 0, I_POP); } static void uc_compiler_compile_statement(uc_compiler *compiler) { if (uc_compiler_parse_match(compiler, TK_IF)) uc_compiler_compile_if(compiler); else if (uc_compiler_parse_match(compiler, TK_WHILE)) uc_compiler_compile_while(compiler); else if (uc_compiler_parse_match(compiler, TK_FOR)) uc_compiler_compile_for(compiler); else if (uc_compiler_parse_match(compiler, TK_SWITCH)) uc_compiler_compile_switch(compiler); else if (uc_compiler_parse_match(compiler, TK_TRY)) uc_compiler_compile_try(compiler); else if (uc_compiler_parse_match(compiler, TK_FUNC)) uc_compiler_compile_function(compiler, false); else if (uc_compiler_parse_match(compiler, TK_BREAK)) uc_compiler_compile_control(compiler); else if (uc_compiler_parse_match(compiler, TK_CONTINUE)) uc_compiler_compile_control(compiler); else if (uc_compiler_parse_match(compiler, TK_RETURN)) uc_compiler_compile_return(compiler); else if (uc_compiler_parse_match(compiler, TK_TEXT)) uc_compiler_compile_text(compiler); else if (uc_compiler_parse_match(compiler, TK_LEXP)) uc_compiler_compile_tplexp(compiler); else if (uc_compiler_parse_match(compiler, TK_LBRACE)) uc_compiler_compile_block(compiler); else uc_compiler_compile_expstmt(compiler); } static void uc_compiler_compile_declaration(uc_compiler *compiler) { if (uc_compiler_parse_match(compiler, TK_LOCAL)) uc_compiler_compile_local(compiler); else uc_compiler_compile_statement(compiler); if (compiler->parser->synchronizing) uc_compiler_parse_synchronize(compiler); } uc_function * uc_compile(uc_parse_config *config, uc_source *source, char **errp) { uc_parser parser = { .config = config }; uc_compiler compiler = { .parser = &parser }; uc_function *fn; uc_lexer_init(&parser.lex, config, source); uc_compiler_init(&compiler, "main", 0, source); uc_compiler_parse_advance(&compiler); while (!uc_compiler_parse_match(&compiler, TK_EOF)) uc_compiler_compile_declaration(&compiler); fn = uc_compiler_finish(&compiler); if (errp) *errp = parser.error; uc_lexer_free(&parser.lex); return fn; }