summaryrefslogtreecommitdiffhomepage
path: root/contrib
diff options
context:
space:
mode:
authorJo-Philipp Wich <jo@mein.io>2020-08-10 17:05:03 +0200
committerJo-Philipp Wich <jo@mein.io>2020-08-21 23:04:45 +0200
commita56887df2a0f51b42d9d4013515e847b1a050c58 (patch)
tree3416726feacc13d8a94e4fda90edc1a6773fa71e /contrib
Initial commit
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Diffstat (limited to 'contrib')
-rw-r--r--contrib/lemon.c5040
-rw-r--r--contrib/lempar.c851
2 files changed, 5891 insertions, 0 deletions
diff --git a/contrib/lemon.c b/contrib/lemon.c
new file mode 100644
index 0000000..85e94f7
--- /dev/null
+++ b/contrib/lemon.c
@@ -0,0 +1,5040 @@
+/*
+** This file contains all sources (including headers) to the LEMON
+** LALR(1) parser generator. The sources have been combined into a
+** single file to make it easy to include LEMON in the source tree
+** and Makefile of another program.
+**
+** The author of this program disclaims copyright.
+*/
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <ctype.h>
+#include <stdlib.h>
+#include <assert.h>
+
+#ifndef __WIN32__
+# if defined(_WIN32) || defined(WIN32)
+# define __WIN32__
+# endif
+#endif
+
+#ifdef __WIN32__
+#ifdef __cplusplus
+extern "C" {
+#endif
+extern int access(const char *path, int mode);
+#ifdef __cplusplus
+}
+#endif
+#else
+#include <unistd.h>
+#endif
+
+/* #define PRIVATE static */
+#define PRIVATE
+
+#ifdef TEST
+#define MAXRHS 5 /* Set low to exercise exception code */
+#else
+#define MAXRHS 1000
+#endif
+
+static int showPrecedenceConflict = 0;
+static char *msort(char*,char**,int(*)(const char*,const char*));
+
+/*
+** Compilers are getting increasingly pedantic about type conversions
+** as C evolves ever closer to Ada.... To work around the latest problems
+** we have to define the following variant of strlen().
+*/
+#define lemonStrlen(X) ((int)strlen(X))
+
+/*
+** Compilers are starting to complain about the use of sprintf() and strcpy(),
+** saying they are unsafe. So we define our own versions of those routines too.
+**
+** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
+** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
+** The third is a helper routine for vsnprintf() that adds texts to the end of a
+** buffer, making sure the buffer is always zero-terminated.
+**
+** The string formatter is a minimal subset of stdlib sprintf() supporting only
+** a few simply conversions:
+**
+** %d
+** %s
+** %.*s
+**
+*/
+static void lemon_addtext(
+ char *zBuf, /* The buffer to which text is added */
+ int *pnUsed, /* Slots of the buffer used so far */
+ const char *zIn, /* Text to add */
+ int nIn, /* Bytes of text to add. -1 to use strlen() */
+ int iWidth /* Field width. Negative to left justify */
+){
+ if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
+ while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
+ if( nIn==0 ) return;
+ memcpy(&zBuf[*pnUsed], zIn, nIn);
+ *pnUsed += nIn;
+ while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
+ zBuf[*pnUsed] = 0;
+}
+static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
+ int i, j, k, c;
+ int nUsed = 0;
+ const char *z;
+ char zTemp[50];
+ str[0] = 0;
+ for(i=j=0; (c = zFormat[i])!=0; i++){
+ if( c=='%' ){
+ int iWidth = 0;
+ lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
+ c = zFormat[++i];
+ if( isdigit(c) || (c=='-' && isdigit(zFormat[i+1])) ){
+ if( c=='-' ) i++;
+ while( isdigit(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
+ if( c=='-' ) iWidth = -iWidth;
+ c = zFormat[i];
+ }
+ if( c=='d' ){
+ int v = va_arg(ap, int);
+ if( v<0 ){
+ lemon_addtext(str, &nUsed, "-", 1, iWidth);
+ v = -v;
+ }else if( v==0 ){
+ lemon_addtext(str, &nUsed, "0", 1, iWidth);
+ }
+ k = 0;
+ while( v>0 ){
+ k++;
+ zTemp[sizeof(zTemp)-k] = (v%10) + '0';
+ v /= 10;
+ }
+ lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
+ }else if( c=='s' ){
+ z = va_arg(ap, const char*);
+ lemon_addtext(str, &nUsed, z, -1, iWidth);
+ }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
+ i += 2;
+ k = va_arg(ap, int);
+ z = va_arg(ap, const char*);
+ lemon_addtext(str, &nUsed, z, k, iWidth);
+ }else if( c=='%' ){
+ lemon_addtext(str, &nUsed, "%", 1, 0);
+ }else{
+ fprintf(stderr, "illegal format\n");
+ exit(1);
+ }
+ j = i+1;
+ }
+ }
+ lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
+ return nUsed;
+}
+static int lemon_sprintf(char *str, const char *format, ...){
+ va_list ap;
+ int rc;
+ va_start(ap, format);
+ rc = lemon_vsprintf(str, format, ap);
+ va_end(ap);
+ return rc;
+}
+static void lemon_strcpy(char *dest, const char *src){
+ while( (*(dest++) = *(src++))!=0 ){}
+}
+static void lemon_strcat(char *dest, const char *src){
+ while( *dest ) dest++;
+ lemon_strcpy(dest, src);
+}
+
+
+/* a few forward declarations... */
+struct rule;
+struct lemon;
+struct action;
+
+static struct action *Action_new(void);
+static struct action *Action_sort(struct action *);
+
+/********** From the file "build.h" ************************************/
+void FindRulePrecedences();
+void FindFirstSets();
+void FindStates();
+void FindLinks();
+void FindFollowSets();
+void FindActions();
+
+/********* From the file "configlist.h" *********************************/
+void Configlist_init(void);
+struct config *Configlist_add(struct rule *, int);
+struct config *Configlist_addbasis(struct rule *, int);
+void Configlist_closure(struct lemon *);
+void Configlist_sort(void);
+void Configlist_sortbasis(void);
+struct config *Configlist_return(void);
+struct config *Configlist_basis(void);
+void Configlist_eat(struct config *);
+void Configlist_reset(void);
+
+/********* From the file "error.h" ***************************************/
+void ErrorMsg(const char *, int,const char *, ...);
+
+/****** From the file "option.h" ******************************************/
+enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
+ OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
+struct s_options {
+ enum option_type type;
+ const char *label;
+ char *arg;
+ const char *message;
+};
+int OptInit(char**,struct s_options*,FILE*);
+int OptNArgs(void);
+char *OptArg(int);
+void OptErr(int);
+void OptPrint(void);
+
+/******** From the file "parse.h" *****************************************/
+void Parse(struct lemon *lemp);
+
+/********* From the file "plink.h" ***************************************/
+struct plink *Plink_new(void);
+void Plink_add(struct plink **, struct config *);
+void Plink_copy(struct plink **, struct plink *);
+void Plink_delete(struct plink *);
+
+/********** From the file "report.h" *************************************/
+void Reprint(struct lemon *);
+void ReportOutput(struct lemon *);
+void ReportTable(struct lemon *, int);
+void ReportHeader(struct lemon *);
+void CompressTables(struct lemon *);
+void ResortStates(struct lemon *);
+
+/********** From the file "set.h" ****************************************/
+void SetSize(int); /* All sets will be of size N */
+char *SetNew(void); /* A new set for element 0..N */
+void SetFree(char*); /* Deallocate a set */
+int SetAdd(char*,int); /* Add element to a set */
+int SetUnion(char *,char *); /* A <- A U B, thru element N */
+#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
+
+/********** From the file "struct.h" *************************************/
+/*
+** Principal data structures for the LEMON parser generator.
+*/
+
+typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
+
+/* Symbols (terminals and nonterminals) of the grammar are stored
+** in the following: */
+enum symbol_type {
+ TERMINAL,
+ NONTERMINAL,
+ MULTITERMINAL
+};
+enum e_assoc {
+ LEFT,
+ RIGHT,
+ NONE,
+ UNK
+};
+struct symbol {
+ const char *name; /* Name of the symbol */
+ int index; /* Index number for this symbol */
+ enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
+ struct rule *rule; /* Linked list of rules of this (if an NT) */
+ struct symbol *fallback; /* fallback token in case this token doesn't parse */
+ int prec; /* Precedence if defined (-1 otherwise) */
+ enum e_assoc assoc; /* Associativity if precedence is defined */
+ char *firstset; /* First-set for all rules of this symbol */
+ Boolean lambda; /* True if NT and can generate an empty string */
+ int useCnt; /* Number of times used */
+ char *destructor; /* Code which executes whenever this symbol is
+ ** popped from the stack during error processing */
+ int destLineno; /* Line number for start of destructor */
+ char *datatype; /* The data type of information held by this
+ ** object. Only used if type==NONTERMINAL */
+ int dtnum; /* The data type number. In the parser, the value
+ ** stack is a union. The .yy%d element of this
+ ** union is the correct data type for this object */
+ /* The following fields are used by MULTITERMINALs only */
+ int nsubsym; /* Number of constituent symbols in the MULTI */
+ struct symbol **subsym; /* Array of constituent symbols */
+};
+
+/* Each production rule in the grammar is stored in the following
+** structure. */
+struct rule {
+ struct symbol *lhs; /* Left-hand side of the rule */
+ const char *lhsalias; /* Alias for the LHS (NULL if none) */
+ int lhsStart; /* True if left-hand side is the start symbol */
+ int ruleline; /* Line number for the rule */
+ int nrhs; /* Number of RHS symbols */
+ struct symbol **rhs; /* The RHS symbols */
+ const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
+ int line; /* Line number at which code begins */
+ const char *code; /* The code executed when this rule is reduced */
+ struct symbol *precsym; /* Precedence symbol for this rule */
+ int index; /* An index number for this rule */
+ Boolean canReduce; /* True if this rule is ever reduced */
+ struct rule *nextlhs; /* Next rule with the same LHS */
+ struct rule *next; /* Next rule in the global list */
+};
+
+/* A configuration is a production rule of the grammar together with
+** a mark (dot) showing how much of that rule has been processed so far.
+** Configurations also contain a follow-set which is a list of terminal
+** symbols which are allowed to immediately follow the end of the rule.
+** Every configuration is recorded as an instance of the following: */
+enum cfgstatus {
+ COMPLETE,
+ INCOMPLETE
+};
+struct config {
+ struct rule *rp; /* The rule upon which the configuration is based */
+ int dot; /* The parse point */
+ char *fws; /* Follow-set for this configuration only */
+ struct plink *fplp; /* Follow-set forward propagation links */
+ struct plink *bplp; /* Follow-set backwards propagation links */
+ struct state *stp; /* Pointer to state which contains this */
+ enum cfgstatus status; /* used during followset and shift computations */
+ struct config *next; /* Next configuration in the state */
+ struct config *bp; /* The next basis configuration */
+};
+
+enum e_action {
+ SHIFT,
+ ACCEPT,
+ REDUCE,
+ ERROR,
+ SSCONFLICT, /* A shift/shift conflict */
+ SRCONFLICT, /* Was a reduce, but part of a conflict */
+ RRCONFLICT, /* Was a reduce, but part of a conflict */
+ SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
+ RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
+ NOT_USED /* Deleted by compression */
+};
+
+/* Every shift or reduce operation is stored as one of the following */
+struct action {
+ struct symbol *sp; /* The look-ahead symbol */
+ enum e_action type;
+ union {
+ struct state *stp; /* The new state, if a shift */
+ struct rule *rp; /* The rule, if a reduce */
+ } x;
+ struct action *next; /* Next action for this state */
+ struct action *collide; /* Next action with the same hash */
+};
+
+/* Each state of the generated parser's finite state machine
+** is encoded as an instance of the following structure. */
+struct state {
+ struct config *bp; /* The basis configurations for this state */
+ struct config *cfp; /* All configurations in this set */
+ int statenum; /* Sequential number for this state */
+ struct action *ap; /* Array of actions for this state */
+ int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
+ int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
+ int iDflt; /* Default action */
+};
+#define NO_OFFSET (-2147483647)
+
+/* A followset propagation link indicates that the contents of one
+** configuration followset should be propagated to another whenever
+** the first changes. */
+struct plink {
+ struct config *cfp; /* The configuration to which linked */
+ struct plink *next; /* The next propagate link */
+};
+
+/* The state vector for the entire parser generator is recorded as
+** follows. (LEMON uses no global variables and makes little use of
+** static variables. Fields in the following structure can be thought
+** of as begin global variables in the program.) */
+struct lemon {
+ struct state **sorted; /* Table of states sorted by state number */
+ struct rule *rule; /* List of all rules */
+ int nstate; /* Number of states */
+ int nrule; /* Number of rules */
+ int nsymbol; /* Number of terminal and nonterminal symbols */
+ int nterminal; /* Number of terminal symbols */
+ struct symbol **symbols; /* Sorted array of pointers to symbols */
+ int errorcnt; /* Number of errors */
+ struct symbol *errsym; /* The error symbol */
+ struct symbol *wildcard; /* Token that matches anything */
+ char *name; /* Name of the generated parser */
+ char *arg; /* Declaration of the 3th argument to parser */
+ char *tokentype; /* Type of terminal symbols in the parser stack */
+ char *vartype; /* The default type of non-terminal symbols */
+ char *start; /* Name of the start symbol for the grammar */
+ char *stacksize; /* Size of the parser stack */
+ char *include; /* Code to put at the start of the C file */
+ char *error; /* Code to execute when an error is seen */
+ char *overflow; /* Code to execute on a stack overflow */
+ char *failure; /* Code to execute on parser failure */
+ char *accept; /* Code to execute when the parser excepts */
+ char *extracode; /* Code appended to the generated file */
+ char *tokendest; /* Code to execute to destroy token data */
+ char *vardest; /* Code for the default non-terminal destructor */
+ char *filename; /* Name of the input file */
+ char *outname; /* Name of the current output file */
+ char *tokenprefix; /* A prefix added to token names in the .h file */
+ int nconflict; /* Number of parsing conflicts */
+ int tablesize; /* Size of the parse tables */
+ int basisflag; /* Print only basis configurations */
+ int has_fallback; /* True if any %fallback is seen in the grammar */
+ int nolinenosflag; /* True if #line statements should not be printed */
+ char *argv0; /* Name of the program */
+};
+
+#define MemoryCheck(X) if((X)==0){ \
+ extern void memory_error(); \
+ memory_error(); \
+}
+
+/**************** From the file "table.h" *********************************/
+/*
+** All code in this file has been automatically generated
+** from a specification in the file
+** "table.q"
+** by the associative array code building program "aagen".
+** Do not edit this file! Instead, edit the specification
+** file, then rerun aagen.
+*/
+/*
+** Code for processing tables in the LEMON parser generator.
+*/
+/* Routines for handling a strings */
+
+const char *Strsafe(const char *);
+
+void Strsafe_init(void);
+int Strsafe_insert(const char *);
+const char *Strsafe_find(const char *);
+
+/* Routines for handling symbols of the grammar */
+
+struct symbol *Symbol_new(const char *);
+int Symbolcmpp(const void *, const void *);
+void Symbol_init(void);
+int Symbol_insert(struct symbol *, const char *);
+struct symbol *Symbol_find(const char *);
+struct symbol *Symbol_Nth(int);
+int Symbol_count(void);
+struct symbol **Symbol_arrayof(void);
+
+/* Routines to manage the state table */
+
+int Configcmp(const char *, const char *);
+struct state *State_new(void);
+void State_init(void);
+int State_insert(struct state *, struct config *);
+struct state *State_find(struct config *);
+struct state **State_arrayof(/* */);
+
+/* Routines used for efficiency in Configlist_add */
+
+void Configtable_init(void);
+int Configtable_insert(struct config *);
+struct config *Configtable_find(struct config *);
+void Configtable_clear(int(*)(struct config *));
+
+/****************** From the file "action.c" *******************************/
+/*
+** Routines processing parser actions in the LEMON parser generator.
+*/
+
+/* Allocate a new parser action */
+static struct action *Action_new(void){
+ static struct action *freelist = 0;
+ struct action *newaction;
+
+ if( freelist==0 ){
+ int i;
+ int amt = 100;
+ freelist = (struct action *)calloc(amt, sizeof(struct action));
+ if( freelist==0 ){
+ fprintf(stderr,"Unable to allocate memory for a new parser action.");
+ exit(1);
+ }
+ for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
+ freelist[amt-1].next = 0;
+ }
+ newaction = freelist;
+ freelist = freelist->next;
+ return newaction;
+}
+
+/* Compare two actions for sorting purposes. Return negative, zero, or
+** positive if the first action is less than, equal to, or greater than
+** the first
+*/
+static int actioncmp(
+ struct action *ap1,
+ struct action *ap2
+){
+ int rc;
+ rc = ap1->sp->index - ap2->sp->index;
+ if( rc==0 ){
+ rc = (int)ap1->type - (int)ap2->type;
+ }
+ if( rc==0 && ap1->type==REDUCE ){
+ rc = ap1->x.rp->index - ap2->x.rp->index;
+ }
+ if( rc==0 ){
+ rc = (int) (ap2 - ap1);
+ }
+ return rc;
+}
+
+/* Sort parser actions */
+static struct action *Action_sort(
+ struct action *ap
+){
+ ap = (struct action *)msort((char *)ap,(char **)&ap->next,
+ (int(*)(const char*,const char*))actioncmp);
+ return ap;
+}
+
+void Action_add(
+ struct action **app,
+ enum e_action type,
+ struct symbol *sp,
+ char *arg
+){
+ struct action *newaction;
+ newaction = Action_new();
+ newaction->next = *app;
+ *app = newaction;
+ newaction->type = type;
+ newaction->sp = sp;
+ if( type==SHIFT ){
+ newaction->x.stp = (struct state *)arg;
+ }else{
+ newaction->x.rp = (struct rule *)arg;
+ }
+}
+/********************** New code to implement the "acttab" module ***********/
+/*
+** This module implements routines use to construct the yy_action[] table.
+*/
+
+/*
+** The state of the yy_action table under construction is an instance of
+** the following structure.
+**
+** The yy_action table maps the pair (state_number, lookahead) into an
+** action_number. The table is an array of integers pairs. The state_number
+** determines an initial offset into the yy_action array. The lookahead
+** value is then added to this initial offset to get an index X into the
+** yy_action array. If the aAction[X].lookahead equals the value of the
+** of the lookahead input, then the value of the action_number output is
+** aAction[X].action. If the lookaheads do not match then the
+** default action for the state_number is returned.
+**
+** All actions associated with a single state_number are first entered
+** into aLookahead[] using multiple calls to acttab_action(). Then the
+** actions for that single state_number are placed into the aAction[]
+** array with a single call to acttab_insert(). The acttab_insert() call
+** also resets the aLookahead[] array in preparation for the next
+** state number.
+*/
+struct lookahead_action {
+ int lookahead; /* Value of the lookahead token */
+ int action; /* Action to take on the given lookahead */
+};
+typedef struct acttab acttab;
+struct acttab {
+ int nAction; /* Number of used slots in aAction[] */
+ int nActionAlloc; /* Slots allocated for aAction[] */
+ struct lookahead_action
+ *aAction, /* The yy_action[] table under construction */
+ *aLookahead; /* A single new transaction set */
+ int mnLookahead; /* Minimum aLookahead[].lookahead */
+ int mnAction; /* Action associated with mnLookahead */
+ int mxLookahead; /* Maximum aLookahead[].lookahead */
+ int nLookahead; /* Used slots in aLookahead[] */
+ int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
+};
+
+/* Return the number of entries in the yy_action table */
+#define acttab_size(X) ((X)->nAction)
+
+/* The value for the N-th entry in yy_action */
+#define acttab_yyaction(X,N) ((X)->aAction[N].action)
+
+/* The value for the N-th entry in yy_lookahead */
+#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
+
+/* Free all memory associated with the given acttab */
+void acttab_free(acttab *p){
+ free( p->aAction );
+ free( p->aLookahead );
+ free( p );
+}
+
+/* Allocate a new acttab structure */
+acttab *acttab_alloc(void){
+ acttab *p = (acttab *) calloc( 1, sizeof(*p) );
+ if( p==0 ){
+ fprintf(stderr,"Unable to allocate memory for a new acttab.");
+ exit(1);
+ }
+ memset(p, 0, sizeof(*p));
+ return p;
+}
+
+/* Add a new action to the current transaction set.
+**
+** This routine is called once for each lookahead for a particular
+** state.
+*/
+void acttab_action(acttab *p, int lookahead, int action){
+ if( p->nLookahead>=p->nLookaheadAlloc ){
+ p->nLookaheadAlloc += 25;
+ p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
+ sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
+ if( p->aLookahead==0 ){
+ fprintf(stderr,"malloc failed\n");
+ exit(1);
+ }
+ }
+ if( p->nLookahead==0 ){
+ p->mxLookahead = lookahead;
+ p->mnLookahead = lookahead;
+ p->mnAction = action;
+ }else{
+ if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
+ if( p->mnLookahead>lookahead ){
+ p->mnLookahead = lookahead;
+ p->mnAction = action;
+ }
+ }
+ p->aLookahead[p->nLookahead].lookahead = lookahead;
+ p->aLookahead[p->nLookahead].action = action;
+ p->nLookahead++;
+}
+
+/*
+** Add the transaction set built up with prior calls to acttab_action()
+** into the current action table. Then reset the transaction set back
+** to an empty set in preparation for a new round of acttab_action() calls.
+**
+** Return the offset into the action table of the new transaction.
+*/
+int acttab_insert(acttab *p){
+ int i, j, k, n;
+ assert( p->nLookahead>0 );
+
+ /* Make sure we have enough space to hold the expanded action table
+ ** in the worst case. The worst case occurs if the transaction set
+ ** must be appended to the current action table
+ */
+ n = p->mxLookahead + 1;
+ if( p->nAction + n >= p->nActionAlloc ){
+ int oldAlloc = p->nActionAlloc;
+ p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
+ p->aAction = (struct lookahead_action *) realloc( p->aAction,
+ sizeof(p->aAction[0])*p->nActionAlloc);
+ if( p->aAction==0 ){
+ fprintf(stderr,"malloc failed\n");
+ exit(1);
+ }
+ for(i=oldAlloc; i<p->nActionAlloc; i++){
+ p->aAction[i].lookahead = -1;
+ p->aAction[i].action = -1;
+ }
+ }
+
+ /* Scan the existing action table looking for an offset that is a
+ ** duplicate of the current transaction set. Fall out of the loop
+ ** if and when the duplicate is found.
+ **
+ ** i is the index in p->aAction[] where p->mnLookahead is inserted.
+ */
+ for(i=p->nAction-1; i>=0; i--){
+ if( p->aAction[i].lookahead==p->mnLookahead ){
+ /* All lookaheads and actions in the aLookahead[] transaction
+ ** must match against the candidate aAction[i] entry. */
+ if( p->aAction[i].action!=p->mnAction ) continue;
+ for(j=0; j<p->nLookahead; j++){
+ k = p->aLookahead[j].lookahead - p->mnLookahead + i;
+ if( k<0 || k>=p->nAction ) break;
+ if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
+ if( p->aLookahead[j].action!=p->aAction[k].action ) break;
+ }
+ if( j<p->nLookahead ) continue;
+
+ /* No possible lookahead value that is not in the aLookahead[]
+ ** transaction is allowed to match aAction[i] */
+ n = 0;
+ for(j=0; j<p->nAction; j++){
+ if( p->aAction[j].lookahead<0 ) continue;
+ if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
+ }
+ if( n==p->nLookahead ){
+ break; /* An exact match is found at offset i */
+ }
+ }
+ }
+
+ /* If no existing offsets exactly match the current transaction, find an
+ ** an empty offset in the aAction[] table in which we can add the
+ ** aLookahead[] transaction.
+ */
+ if( i<0 ){
+ /* Look for holes in the aAction[] table that fit the current
+ ** aLookahead[] transaction. Leave i set to the offset of the hole.
+ ** If no holes are found, i is left at p->nAction, which means the
+ ** transaction will be appended. */
+ for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
+ if( p->aAction[i].lookahead<0 ){
+ for(j=0; j<p->nLookahead; j++){
+ k = p->aLookahead[j].lookahead - p->mnLookahead + i;
+ if( k<0 ) break;
+ if( p->aAction[k].lookahead>=0 ) break;
+ }
+ if( j<p->nLookahead ) continue;
+ for(j=0; j<p->nAction; j++){
+ if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
+ }
+ if( j==p->nAction ){
+ break; /* Fits in empty slots */
+ }
+ }
+ }
+ }
+ /* Insert transaction set at index i. */
+ for(j=0; j<p->nLookahead; j++){
+ k = p->aLookahead[j].lookahead - p->mnLookahead + i;
+ p->aAction[k] = p->aLookahead[j];
+ if( k>=p->nAction ) p->nAction = k+1;
+ }
+ p->nLookahead = 0;
+
+ /* Return the offset that is added to the lookahead in order to get the
+ ** index into yy_action of the action */
+ return i - p->mnLookahead;
+}
+
+/********************** From the file "build.c" *****************************/
+/*
+** Routines to construction the finite state machine for the LEMON
+** parser generator.
+*/
+
+/* Find a precedence symbol of every rule in the grammar.
+**
+** Those rules which have a precedence symbol coded in the input
+** grammar using the "[symbol]" construct will already have the
+** rp->precsym field filled. Other rules take as their precedence
+** symbol the first RHS symbol with a defined precedence. If there
+** are not RHS symbols with a defined precedence, the precedence
+** symbol field is left blank.
+*/
+void FindRulePrecedences(struct lemon *xp)
+{
+ struct rule *rp;
+ for(rp=xp->rule; rp; rp=rp->next){
+ if( rp->precsym==0 ){
+ int i, j;
+ for(i=0; i<rp->nrhs && rp->precsym==0; i++){
+ struct symbol *sp = rp->rhs[i];
+ if( sp->type==MULTITERMINAL ){
+ for(j=0; j<sp->nsubsym; j++){
+ if( sp->subsym[j]->prec>=0 ){
+ rp->precsym = sp->subsym[j];
+ break;
+ }
+ }
+ }else if( sp->prec>=0 ){
+ rp->precsym = rp->rhs[i];
+ }
+ }
+ }
+ }
+ return;
+}
+
+/* Find all nonterminals which will generate the empty string.
+** Then go back and compute the first sets of every nonterminal.
+** The first set is the set of all terminal symbols which can begin
+** a string generated by that nonterminal.
+*/
+void FindFirstSets(struct lemon *lemp)
+{
+ int i, j;
+ struct rule *rp;
+ int progress;
+
+ for(i=0; i<lemp->nsymbol; i++){
+ lemp->symbols[i]->lambda = LEMON_FALSE;
+ }
+ for(i=lemp->nterminal; i<lemp->nsymbol; i++){
+ lemp->symbols[i]->firstset = SetNew();
+ }
+
+ /* First compute all lambdas */
+ do{
+ progress = 0;
+ for(rp=lemp->rule; rp; rp=rp->next){
+ if( rp->lhs->lambda ) continue;
+ for(i=0; i<rp->nrhs; i++){
+ struct symbol *sp = rp->rhs[i];
+ assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
+ if( sp->lambda==LEMON_FALSE ) break;
+ }
+ if( i==rp->nrhs ){
+ rp->lhs->lambda = LEMON_TRUE;
+ progress = 1;
+ }
+ }
+ }while( progress );
+
+ /* Now compute all first sets */
+ do{
+ struct symbol *s1, *s2;
+ progress = 0;
+ for(rp=lemp->rule; rp; rp=rp->next){
+ s1 = rp->lhs;
+ for(i=0; i<rp->nrhs; i++){
+ s2 = rp->rhs[i];
+ if( s2->type==TERMINAL ){
+ progress += SetAdd(s1->firstset,s2->index);
+ break;
+ }else if( s2->type==MULTITERMINAL ){
+ for(j=0; j<s2->nsubsym; j++){
+ progress += SetAdd(s1->firstset,s2->subsym[j]->index);
+ }
+ break;
+ }else if( s1==s2 ){
+ if( s1->lambda==LEMON_FALSE ) break;
+ }else{
+ progress += SetUnion(s1->firstset,s2->firstset);
+ if( s2->lambda==LEMON_FALSE ) break;
+ }
+ }
+ }
+ }while( progress );
+ return;
+}
+
+/* Compute all LR(0) states for the grammar. Links
+** are added to between some states so that the LR(1) follow sets
+** can be computed later.
+*/
+PRIVATE struct state *getstate(struct lemon *); /* forward reference */
+void FindStates(struct lemon *lemp)
+{
+ struct symbol *sp;
+ struct rule *rp;
+
+ Configlist_init();
+
+ /* Find the start symbol */
+ if( lemp->start ){
+ sp = Symbol_find(lemp->start);
+ if( sp==0 ){
+ ErrorMsg(lemp->filename,0,
+"The specified start symbol \"%s\" is not \
+in a nonterminal of the grammar. \"%s\" will be used as the start \
+symbol instead.",lemp->start,lemp->rule->lhs->name);
+ lemp->errorcnt++;
+ sp = lemp->rule->lhs;
+ }
+ }else{
+ sp = lemp->rule->lhs;
+ }
+
+ /* Make sure the start symbol doesn't occur on the right-hand side of
+ ** any rule. Report an error if it does. (YACC would generate a new
+ ** start symbol in this case.) */
+ for(rp=lemp->rule; rp; rp=rp->next){
+ int i;
+ for(i=0; i<rp->nrhs; i++){
+ if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
+ ErrorMsg(lemp->filename,0,
+"The start symbol \"%s\" occurs on the \
+right-hand side of a rule. This will result in a parser which \
+does not work properly.",sp->name);
+ lemp->errorcnt++;
+ }
+ }
+ }
+
+ /* The basis configuration set for the first state
+ ** is all rules which have the start symbol as their
+ ** left-hand side */
+ for(rp=sp->rule; rp; rp=rp->nextlhs){
+ struct config *newcfp;
+ rp->lhsStart = 1;
+ newcfp = Configlist_addbasis(rp,0);
+ SetAdd(newcfp->fws,0);
+ }
+
+ /* Compute the first state. All other states will be
+ ** computed automatically during the computation of the first one.
+ ** The returned pointer to the first state is not used. */
+ (void)getstate(lemp);
+ return;
+}
+
+/* Return a pointer to a state which is described by the configuration
+** list which has been built from calls to Configlist_add.
+*/
+PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
+PRIVATE struct state *getstate(struct lemon *lemp)
+{
+ struct config *cfp, *bp;
+ struct state *stp;
+
+ /* Extract the sorted basis of the new state. The basis was constructed
+ ** by prior calls to "Configlist_addbasis()". */
+ Configlist_sortbasis();
+ bp = Configlist_basis();
+
+ /* Get a state with the same basis */
+ stp = State_find(bp);
+ if( stp ){
+ /* A state with the same basis already exists! Copy all the follow-set
+ ** propagation links from the state under construction into the
+ ** preexisting state, then return a pointer to the preexisting state */
+ struct config *x, *y;
+ for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
+ Plink_copy(&y->bplp,x->bplp);
+ Plink_delete(x->fplp);
+ x->fplp = x->bplp = 0;
+ }
+ cfp = Configlist_return();
+ Configlist_eat(cfp);
+ }else{
+ /* This really is a new state. Construct all the details */
+ Configlist_closure(lemp); /* Compute the configuration closure */
+ Configlist_sort(); /* Sort the configuration closure */
+ cfp = Configlist_return(); /* Get a pointer to the config list */
+ stp = State_new(); /* A new state structure */
+ MemoryCheck(stp);
+ stp->bp = bp; /* Remember the configuration basis */
+ stp->cfp = cfp; /* Remember the configuration closure */
+ stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
+ stp->ap = 0; /* No actions, yet. */
+ State_insert(stp,stp->bp); /* Add to the state table */
+ buildshifts(lemp,stp); /* Recursively compute successor states */
+ }
+ return stp;
+}
+
+/*
+** Return true if two symbols are the same.
+*/
+int same_symbol(struct symbol *a, struct symbol *b)
+{
+ int i;
+ if( a==b ) return 1;
+ if( a->type!=MULTITERMINAL ) return 0;
+ if( b->type!=MULTITERMINAL ) return 0;
+ if( a->nsubsym!=b->nsubsym ) return 0;
+ for(i=0; i<a->nsubsym; i++){
+ if( a->subsym[i]!=b->subsym[i] ) return 0;
+ }
+ return 1;
+}
+
+/* Construct all successor states to the given state. A "successor"
+** state is any state which can be reached by a shift action.
+*/
+PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
+{
+ struct config *cfp; /* For looping thru the config closure of "stp" */
+ struct config *bcfp; /* For the inner loop on config closure of "stp" */
+ struct config *newcfg; /* */
+ struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
+ struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
+ struct state *newstp; /* A pointer to a successor state */
+
+ /* Each configuration becomes complete after it contibutes to a successor
+ ** state. Initially, all configurations are incomplete */
+ for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
+
+ /* Loop through all configurations of the state "stp" */
+ for(cfp=stp->cfp; cfp; cfp=cfp->next){
+ if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
+ if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
+ Configlist_reset(); /* Reset the new config set */
+ sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
+
+ /* For every configuration in the state "stp" which has the symbol "sp"
+ ** following its dot, add the same configuration to the basis set under
+ ** construction but with the dot shifted one symbol to the right. */
+ for(bcfp=cfp; bcfp; bcfp=bcfp->next){
+ if( bcfp->status==COMPLETE ) continue; /* Already used */
+ if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
+ bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
+ if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
+ bcfp->status = COMPLETE; /* Mark this config as used */
+ newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
+ Plink_add(&newcfg->bplp,bcfp);
+ }
+
+ /* Get a pointer to the state described by the basis configuration set
+ ** constructed in the preceding loop */
+ newstp = getstate(lemp);
+
+ /* The state "newstp" is reached from the state "stp" by a shift action
+ ** on the symbol "sp" */
+ if( sp->type==MULTITERMINAL ){
+ int i;
+ for(i=0; i<sp->nsubsym; i++){
+ Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
+ }
+ }else{
+ Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
+ }
+ }
+}
+
+/*
+** Construct the propagation links
+*/
+void FindLinks(struct lemon *lemp)
+{
+ int i;
+ struct config *cfp, *other;
+ struct state *stp;
+ struct plink *plp;
+
+ /* Housekeeping detail:
+ ** Add to every propagate link a pointer back to the state to
+ ** which the link is attached. */
+ for(i=0; i<lemp->nstate; i++){
+ stp = lemp->sorted[i];
+ for(cfp=stp->cfp; cfp; cfp=cfp->next){
+ cfp->stp = stp;
+ }
+ }
+
+ /* Convert all backlinks into forward links. Only the forward
+ ** links are used in the follow-set computation. */
+ for(i=0; i<lemp->nstate; i++){
+ stp = lemp->sorted[i];
+ for(cfp=stp->cfp; cfp; cfp=cfp->next){
+ for(plp=cfp->bplp; plp; plp=plp->next){
+ other = plp->cfp;
+ Plink_add(&other->fplp,cfp);
+ }
+ }
+ }
+}
+
+/* Compute all followsets.
+**
+** A followset is the set of all symbols which can come immediately
+** after a configuration.
+*/
+void FindFollowSets(struct lemon *lemp)
+{
+ int i;
+ struct config *cfp;
+ struct plink *plp;
+ int progress;
+ int change;
+
+ for(i=0; i<lemp->nstate; i++){
+ for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
+ cfp->status = INCOMPLETE;
+ }
+ }
+
+ do{
+ progress = 0;
+ for(i=0; i<lemp->nstate; i++){
+ for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
+ if( cfp->status==COMPLETE ) continue;
+ for(plp=cfp->fplp; plp; plp=plp->next){
+ change = SetUnion(plp->cfp->fws,cfp->fws);
+ if( change ){
+ plp->cfp->status = INCOMPLETE;
+ progress = 1;
+ }
+ }
+ cfp->status = COMPLETE;
+ }
+ }
+ }while( progress );
+}
+
+static int resolve_conflict(struct action *,struct action *);
+
+/* Compute the reduce actions, and resolve conflicts.
+*/
+void FindActions(struct lemon *lemp)
+{
+ int i,j;
+ struct config *cfp;
+ struct state *stp;
+ struct symbol *sp;
+ struct rule *rp;
+
+ /* Add all of the reduce actions
+ ** A reduce action is added for each element of the followset of
+ ** a configuration which has its dot at the extreme right.
+ */
+ for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
+ stp = lemp->sorted[i];
+ for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
+ if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
+ for(j=0; j<lemp->nterminal; j++){
+ if( SetFind(cfp->fws,j) ){
+ /* Add a reduce action to the state "stp" which will reduce by the
+ ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
+ Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
+ }
+ }
+ }
+ }
+ }
+
+ /* Add the accepting token */
+ if( lemp->start ){
+ sp = Symbol_find(lemp->start);
+ if( sp==0 ) sp = lemp->rule->lhs;
+ }else{
+ sp = lemp->rule->lhs;
+ }
+ /* Add to the first state (which is always the starting state of the
+ ** finite state machine) an action to ACCEPT if the lookahead is the
+ ** start nonterminal. */
+ Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
+
+ /* Resolve conflicts */
+ for(i=0; i<lemp->nstate; i++){
+ struct action *ap, *nap;
+ struct state *stp;
+ stp = lemp->sorted[i];
+ /* assert( stp->ap ); */
+ stp->ap = Action_sort(stp->ap);
+ for(ap=stp->ap; ap && ap->next; ap=ap->next){
+ for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
+ /* The two actions "ap" and "nap" have the same lookahead.
+ ** Figure out which one should be used */
+ lemp->nconflict += resolve_conflict(ap,nap);
+ }
+ }
+ }
+
+ /* Report an error for each rule that can never be reduced. */
+ for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
+ for(i=0; i<lemp->nstate; i++){
+ struct action *ap;
+ for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
+ if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
+ }
+ }
+ for(rp=lemp->rule; rp; rp=rp->next){
+ if( rp->canReduce ) continue;
+ ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
+ lemp->errorcnt++;
+ }
+}
+
+/* Resolve a conflict between the two given actions. If the
+** conflict can't be resolved, return non-zero.
+**
+** NO LONGER TRUE:
+** To resolve a conflict, first look to see if either action
+** is on an error rule. In that case, take the action which
+** is not associated with the error rule. If neither or both
+** actions are associated with an error rule, then try to
+** use precedence to resolve the conflict.
+**
+** If either action is a SHIFT, then it must be apx. This
+** function won't work if apx->type==REDUCE and apy->type==SHIFT.
+*/
+static int resolve_conflict(
+ struct action *apx,
+ struct action *apy
+){
+ struct symbol *spx, *spy;
+ int errcnt = 0;
+ assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
+ if( apx->type==SHIFT && apy->type==SHIFT ){
+ apy->type = SSCONFLICT;
+ errcnt++;
+ }
+ if( apx->type==SHIFT && apy->type==REDUCE ){
+ spx = apx->sp;
+ spy = apy->x.rp->precsym;
+ if( spy==0 || spx->prec<0 || spy->prec<0 ){
+ /* Not enough precedence information. */
+ apy->type = SRCONFLICT;
+ errcnt++;
+ }else if( spx->prec>spy->prec ){ /* higher precedence wins */
+ apy->type = RD_RESOLVED;
+ }else if( spx->prec<spy->prec ){
+ apx->type = SH_RESOLVED;
+ }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
+ apy->type = RD_RESOLVED; /* associativity */
+ }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
+ apx->type = SH_RESOLVED;
+ }else{
+ assert( spx->prec==spy->prec && spx->assoc==NONE );
+ apx->type = ERROR;
+ }
+ }else if( apx->type==REDUCE && apy->type==REDUCE ){
+ spx = apx->x.rp->precsym;
+ spy = apy->x.rp->precsym;
+ if( spx==0 || spy==0 || spx->prec<0 ||
+ spy->prec<0 || spx->prec==spy->prec ){
+ apy->type = RRCONFLICT;
+ errcnt++;
+ }else if( spx->prec>spy->prec ){
+ apy->type = RD_RESOLVED;
+ }else if( spx->prec<spy->prec ){
+ apx->type = RD_RESOLVED;
+ }
+ }else{
+ assert(
+ apx->type==SH_RESOLVED ||
+ apx->type==RD_RESOLVED ||
+ apx->type==SSCONFLICT ||
+ apx->type==SRCONFLICT ||
+ apx->type==RRCONFLICT ||
+ apy->type==SH_RESOLVED ||
+ apy->type==RD_RESOLVED ||
+ apy->type==SSCONFLICT ||
+ apy->type==SRCONFLICT ||
+ apy->type==RRCONFLICT
+ );
+ /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
+ ** REDUCEs on the list. If we reach this point it must be because
+ ** the parser conflict had already been resolved. */
+ }
+ return errcnt;
+}
+/********************* From the file "configlist.c" *************************/
+/*
+** Routines to processing a configuration list and building a state
+** in the LEMON parser generator.
+*/
+
+static struct config *freelist = 0; /* List of free configurations */
+static struct config *current = 0; /* Top of list of configurations */
+static struct config **currentend = 0; /* Last on list of configs */
+static struct config *basis = 0; /* Top of list of basis configs */
+static struct config **basisend = 0; /* End of list of basis configs */
+
+/* Return a pointer to a new configuration */
+PRIVATE struct config *newconfig(){
+ struct config *newcfg;
+ if( freelist==0 ){
+ int i;
+ int amt = 3;
+ freelist = (struct config *)calloc( amt, sizeof(struct config) );
+ if( freelist==0 ){
+ fprintf(stderr,"Unable to allocate memory for a new configuration.");
+ exit(1);
+ }
+ for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
+ freelist[amt-1].next = 0;
+ }
+ newcfg = freelist;
+ freelist = freelist->next;
+ return newcfg;
+}
+
+/* The configuration "old" is no longer used */
+PRIVATE void deleteconfig(struct config *old)
+{
+ old->next = freelist;
+ freelist = old;
+}
+
+/* Initialized the configuration list builder */
+void Configlist_init(){
+ current = 0;
+ currentend = &current;
+ basis = 0;
+ basisend = &basis;
+ Configtable_init();
+ return;
+}
+
+/* Initialized the configuration list builder */
+void Configlist_reset(){
+ current = 0;
+ currentend = &current;
+ basis = 0;
+ basisend = &basis;
+ Configtable_clear(0);
+ return;
+}
+
+/* Add another configuration to the configuration list */
+struct config *Configlist_add(
+ struct rule *rp, /* The rule */
+ int dot /* Index into the RHS of the rule where the dot goes */
+){
+ struct config *cfp, model;
+
+ assert( currentend!=0 );
+ model.rp = rp;
+ model.dot = dot;
+ cfp = Configtable_find(&model);
+ if( cfp==0 ){
+ cfp = newconfig();
+ cfp->rp = rp;
+ cfp->dot = dot;
+ cfp->fws = SetNew();
+ cfp->stp = 0;
+ cfp->fplp = cfp->bplp = 0;
+ cfp->next = 0;
+ cfp->bp = 0;
+ *currentend = cfp;
+ currentend = &cfp->next;
+ Configtable_insert(cfp);
+ }
+ return cfp;
+}
+
+/* Add a basis configuration to the configuration list */
+struct config *Configlist_addbasis(struct rule *rp, int dot)
+{
+ struct config *cfp, model;
+
+ assert( basisend!=0 );
+ assert( currentend!=0 );
+ model.rp = rp;
+ model.dot = dot;
+ cfp = Configtable_find(&model);
+ if( cfp==0 ){
+ cfp = newconfig();
+ cfp->rp = rp;
+ cfp->dot = dot;
+ cfp->fws = SetNew();
+ cfp->stp = 0;
+ cfp->fplp = cfp->bplp = 0;
+ cfp->next = 0;
+ cfp->bp = 0;
+ *currentend = cfp;
+ currentend = &cfp->next;
+ *basisend = cfp;
+ basisend = &cfp->bp;
+ Configtable_insert(cfp);
+ }
+ return cfp;
+}
+
+/* Compute the closure of the configuration list */
+void Configlist_closure(struct lemon *lemp)
+{
+ struct config *cfp, *newcfp;
+ struct rule *rp, *newrp;
+ struct symbol *sp, *xsp;
+ int i, dot;
+
+ assert( currentend!=0 );
+ for(cfp=current; cfp; cfp=cfp->next){
+ rp = cfp->rp;
+ dot = cfp->dot;
+ if( dot>=rp->nrhs ) continue;
+ sp = rp->rhs[dot];
+ if( sp->type==NONTERMINAL ){
+ if( sp->rule==0 && sp!=lemp->errsym ){
+ ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
+ sp->name);
+ lemp->errorcnt++;
+ }
+ for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
+ newcfp = Configlist_add(newrp,0);
+ for(i=dot+1; i<rp->nrhs; i++){
+ xsp = rp->rhs[i];
+ if( xsp->type==TERMINAL ){
+ SetAdd(newcfp->fws,xsp->index);
+ break;
+ }else if( xsp->type==MULTITERMINAL ){
+ int k;
+ for(k=0; k<xsp->nsubsym; k++){
+ SetAdd(newcfp->fws, xsp->subsym[k]->index);
+ }
+ break;
+ }else{
+ SetUnion(newcfp->fws,xsp->firstset);
+ if( xsp->lambda==LEMON_FALSE ) break;
+ }
+ }
+ if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
+ }
+ }
+ }
+ return;
+}
+
+/* Sort the configuration list */
+void Configlist_sort(){
+ current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
+ currentend = 0;
+ return;
+}
+
+/* Sort the basis configuration list */
+void Configlist_sortbasis(){
+ basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
+ basisend = 0;
+ return;
+}
+
+/* Return a pointer to the head of the configuration list and
+** reset the list */
+struct config *Configlist_return(){
+ struct config *old;
+ old = current;
+ current = 0;
+ currentend = 0;
+ return old;
+}
+
+/* Return a pointer to the head of the configuration list and
+** reset the list */
+struct config *Configlist_basis(){
+ struct config *old;
+ old = basis;
+ basis = 0;
+ basisend = 0;
+ return old;
+}
+
+/* Free all elements of the given configuration list */
+void Configlist_eat(struct config *cfp)
+{
+ struct config *nextcfp;
+ for(; cfp; cfp=nextcfp){
+ nextcfp = cfp->next;
+ assert( cfp->fplp==0 );
+ assert( cfp->bplp==0 );
+ if( cfp->fws ) SetFree(cfp->fws);
+ deleteconfig(cfp);
+ }
+ return;
+}
+/***************** From the file "error.c" *********************************/
+/*
+** Code for printing error message.
+*/
+
+void ErrorMsg(const char *filename, int lineno, const char *format, ...){
+ va_list ap;
+ fprintf(stderr, "%s:%d: ", filename, lineno);
+ va_start(ap, format);
+ vfprintf(stderr,format,ap);
+ va_end(ap);
+ fprintf(stderr, "\n");
+}
+/**************** From the file "main.c" ************************************/
+/*
+** Main program file for the LEMON parser generator.
+*/
+
+/* Report an out-of-memory condition and abort. This function
+** is used mostly by the "MemoryCheck" macro in struct.h
+*/
+void memory_error(){
+ fprintf(stderr,"Out of memory. Aborting...\n");
+ exit(1);
+}
+
+static int nDefine = 0; /* Number of -D options on the command line */
+static char **azDefine = 0; /* Name of the -D macros */
+
+/* This routine is called with the argument to each -D command-line option.
+** Add the macro defined to the azDefine array.
+*/
+static void handle_D_option(char *z){
+ char **paz;
+ nDefine++;
+ azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
+ if( azDefine==0 ){
+ fprintf(stderr,"out of memory\n");
+ exit(1);
+ }
+ paz = &azDefine[nDefine-1];
+ *paz = (char *) malloc( lemonStrlen(z)+1 );
+ if( *paz==0 ){
+ fprintf(stderr,"out of memory\n");
+ exit(1);
+ }
+ lemon_strcpy(*paz, z);
+ for(z=*paz; *z && *z!='='; z++){}
+ *z = 0;
+}
+
+static char *user_templatename = NULL;
+static void handle_T_option(char *z){
+ user_templatename = (char *) malloc( lemonStrlen(z)+1 );
+ if( user_templatename==0 ){
+ memory_error();
+ }
+ lemon_strcpy(user_templatename, z);
+}
+
+/* The main program. Parse the command line and do it... */
+int main(int argc, char **argv)
+{
+ static int version = 0;
+ static int rpflag = 0;
+ static int basisflag = 0;
+ static int compress = 0;
+ static int quiet = 0;
+ static int statistics = 0;
+ static int mhflag = 0;
+ static int nolinenosflag = 0;
+ static int noResort = 0;
+ static struct s_options options[] = {
+ {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
+ {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
+ {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
+ {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
+ {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
+ {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
+ {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
+ {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
+ "Show conflicts resolved by precedence rules"},
+ {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
+ {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
+ {OPT_FLAG, "s", (char*)&statistics,
+ "Print parser stats to standard output."},
+ {OPT_FLAG, "x", (char*)&version, "Print the version number."},
+ {OPT_FLAG,0,0,0}
+ };
+ int i;
+ int exitcode;
+ struct lemon lem;
+
+ OptInit(argv,options,stderr);
+ if( version ){
+ printf("Lemon version 1.0\n");
+ exit(0);
+ }
+ if( OptNArgs()!=1 ){
+ fprintf(stderr,"Exactly one filename argument is required.\n");
+ exit(1);
+ }
+ memset(&lem, 0, sizeof(lem));
+ lem.errorcnt = 0;
+
+ /* Initialize the machine */
+ Strsafe_init();
+ Symbol_init();
+ State_init();
+ lem.argv0 = argv[0];
+ lem.filename = OptArg(0);
+ lem.basisflag = basisflag;
+ lem.nolinenosflag = nolinenosflag;
+ Symbol_new("$");
+ lem.errsym = Symbol_new("error");
+ lem.errsym->useCnt = 0;
+
+ /* Parse the input file */
+ Parse(&lem);
+ if( lem.errorcnt ) exit(lem.errorcnt);
+ if( lem.nrule==0 ){
+ fprintf(stderr,"Empty grammar.\n");
+ exit(1);
+ }
+
+ /* Count and index the symbols of the grammar */
+ Symbol_new("{default}");
+ lem.nsymbol = Symbol_count();
+ lem.symbols = Symbol_arrayof();
+ for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
+ qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
+ for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
+ while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
+ assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
+ lem.nsymbol = i - 1;
+ for(i=1; isupper(lem.symbols[i]->name[0]); i++);
+ lem.nterminal = i;
+
+ /* Generate a reprint of the grammar, if requested on the command line */
+ if( rpflag ){
+ Reprint(&lem);
+ }else{
+ /* Initialize the size for all follow and first sets */
+ SetSize(lem.nterminal+1);
+
+ /* Find the precedence for every production rule (that has one) */
+ FindRulePrecedences(&lem);
+
+ /* Compute the lambda-nonterminals and the first-sets for every
+ ** nonterminal */
+ FindFirstSets(&lem);
+
+ /* Compute all LR(0) states. Also record follow-set propagation
+ ** links so that the follow-set can be computed later */
+ lem.nstate = 0;
+ FindStates(&lem);
+ lem.sorted = State_arrayof();
+
+ /* Tie up loose ends on the propagation links */
+ FindLinks(&lem);
+
+ /* Compute the follow set of every reducible configuration */
+ FindFollowSets(&lem);
+
+ /* Compute the action tables */
+ FindActions(&lem);
+
+ /* Compress the action tables */
+ if( compress==0 ) CompressTables(&lem);
+
+ /* Reorder and renumber the states so that states with fewer choices
+ ** occur at the end. This is an optimization that helps make the
+ ** generated parser tables smaller. */
+ if( noResort==0 ) ResortStates(&lem);
+
+ /* Generate a report of the parser generated. (the "y.output" file) */
+ if( !quiet ) ReportOutput(&lem);
+
+ /* Generate the source code for the parser */
+ ReportTable(&lem, mhflag);
+
+ /* Produce a header file for use by the scanner. (This step is
+ ** omitted if the "-m" option is used because makeheaders will
+ ** generate the file for us.) */
+ if( !mhflag ) ReportHeader(&lem);
+ }
+ if( statistics ){
+ printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
+ lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
+ printf(" %d states, %d parser table entries, %d conflicts\n",
+ lem.nstate, lem.tablesize, lem.nconflict);
+ }
+ if( lem.nconflict > 0 ){
+ fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
+ }
+
+ /* return 0 on success, 1 on failure. */
+ exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
+ exit(exitcode);
+ return (exitcode);
+}
+/******************** From the file "msort.c" *******************************/
+/*
+** A generic merge-sort program.
+**
+** USAGE:
+** Let "ptr" be a pointer to some structure which is at the head of
+** a null-terminated list. Then to sort the list call:
+**
+** ptr = msort(ptr,&(ptr->next),cmpfnc);
+**
+** In the above, "cmpfnc" is a pointer to a function which compares
+** two instances of the structure and returns an integer, as in
+** strcmp. The second argument is a pointer to the pointer to the
+** second element of the linked list. This address is used to compute
+** the offset to the "next" field within the structure. The offset to
+** the "next" field must be constant for all structures in the list.
+**
+** The function returns a new pointer which is the head of the list
+** after sorting.
+**
+** ALGORITHM:
+** Merge-sort.
+*/
+
+/*
+** Return a pointer to the next structure in the linked list.
+*/
+#define NEXT(A) (*(char**)(((char*)A)+offset))
+
+/*
+** Inputs:
+** a: A sorted, null-terminated linked list. (May be null).
+** b: A sorted, null-terminated linked list. (May be null).
+** cmp: A pointer to the comparison function.
+** offset: Offset in the structure to the "next" field.
+**
+** Return Value:
+** A pointer to the head of a sorted list containing the elements
+** of both a and b.
+**
+** Side effects:
+** The "next" pointers for elements in the lists a and b are
+** changed.
+*/
+static char *merge(
+ char *a,
+ char *b,
+ int (*cmp)(const char*,const char*),
+ int offset
+){
+ char *ptr, *head;
+
+ if( a==0 ){
+ head = b;
+ }else if( b==0 ){
+ head = a;
+ }else{
+ if( (*cmp)(a,b)<=0 ){
+ ptr = a;
+ a = NEXT(a);
+ }else{
+ ptr = b;
+ b = NEXT(b);
+ }
+ head = ptr;
+ while( a && b ){
+ if( (*cmp)(a,b)<=0 ){
+ NEXT(ptr) = a;
+ ptr = a;
+ a = NEXT(a);
+ }else{
+ NEXT(ptr) = b;
+ ptr = b;
+ b = NEXT(b);
+ }
+ }
+ if( a ) NEXT(ptr) = a;
+ else NEXT(ptr) = b;
+ }
+ return head;
+}
+
+/*
+** Inputs:
+** list: Pointer to a singly-linked list of structures.
+** next: Pointer to pointer to the second element of the list.
+** cmp: A comparison function.
+**
+** Return Value:
+** A pointer to the head of a sorted list containing the elements
+** orginally in list.
+**
+** Side effects:
+** The "next" pointers for elements in list are changed.
+*/
+#define LISTSIZE 30
+static char *msort(
+ char *list,
+ char **next,
+ int (*cmp)(const char*,const char*)
+){
+ unsigned long offset;
+ char *ep;
+ char *set[LISTSIZE];
+ int i;
+ offset = (unsigned long)next - (unsigned long)list;
+ for(i=0; i<LISTSIZE; i++) set[i] = 0;
+ while( list ){
+ ep = list;
+ list = NEXT(list);
+ NEXT(ep) = 0;
+ for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
+ ep = merge(ep,set[i],cmp,offset);
+ set[i] = 0;
+ }
+ set[i] = ep;
+ }
+ ep = 0;
+ for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
+ return ep;
+}
+/************************ From the file "option.c" **************************/
+static char **argv;
+static struct s_options *op;
+static FILE *errstream;
+
+#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
+
+/*
+** Print the command line with a carrot pointing to the k-th character
+** of the n-th field.
+*/
+static void errline(int n, int k, FILE *err)
+{
+ int spcnt, i;
+ if( argv[0] ) fprintf(err,"%s",argv[0]);
+ spcnt = lemonStrlen(argv[0]) + 1;
+ for(i=1; i<n && argv[i]; i++){
+ fprintf(err," %s",argv[i]);
+ spcnt += lemonStrlen(argv[i])+1;
+ }
+ spcnt += k;
+ for(; argv[i]; i++) fprintf(err," %s",argv[i]);
+ if( spcnt<20 ){
+ fprintf(err,"\n%*s^-- here\n",spcnt,"");
+ }else{
+ fprintf(err,"\n%*shere --^\n",spcnt-7,"");
+ }
+}
+
+/*
+** Return the index of the N-th non-switch argument. Return -1
+** if N is out of range.
+*/
+static int argindex(int n)
+{
+ int i;
+ int dashdash = 0;
+ if( argv!=0 && *argv!=0 ){
+ for(i=1; argv[i]; i++){
+ if( dashdash || !ISOPT(argv[i]) ){
+ if( n==0 ) return i;
+ n--;
+ }
+ if( strcmp(argv[i],"--")==0 ) dashdash = 1;
+ }
+ }
+ return -1;
+}
+
+static char emsg[] = "Command line syntax error: ";
+
+/*
+** Process a flag command line argument.
+*/
+static int handleflags(int i, FILE *err)
+{
+ int v;
+ int errcnt = 0;
+ int j;
+ for(j=0; op[j].label; j++){
+ if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
+ }
+ v = argv[i][0]=='-' ? 1 : 0;
+ if( op[j].label==0 ){
+ if( err ){
+ fprintf(err,"%sundefined option.\n",emsg);
+ errline(i,1,err);
+ }
+ errcnt++;
+ }else if( op[j].type==OPT_FLAG ){
+ *((int*)op[j].arg) = v;
+ }else if( op[j].type==OPT_FFLAG ){
+ (*(void(*)(int))(op[j].arg))(v);
+ }else if( op[j].type==OPT_FSTR ){
+ (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
+ }else{
+ if( err ){
+ fprintf(err,"%smissing argument on switch.\n",emsg);
+ errline(i,1,err);
+ }
+ errcnt++;
+ }
+ return errcnt;
+}
+
+/*
+** Process a command line switch which has an argument.
+*/
+static int handleswitch(int i, FILE *err)
+{
+ int lv = 0;
+ double dv = 0.0;
+ char *sv = 0, *end;
+ char *cp;
+ int j;
+ int errcnt = 0;
+ cp = strchr(argv[i],'=');
+ assert( cp!=0 );
+ *cp = 0;
+ for(j=0; op[j].label; j++){
+ if( strcmp(argv[i],op[j].label)==0 ) break;
+ }
+ *cp = '=';
+ if( op[j].label==0 ){
+ if( err ){
+ fprintf(err,"%sundefined option.\n",emsg);
+ errline(i,0,err);
+ }
+ errcnt++;
+ }else{
+ cp++;
+ switch( op[j].type ){
+ case OPT_FLAG:
+ case OPT_FFLAG:
+ if( err ){
+ fprintf(err,"%soption requires an argument.\n",emsg);
+ errline(i,0,err);
+ }
+ errcnt++;
+ break;
+ case OPT_DBL:
+ case OPT_FDBL:
+ dv = strtod(cp,&end);
+ if( *end ){
+ if( err ){
+ fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
+ errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
+ }
+ errcnt++;
+ }
+ break;
+ case OPT_INT:
+ case OPT_FINT:
+ lv = strtol(cp,&end,0);
+ if( *end ){
+ if( err ){
+ fprintf(err,"%sillegal character in integer argument.\n",emsg);
+ errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
+ }
+ errcnt++;
+ }
+ break;
+ case OPT_STR:
+ case OPT_FSTR:
+ sv = cp;
+ break;
+ }
+ switch( op[j].type ){
+ case OPT_FLAG:
+ case OPT_FFLAG:
+ break;
+ case OPT_DBL:
+ *(double*)(op[j].arg) = dv;
+ break;
+ case OPT_FDBL:
+ (*(void(*)(double))(op[j].arg))(dv);
+ break;
+ case OPT_INT:
+ *(int*)(op[j].arg) = lv;
+ break;
+ case OPT_FINT:
+ (*(void(*)(int))(op[j].arg))((int)lv);
+ break;
+ case OPT_STR:
+ *(char**)(op[j].arg) = sv;
+ break;
+ case OPT_FSTR:
+ (*(void(*)(char *))(op[j].arg))(sv);
+ break;
+ }
+ }
+ return errcnt;
+}
+
+int OptInit(char **a, struct s_options *o, FILE *err)
+{
+ int errcnt = 0;
+ argv = a;
+ op = o;
+ errstream = err;
+ if( argv && *argv && op ){
+ int i;
+ for(i=1; argv[i]; i++){
+ if( argv[i][0]=='+' || argv[i][0]=='-' ){
+ errcnt += handleflags(i,err);
+ }else if( strchr(argv[i],'=') ){
+ errcnt += handleswitch(i,err);
+ }
+ }
+ }
+ if( errcnt>0 ){
+ fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
+ OptPrint();
+ exit(1);
+ }
+ return 0;
+}
+
+int OptNArgs(){
+ int cnt = 0;
+ int dashdash = 0;
+ int i;
+ if( argv!=0 && argv[0]!=0 ){
+ for(i=1; argv[i]; i++){
+ if( dashdash || !ISOPT(argv[i]) ) cnt++;
+ if( strcmp(argv[i],"--")==0 ) dashdash = 1;
+ }
+ }
+ return cnt;
+}
+
+char *OptArg(int n)
+{
+ int i;
+ i = argindex(n);
+ return i>=0 ? argv[i] : 0;
+}
+
+void OptErr(int n)
+{
+ int i;
+ i = argindex(n);
+ if( i>=0 ) errline(i,0,errstream);
+}
+
+void OptPrint(){
+ int i;
+ int max, len;
+ max = 0;
+ for(i=0; op[i].label; i++){
+ len = lemonStrlen(op[i].label) + 1;
+ switch( op[i].type ){
+ case OPT_FLAG:
+ case OPT_FFLAG:
+ break;
+ case OPT_INT:
+ case OPT_FINT:
+ len += 9; /* length of "<integer>" */
+ break;
+ case OPT_DBL:
+ case OPT_FDBL:
+ len += 6; /* length of "<real>" */
+ break;
+ case OPT_STR:
+ case OPT_FSTR:
+ len += 8; /* length of "<string>" */
+ break;
+ }
+ if( len>max ) max = len;
+ }
+ for(i=0; op[i].label; i++){
+ switch( op[i].type ){
+ case OPT_FLAG:
+ case OPT_FFLAG:
+ fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
+ break;
+ case OPT_INT:
+ case OPT_FINT:
+ fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
+ (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
+ break;
+ case OPT_DBL:
+ case OPT_FDBL:
+ fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
+ (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
+ break;
+ case OPT_STR:
+ case OPT_FSTR:
+ fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
+ (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
+ break;
+ }
+ }
+}
+/*********************** From the file "parse.c" ****************************/
+/*
+** Input file parser for the LEMON parser generator.
+*/
+
+/* The state of the parser */
+enum e_state {
+ INITIALIZE,
+ WAITING_FOR_DECL_OR_RULE,
+ WAITING_FOR_DECL_KEYWORD,
+ WAITING_FOR_DECL_ARG,
+ WAITING_FOR_PRECEDENCE_SYMBOL,
+ WAITING_FOR_ARROW,
+ IN_RHS,
+ LHS_ALIAS_1,
+ LHS_ALIAS_2,
+ LHS_ALIAS_3,
+ RHS_ALIAS_1,
+ RHS_ALIAS_2,
+ PRECEDENCE_MARK_1,
+ PRECEDENCE_MARK_2,
+ RESYNC_AFTER_RULE_ERROR,
+ RESYNC_AFTER_DECL_ERROR,
+ WAITING_FOR_DESTRUCTOR_SYMBOL,
+ WAITING_FOR_DATATYPE_SYMBOL,
+ WAITING_FOR_FALLBACK_ID,
+ WAITING_FOR_WILDCARD_ID,
+ WAITING_FOR_CLASS_ID,
+ WAITING_FOR_CLASS_TOKEN
+};
+struct pstate {
+ char *filename; /* Name of the input file */
+ int tokenlineno; /* Linenumber at which current token starts */
+ int errorcnt; /* Number of errors so far */
+ char *tokenstart; /* Text of current token */
+ struct lemon *gp; /* Global state vector */
+ enum e_state state; /* The state of the parser */
+ struct symbol *fallback; /* The fallback token */
+ struct symbol *tkclass; /* Token class symbol */
+ struct symbol *lhs; /* Left-hand side of current rule */
+ const char *lhsalias; /* Alias for the LHS */
+ int nrhs; /* Number of right-hand side symbols seen */
+ struct symbol *rhs[MAXRHS]; /* RHS symbols */
+ const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
+ struct rule *prevrule; /* Previous rule parsed */
+ const char *declkeyword; /* Keyword of a declaration */
+ char **declargslot; /* Where the declaration argument should be put */
+ int insertLineMacro; /* Add #line before declaration insert */
+ int *decllinenoslot; /* Where to write declaration line number */
+ enum e_assoc declassoc; /* Assign this association to decl arguments */
+ int preccounter; /* Assign this precedence to decl arguments */
+ struct rule *firstrule; /* Pointer to first rule in the grammar */
+ struct rule *lastrule; /* Pointer to the most recently parsed rule */
+};
+
+/* Parse a single token */
+static void parseonetoken(struct pstate *psp)
+{
+ const char *x;
+ x = Strsafe(psp->tokenstart); /* Save the token permanently */
+#if 0
+ printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
+ x,psp->state);
+#endif
+ switch( psp->state ){
+ case INITIALIZE:
+ psp->prevrule = 0;
+ psp->preccounter = 0;
+ psp->firstrule = psp->lastrule = 0;
+ psp->gp->nrule = 0;
+ /* Fall thru to next case */
+ case WAITING_FOR_DECL_OR_RULE:
+ if( x[0]=='%' ){
+ psp->state = WAITING_FOR_DECL_KEYWORD;
+ }else if( islower(x[0]) ){
+ psp->lhs = Symbol_new(x);
+ psp->nrhs = 0;
+ psp->lhsalias = 0;
+ psp->state = WAITING_FOR_ARROW;
+ }else if( x[0]=='{' ){
+ if( psp->prevrule==0 ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+"There is no prior rule upon which to attach the code \
+fragment which begins on this line.");
+ psp->errorcnt++;
+ }else if( psp->prevrule->code!=0 ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+"Code fragment beginning on this line is not the first \
+to follow the previous rule.");
+ psp->errorcnt++;
+ }else{
+ psp->prevrule->line = psp->tokenlineno;
+ psp->prevrule->code = &x[1];
+ }
+ }else if( x[0]=='[' ){
+ psp->state = PRECEDENCE_MARK_1;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Token \"%s\" should be either \"%%\" or a nonterminal name.",
+ x);
+ psp->errorcnt++;
+ }
+ break;
+ case PRECEDENCE_MARK_1:
+ if( !isupper(x[0]) ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "The precedence symbol must be a terminal.");
+ psp->errorcnt++;
+ }else if( psp->prevrule==0 ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "There is no prior rule to assign precedence \"[%s]\".",x);
+ psp->errorcnt++;
+ }else if( psp->prevrule->precsym!=0 ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+"Precedence mark on this line is not the first \
+to follow the previous rule.");
+ psp->errorcnt++;
+ }else{
+ psp->prevrule->precsym = Symbol_new(x);
+ }
+ psp->state = PRECEDENCE_MARK_2;
+ break;
+ case PRECEDENCE_MARK_2:
+ if( x[0]!=']' ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Missing \"]\" on precedence mark.");
+ psp->errorcnt++;
+ }
+ psp->state = WAITING_FOR_DECL_OR_RULE;
+ break;
+ case WAITING_FOR_ARROW:
+ if( x[0]==':' && x[1]==':' && x[2]=='=' ){
+ psp->state = IN_RHS;
+ }else if( x[0]=='(' ){
+ psp->state = LHS_ALIAS_1;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Expected to see a \":\" following the LHS symbol \"%s\".",
+ psp->lhs->name);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_RULE_ERROR;
+ }
+ break;
+ case LHS_ALIAS_1:
+ if( isalpha(x[0]) ){
+ psp->lhsalias = x;
+ psp->state = LHS_ALIAS_2;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "\"%s\" is not a valid alias for the LHS \"%s\"\n",
+ x,psp->lhs->name);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_RULE_ERROR;
+ }
+ break;
+ case LHS_ALIAS_2:
+ if( x[0]==')' ){
+ psp->state = LHS_ALIAS_3;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_RULE_ERROR;
+ }
+ break;
+ case LHS_ALIAS_3:
+ if( x[0]==':' && x[1]==':' && x[2]=='=' ){
+ psp->state = IN_RHS;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Missing \"->\" following: \"%s(%s)\".",
+ psp->lhs->name,psp->lhsalias);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_RULE_ERROR;
+ }
+ break;
+ case IN_RHS:
+ if( x[0]=='.' ){
+ struct rule *rp;
+ rp = (struct rule *)calloc( sizeof(struct rule) +
+ sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
+ if( rp==0 ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Can't allocate enough memory for this rule.");
+ psp->errorcnt++;
+ psp->prevrule = 0;
+ }else{
+ int i;
+ rp->ruleline = psp->tokenlineno;
+ rp->rhs = (struct symbol**)&rp[1];
+ rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
+ for(i=0; i<psp->nrhs; i++){
+ rp->rhs[i] = psp->rhs[i];
+ rp->rhsalias[i] = psp->alias[i];
+ }
+ rp->lhs = psp->lhs;
+ rp->lhsalias = psp->lhsalias;
+ rp->nrhs = psp->nrhs;
+ rp->code = 0;
+ rp->precsym = 0;
+ rp->index = psp->gp->nrule++;
+ rp->nextlhs = rp->lhs->rule;
+ rp->lhs->rule = rp;
+ rp->next = 0;
+ if( psp->firstrule==0 ){
+ psp->firstrule = psp->lastrule = rp;
+ }else{
+ psp->lastrule->next = rp;
+ psp->lastrule = rp;
+ }
+ psp->prevrule = rp;
+ }
+ psp->state = WAITING_FOR_DECL_OR_RULE;
+ }else if( isalpha(x[0]) ){
+ if( psp->nrhs>=MAXRHS ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Too many symbols on RHS of rule beginning at \"%s\".",
+ x);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_RULE_ERROR;
+ }else{
+ psp->rhs[psp->nrhs] = Symbol_new(x);
+ psp->alias[psp->nrhs] = 0;
+ psp->nrhs++;
+ }
+ }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
+ struct symbol *msp = psp->rhs[psp->nrhs-1];
+ if( msp->type!=MULTITERMINAL ){
+ struct symbol *origsp = msp;
+ msp = (struct symbol *) calloc(1,sizeof(*msp));
+ memset(msp, 0, sizeof(*msp));
+ msp->type = MULTITERMINAL;
+ msp->nsubsym = 1;
+ msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
+ msp->subsym[0] = origsp;
+ msp->name = origsp->name;
+ psp->rhs[psp->nrhs-1] = msp;
+ }
+ msp->nsubsym++;
+ msp->subsym = (struct symbol **) realloc(msp->subsym,
+ sizeof(struct symbol*)*msp->nsubsym);
+ msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
+ if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Cannot form a compound containing a non-terminal");
+ psp->errorcnt++;
+ }
+ }else if( x[0]=='(' && psp->nrhs>0 ){
+ psp->state = RHS_ALIAS_1;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Illegal character on RHS of rule: \"%s\".",x);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_RULE_ERROR;
+ }
+ break;
+ case RHS_ALIAS_1:
+ if( isalpha(x[0]) ){
+ psp->alias[psp->nrhs-1] = x;
+ psp->state = RHS_ALIAS_2;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
+ x,psp->rhs[psp->nrhs-1]->name);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_RULE_ERROR;
+ }
+ break;
+ case RHS_ALIAS_2:
+ if( x[0]==')' ){
+ psp->state = IN_RHS;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_RULE_ERROR;
+ }
+ break;
+ case WAITING_FOR_DECL_KEYWORD:
+ if( isalpha(x[0]) ){
+ psp->declkeyword = x;
+ psp->declargslot = 0;
+ psp->decllinenoslot = 0;
+ psp->insertLineMacro = 1;
+ psp->state = WAITING_FOR_DECL_ARG;
+ if( strcmp(x,"name")==0 ){
+ psp->declargslot = &(psp->gp->name);
+ psp->insertLineMacro = 0;
+ }else if( strcmp(x,"include")==0 ){
+ psp->declargslot = &(psp->gp->include);
+ }else if( strcmp(x,"code")==0 ){
+ psp->declargslot = &(psp->gp->extracode);
+ }else if( strcmp(x,"token_destructor")==0 ){
+ psp->declargslot = &psp->gp->tokendest;
+ }else if( strcmp(x,"default_destructor")==0 ){
+ psp->declargslot = &psp->gp->vardest;
+ }else if( strcmp(x,"token_prefix")==0 ){
+ psp->declargslot = &psp->gp->tokenprefix;
+ psp->insertLineMacro = 0;
+ }else if( strcmp(x,"syntax_error")==0 ){
+ psp->declargslot = &(psp->gp->error);
+ }else if( strcmp(x,"parse_accept")==0 ){
+ psp->declargslot = &(psp->gp->accept);
+ }else if( strcmp(x,"parse_failure")==0 ){
+ psp->declargslot = &(psp->gp->failure);
+ }else if( strcmp(x,"stack_overflow")==0 ){
+ psp->declargslot = &(psp->gp->overflow);
+ }else if( strcmp(x,"extra_argument")==0 ){
+ psp->declargslot = &(psp->gp->arg);
+ psp->insertLineMacro = 0;
+ }else if( strcmp(x,"token_type")==0 ){
+ psp->declargslot = &(psp->gp->tokentype);
+ psp->insertLineMacro = 0;
+ }else if( strcmp(x,"default_type")==0 ){
+ psp->declargslot = &(psp->gp->vartype);
+ psp->insertLineMacro = 0;
+ }else if( strcmp(x,"stack_size")==0 ){
+ psp->declargslot = &(psp->gp->stacksize);
+ psp->insertLineMacro = 0;
+ }else if( strcmp(x,"start_symbol")==0 ){
+ psp->declargslot = &(psp->gp->start);
+ psp->insertLineMacro = 0;
+ }else if( strcmp(x,"left")==0 ){
+ psp->preccounter++;
+ psp->declassoc = LEFT;
+ psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
+ }else if( strcmp(x,"right")==0 ){
+ psp->preccounter++;
+ psp->declassoc = RIGHT;
+ psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
+ }else if( strcmp(x,"nonassoc")==0 ){
+ psp->preccounter++;
+ psp->declassoc = NONE;
+ psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
+ }else if( strcmp(x,"destructor")==0 ){
+ psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
+ }else if( strcmp(x,"type")==0 ){
+ psp->state = WAITING_FOR_DATATYPE_SYMBOL;
+ }else if( strcmp(x,"fallback")==0 ){
+ psp->fallback = 0;
+ psp->state = WAITING_FOR_FALLBACK_ID;
+ }else if( strcmp(x,"wildcard")==0 ){
+ psp->state = WAITING_FOR_WILDCARD_ID;
+ }else if( strcmp(x,"token_class")==0 ){
+ psp->state = WAITING_FOR_CLASS_ID;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Unknown declaration keyword: \"%%%s\".",x);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_DECL_ERROR;
+ }
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Illegal declaration keyword: \"%s\".",x);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_DECL_ERROR;
+ }
+ break;
+ case WAITING_FOR_DESTRUCTOR_SYMBOL:
+ if( !isalpha(x[0]) ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Symbol name missing after %%destructor keyword");
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_DECL_ERROR;
+ }else{
+ struct symbol *sp = Symbol_new(x);
+ psp->declargslot = &sp->destructor;
+ psp->decllinenoslot = &sp->destLineno;
+ psp->insertLineMacro = 1;
+ psp->state = WAITING_FOR_DECL_ARG;
+ }
+ break;
+ case WAITING_FOR_DATATYPE_SYMBOL:
+ if( !isalpha(x[0]) ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Symbol name missing after %%type keyword");
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_DECL_ERROR;
+ }else{
+ struct symbol *sp = Symbol_find(x);
+ if((sp) && (sp->datatype)){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Symbol %%type \"%s\" already defined", x);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_DECL_ERROR;
+ }else{
+ if (!sp){
+ sp = Symbol_new(x);
+ }
+ psp->declargslot = &sp->datatype;
+ psp->insertLineMacro = 0;
+ psp->state = WAITING_FOR_DECL_ARG;
+ }
+ }
+ break;
+ case WAITING_FOR_PRECEDENCE_SYMBOL:
+ if( x[0]=='.' ){
+ psp->state = WAITING_FOR_DECL_OR_RULE;
+ }else if( isupper(x[0]) ){
+ struct symbol *sp;
+ sp = Symbol_new(x);
+ if( sp->prec>=0 ){
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Symbol \"%s\" has already be given a precedence.",x);
+ psp->errorcnt++;
+ }else{
+ sp->prec = psp->preccounter;
+ sp->assoc = psp->declassoc;
+ }
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Can't assign a precedence to \"%s\".",x);
+ psp->errorcnt++;
+ }
+ break;
+ case WAITING_FOR_DECL_ARG:
+ if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){
+ const char *zOld, *zNew;
+ char *zBuf, *z;
+ int nOld, n, nLine, nNew, nBack;
+ int addLineMacro;
+ char zLine[50];
+ zNew = x;
+ if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
+ nNew = lemonStrlen(zNew);
+ if( *psp->declargslot ){
+ zOld = *psp->declargslot;
+ }else{
+ zOld = "";
+ }
+ nOld = lemonStrlen(zOld);
+ n = nOld + nNew + 20;
+ addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
+ (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
+ if( addLineMacro ){
+ for(z=psp->filename, nBack=0; *z; z++){
+ if( *z=='\\' ) nBack++;
+ }
+ lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
+ nLine = lemonStrlen(zLine);
+ n += nLine + lemonStrlen(psp->filename) + nBack;
+ }
+ *psp->declargslot = (char *) realloc(*psp->declargslot, n);
+ zBuf = *psp->declargslot + nOld;
+ if( addLineMacro ){
+ if( nOld && zBuf[-1]!='\n' ){
+ *(zBuf++) = '\n';
+ }
+ memcpy(zBuf, zLine, nLine);
+ zBuf += nLine;
+ *(zBuf++) = '"';
+ for(z=psp->filename; *z; z++){
+ if( *z=='\\' ){
+ *(zBuf++) = '\\';
+ }
+ *(zBuf++) = *z;
+ }
+ *(zBuf++) = '"';
+ *(zBuf++) = '\n';
+ }
+ if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
+ psp->decllinenoslot[0] = psp->tokenlineno;
+ }
+ memcpy(zBuf, zNew, nNew);
+ zBuf += nNew;
+ *zBuf = 0;
+ psp->state = WAITING_FOR_DECL_OR_RULE;
+ }else{
+ ErrorMsg(psp->filename,psp->tokenlineno,
+ "Illegal argument to %%%s: %s",psp->declkeyword,x);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_DECL_ERROR;
+ }
+ break;
+ case WAITING_FOR_FALLBACK_ID:
+ if( x[0]=='.' ){
+ psp->state = WAITING_FOR_DECL_OR_RULE;
+ }else if( !isupper(x[0]) ){
+ ErrorMsg(psp->filename, psp->tokenlineno,
+ "%%fallback argument \"%s\" should be a token", x);
+ psp->errorcnt++;
+ }else{
+ struct symbol *sp = Symbol_new(x);
+ if( psp->fallback==0 ){
+ psp->fallback = sp;
+ }else if( sp->fallback ){
+ ErrorMsg(psp->filename, psp->tokenlineno,
+ "More than one fallback assigned to token %s", x);
+ psp->errorcnt++;
+ }else{
+ sp->fallback = psp->fallback;
+ psp->gp->has_fallback = 1;
+ }
+ }
+ break;
+ case WAITING_FOR_WILDCARD_ID:
+ if( x[0]=='.' ){
+ psp->state = WAITING_FOR_DECL_OR_RULE;
+ }else if( !isupper(x[0]) ){
+ ErrorMsg(psp->filename, psp->tokenlineno,
+ "%%wildcard argument \"%s\" should be a token", x);
+ psp->errorcnt++;
+ }else{
+ struct symbol *sp = Symbol_new(x);
+ if( psp->gp->wildcard==0 ){
+ psp->gp->wildcard = sp;
+ }else{
+ ErrorMsg(psp->filename, psp->tokenlineno,
+ "Extra wildcard to token: %s", x);
+ psp->errorcnt++;
+ }
+ }
+ break;
+ case WAITING_FOR_CLASS_ID:
+ if( !islower(x[0]) ){
+ ErrorMsg(psp->filename, psp->tokenlineno,
+ "%%token_class must be followed by an identifier: ", x);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_DECL_ERROR;
+ }else if( Symbol_find(x) ){
+ ErrorMsg(psp->filename, psp->tokenlineno,
+ "Symbol \"%s\" already used", x);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_DECL_ERROR;
+ }else{
+ psp->tkclass = Symbol_new(x);
+ psp->tkclass->type = MULTITERMINAL;
+ psp->state = WAITING_FOR_CLASS_TOKEN;
+ }
+ break;
+ case WAITING_FOR_CLASS_TOKEN:
+ if( x[0]=='.' ){
+ psp->state = WAITING_FOR_DECL_OR_RULE;
+ }else if( isupper(x[0]) || ((x[0]=='|' || x[0]=='/') && isupper(x[1])) ){
+ struct symbol *msp = psp->tkclass;
+ msp->nsubsym++;
+ msp->subsym = (struct symbol **) realloc(msp->subsym,
+ sizeof(struct symbol*)*msp->nsubsym);
+ if( !isupper(x[0]) ) x++;
+ msp->subsym[msp->nsubsym-1] = Symbol_new(x);
+ }else{
+ ErrorMsg(psp->filename, psp->tokenlineno,
+ "%%token_class argument \"%s\" should be a token", x);
+ psp->errorcnt++;
+ psp->state = RESYNC_AFTER_DECL_ERROR;
+ }
+ break;
+ case RESYNC_AFTER_RULE_ERROR:
+/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
+** break; */
+ case RESYNC_AFTER_DECL_ERROR:
+ if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
+ if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
+ break;
+ }
+}
+
+/* Run the preprocessor over the input file text. The global variables
+** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
+** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
+** comments them out. Text in between is also commented out as appropriate.
+*/
+static void preprocess_input(char *z){
+ int i, j, k, n;
+ int exclude = 0;
+ int start = 0;
+ int lineno = 1;
+ int start_lineno = 1;
+ for(i=0; z[i]; i++){
+ if( z[i]=='\n' ) lineno++;
+ if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
+ if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
+ if( exclude ){
+ exclude--;
+ if( exclude==0 ){
+ for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
+ }
+ }
+ for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
+ }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
+ || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
+ if( exclude ){
+ exclude++;
+ }else{
+ for(j=i+7; isspace(z[j]); j++){}
+ for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
+ exclude = 1;
+ for(k=0; k<nDefine; k++){
+ if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
+ exclude = 0;
+ break;
+ }
+ }
+ if( z[i+3]=='n' ) exclude = !exclude;
+ if( exclude ){
+ start = i;
+ start_lineno = lineno;
+ }
+ }
+ for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
+ }
+ }
+ if( exclude ){
+ fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
+ exit(1);
+ }
+}
+
+/* In spite of its name, this function is really a scanner. It read
+** in the entire input file (all at once) then tokenizes it. Each
+** token is passed to the function "parseonetoken" which builds all
+** the appropriate data structures in the global state vector "gp".
+*/
+void Parse(struct lemon *gp)
+{
+ struct pstate ps;
+ FILE *fp;
+ char *filebuf;
+ int filesize;
+ int lineno;
+ int c;
+ char *cp, *nextcp;
+ int startline = 0;
+
+ memset(&ps, '\0', sizeof(ps));
+ ps.gp = gp;
+ ps.filename = gp->filename;
+ ps.errorcnt = 0;
+ ps.state = INITIALIZE;
+
+ /* Begin by reading the input file */
+ fp = fopen(ps.filename,"rb");
+ if( fp==0 ){
+ ErrorMsg(ps.filename,0,"Can't open this file for reading.");
+ gp->errorcnt++;
+ return;
+ }
+ fseek(fp,0,2);
+ filesize = ftell(fp);
+ rewind(fp);
+ filebuf = (char *)malloc( filesize+1 );
+ if( filesize>100000000 || filebuf==0 ){
+ ErrorMsg(ps.filename,0,"Input file too large.");
+ gp->errorcnt++;
+ fclose(fp);
+ return;
+ }
+ if( fread(filebuf,1,filesize,fp)!=filesize ){
+ ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
+ filesize);
+ free(filebuf);
+ gp->errorcnt++;
+ fclose(fp);
+ return;
+ }
+ fclose(fp);
+ filebuf[filesize] = 0;
+
+ /* Make an initial pass through the file to handle %ifdef and %ifndef */
+ preprocess_input(filebuf);
+
+ /* Now scan the text of the input file */
+ lineno = 1;
+ for(cp=filebuf; (c= *cp)!=0; ){
+ if( c=='\n' ) lineno++; /* Keep track of the line number */
+ if( isspace(c) ){ cp++; continue; } /* Skip all white space */
+ if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
+ cp+=2;
+ while( (c= *cp)!=0 && c!='\n' ) cp++;
+ continue;
+ }
+ if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
+ cp+=2;
+ while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
+ if( c=='\n' ) lineno++;
+ cp++;
+ }
+ if( c ) cp++;
+ continue;
+ }
+ ps.tokenstart = cp; /* Mark the beginning of the token */
+ ps.tokenlineno = lineno; /* Linenumber on which token begins */
+ if( c=='\"' ){ /* String literals */
+ cp++;
+ while( (c= *cp)!=0 && c!='\"' ){
+ if( c=='\n' ) lineno++;
+ cp++;
+ }
+ if( c==0 ){
+ ErrorMsg(ps.filename,startline,
+"String starting on this line is not terminated before the end of the file.");
+ ps.errorcnt++;
+ nextcp = cp;
+ }else{
+ nextcp = cp+1;
+ }
+ }else if( c=='{' ){ /* A block of C code */
+ int level;
+ cp++;
+ for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
+ if( c=='\n' ) lineno++;
+ else if( c=='{' ) level++;
+ else if( c=='}' ) level--;
+ else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
+ int prevc;
+ cp = &cp[2];
+ prevc = 0;
+ while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
+ if( c=='\n' ) lineno++;
+ prevc = c;
+ cp++;
+ }
+ }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
+ cp = &cp[2];
+ while( (c= *cp)!=0 && c!='\n' ) cp++;
+ if( c ) lineno++;
+ }else if( c=='\'' || c=='\"' ){ /* String a character literals */
+ int startchar, prevc;
+ startchar = c;
+ prevc = 0;
+ for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
+ if( c=='\n' ) lineno++;
+ if( prevc=='\\' ) prevc = 0;
+ else prevc = c;
+ }
+ }
+ }
+ if( c==0 ){
+ ErrorMsg(ps.filename,ps.tokenlineno,
+"C code starting on this line is not terminated before the end of the file.");
+ ps.errorcnt++;
+ nextcp = cp;
+ }else{
+ nextcp = cp+1;
+ }
+ }else if( isalnum(c) ){ /* Identifiers */
+ while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
+ nextcp = cp;
+ }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
+ cp += 3;
+ nextcp = cp;
+ }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
+ cp += 2;
+ while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
+ nextcp = cp;
+ }else{ /* All other (one character) operators */
+ cp++;
+ nextcp = cp;
+ }
+ c = *cp;
+ *cp = 0; /* Null terminate the token */
+ parseonetoken(&ps); /* Parse the token */
+ *cp = c; /* Restore the buffer */
+ cp = nextcp;
+ }
+ free(filebuf); /* Release the buffer after parsing */
+ gp->rule = ps.firstrule;
+ gp->errorcnt = ps.errorcnt;
+}
+/*************************** From the file "plink.c" *********************/
+/*
+** Routines processing configuration follow-set propagation links
+** in the LEMON parser generator.
+*/
+static struct plink *plink_freelist = 0;
+
+/* Allocate a new plink */
+struct plink *Plink_new(){
+ struct plink *newlink;
+
+ if( plink_freelist==0 ){
+ int i;
+ int amt = 100;
+ plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
+ if( plink_freelist==0 ){
+ fprintf(stderr,
+ "Unable to allocate memory for a new follow-set propagation link.\n");
+ exit(1);
+ }
+ for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
+ plink_freelist[amt-1].next = 0;
+ }
+ newlink = plink_freelist;
+ plink_freelist = plink_freelist->next;
+ return newlink;
+}
+
+/* Add a plink to a plink list */
+void Plink_add(struct plink **plpp, struct config *cfp)
+{
+ struct plink *newlink;
+ newlink = Plink_new();
+ newlink->next = *plpp;
+ *plpp = newlink;
+ newlink->cfp = cfp;
+}
+
+/* Transfer every plink on the list "from" to the list "to" */
+void Plink_copy(struct plink **to, struct plink *from)
+{
+ struct plink *nextpl;
+ while( from ){
+ nextpl = from->next;
+ from->next = *to;
+ *to = from;
+ from = nextpl;
+ }
+}
+
+/* Delete every plink on the list */
+void Plink_delete(struct plink *plp)
+{
+ struct plink *nextpl;
+
+ while( plp ){
+ nextpl = plp->next;
+ plp->next = plink_freelist;
+ plink_freelist = plp;
+ plp = nextpl;
+ }
+}
+/*********************** From the file "report.c" **************************/
+/*
+** Procedures for generating reports and tables in the LEMON parser generator.
+*/
+
+/* Generate a filename with the given suffix. Space to hold the
+** name comes from malloc() and must be freed by the calling
+** function.
+*/
+PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
+{
+ char *name;
+ char *cp;
+
+ name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
+ if( name==0 ){
+ fprintf(stderr,"Can't allocate space for a filename.\n");
+ exit(1);
+ }
+ lemon_strcpy(name,lemp->filename);
+ cp = strrchr(name,'.');
+ if( cp ) *cp = 0;
+ lemon_strcat(name,suffix);
+ return name;
+}
+
+/* Open a file with a name based on the name of the input file,
+** but with a different (specified) suffix, and return a pointer
+** to the stream */
+PRIVATE FILE *file_open(
+ struct lemon *lemp,
+ const char *suffix,
+ const char *mode
+){
+ FILE *fp;
+
+ if( lemp->outname ) free(lemp->outname);
+ lemp->outname = file_makename(lemp, suffix);
+ fp = fopen(lemp->outname,mode);
+ if( fp==0 && *mode=='w' ){
+ fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
+ lemp->errorcnt++;
+ return 0;
+ }
+ return fp;
+}
+
+/* Duplicate the input file without comments and without actions
+** on rules */
+void Reprint(struct lemon *lemp)
+{
+ struct rule *rp;
+ struct symbol *sp;
+ int i, j, maxlen, len, ncolumns, skip;
+ printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
+ maxlen = 10;
+ for(i=0; i<lemp->nsymbol; i++){
+ sp = lemp->symbols[i];
+ len = lemonStrlen(sp->name);
+ if( len>maxlen ) maxlen = len;
+ }
+ ncolumns = 76/(maxlen+5);
+ if( ncolumns<1 ) ncolumns = 1;
+ skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
+ for(i=0; i<skip; i++){
+ printf("//");
+ for(j=i; j<lemp->nsymbol; j+=skip){
+ sp = lemp->symbols[j];
+ assert( sp->index==j );
+ printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
+ }
+ printf("\n");
+ }
+ for(rp=lemp->rule; rp; rp=rp->next){
+ printf("%s",rp->lhs->name);
+ /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
+ printf(" ::=");
+ for(i=0; i<rp->nrhs; i++){
+ sp = rp->rhs[i];
+ if( sp->type==MULTITERMINAL ){
+ printf(" %s", sp->subsym[0]->name);
+ for(j=1; j<sp->nsubsym; j++){
+ printf("|%s", sp->subsym[j]->name);
+ }
+ }else{
+ printf(" %s", sp->name);
+ }
+ /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
+ }
+ printf(".");
+ if( rp->precsym ) printf(" [%s]",rp->precsym->name);
+ /* if( rp->code ) printf("\n %s",rp->code); */
+ printf("\n");
+ }
+}
+
+void ConfigPrint(FILE *fp, struct config *cfp)
+{
+ struct rule *rp;
+ struct symbol *sp;
+ int i, j;
+ rp = cfp->rp;
+ fprintf(fp,"%s ::=",rp->lhs->name);
+ for(i=0; i<=rp->nrhs; i++){
+ if( i==cfp->dot ) fprintf(fp," *");
+ if( i==rp->nrhs ) break;
+ sp = rp->rhs[i];
+ if( sp->type==MULTITERMINAL ){
+ fprintf(fp," %s", sp->subsym[0]->name);
+ for(j=1; j<sp->nsubsym; j++){
+ fprintf(fp,"|%s",sp->subsym[j]->name);
+ }
+ }else{
+ fprintf(fp," %s", sp->name);
+ }
+ }
+}
+
+/* #define TEST */
+#if 0
+/* Print a set */
+PRIVATE void SetPrint(out,set,lemp)
+FILE *out;
+char *set;
+struct lemon *lemp;
+{
+ int i;
+ char *spacer;
+ spacer = "";
+ fprintf(out,"%12s[","");
+ for(i=0; i<lemp->nterminal; i++){
+ if( SetFind(set,i) ){
+ fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
+ spacer = " ";
+ }
+ }
+ fprintf(out,"]\n");
+}
+
+/* Print a plink chain */
+PRIVATE void PlinkPrint(out,plp,tag)
+FILE *out;
+struct plink *plp;
+char *tag;
+{
+ while( plp ){
+ fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
+ ConfigPrint(out,plp->cfp);
+ fprintf(out,"\n");
+ plp = plp->next;
+ }
+}
+#endif
+
+/* Print an action to the given file descriptor. Return FALSE if
+** nothing was actually printed.
+*/
+int PrintAction(struct action *ap, FILE *fp, int indent){
+ int result = 1;
+ switch( ap->type ){
+ case SHIFT:
+ fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum);
+ break;
+ case REDUCE:
+ fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
+ break;
+ case ACCEPT:
+ fprintf(fp,"%*s accept",indent,ap->sp->name);
+ break;
+ case ERROR:
+ fprintf(fp,"%*s error",indent,ap->sp->name);
+ break;
+ case SRCONFLICT:
+ case RRCONFLICT:
+ fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
+ indent,ap->sp->name,ap->x.rp->index);
+ break;
+ case SSCONFLICT:
+ fprintf(fp,"%*s shift %-3d ** Parsing conflict **",
+ indent,ap->sp->name,ap->x.stp->statenum);
+ break;
+ case SH_RESOLVED:
+ if( showPrecedenceConflict ){
+ fprintf(fp,"%*s shift %-3d -- dropped by precedence",
+ indent,ap->sp->name,ap->x.stp->statenum);
+ }else{
+ result = 0;
+ }
+ break;
+ case RD_RESOLVED:
+ if( showPrecedenceConflict ){
+ fprintf(fp,"%*s reduce %-3d -- dropped by precedence",
+ indent,ap->sp->name,ap->x.rp->index);
+ }else{
+ result = 0;
+ }
+ break;
+ case NOT_USED:
+ result = 0;
+ break;
+ }
+ return result;
+}
+
+/* Generate the "y.output" log file */
+void ReportOutput(struct lemon *lemp)
+{
+ int i;
+ struct state *stp;
+ struct config *cfp;
+ struct action *ap;
+ FILE *fp;
+
+ fp = file_open(lemp,".out","wb");
+ if( fp==0 ) return;
+ for(i=0; i<lemp->nstate; i++){
+ stp = lemp->sorted[i];
+ fprintf(fp,"State %d:\n",stp->statenum);
+ if( lemp->basisflag ) cfp=stp->bp;
+ else cfp=stp->cfp;
+ while( cfp ){
+ char buf[20];
+ if( cfp->dot==cfp->rp->nrhs ){
+ lemon_sprintf(buf,"(%d)",cfp->rp->index);
+ fprintf(fp," %5s ",buf);
+ }else{
+ fprintf(fp," ");
+ }
+ ConfigPrint(fp,cfp);
+ fprintf(fp,"\n");
+#if 0
+ SetPrint(fp,cfp->fws,lemp);
+ PlinkPrint(fp,cfp->fplp,"To ");
+ PlinkPrint(fp,cfp->bplp,"From");
+#endif
+ if( lemp->basisflag ) cfp=cfp->bp;
+ else cfp=cfp->next;
+ }
+ fprintf(fp,"\n");
+ for(ap=stp->ap; ap; ap=ap->next){
+ if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
+ }
+ fprintf(fp,"\n");
+ }
+ fprintf(fp, "----------------------------------------------------\n");
+ fprintf(fp, "Symbols:\n");
+ for(i=0; i<lemp->nsymbol; i++){
+ int j;
+ struct symbol *sp;
+
+ sp = lemp->symbols[i];
+ fprintf(fp, " %3d: %s", i, sp->name);
+ if( sp->type==NONTERMINAL ){
+ fprintf(fp, ":");
+ if( sp->lambda ){
+ fprintf(fp, " <lambda>");
+ }
+ for(j=0; j<lemp->nterminal; j++){
+ if( sp->firstset && SetFind(sp->firstset, j) ){
+ fprintf(fp, " %s", lemp->symbols[j]->name);
+ }
+ }
+ }
+ fprintf(fp, "\n");
+ }
+ fclose(fp);
+ return;
+}
+
+/* Search for the file "name" which is in the same directory as
+** the exacutable */
+PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
+{
+ const char *pathlist;
+ char *pathbufptr;
+ char *pathbuf;
+ char *path,*cp;
+ char c;
+
+#ifdef __WIN32__
+ cp = strrchr(argv0,'\\');
+#else
+ cp = strrchr(argv0,'/');
+#endif
+ if( cp ){
+ c = *cp;
+ *cp = 0;
+ path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
+ if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
+ *cp = c;
+ }else{
+ pathlist = getenv("PATH");
+ if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
+ pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
+ path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
+ if( (pathbuf != 0) && (path!=0) ){
+ pathbufptr = pathbuf;
+ lemon_strcpy(pathbuf, pathlist);
+ while( *pathbuf ){
+ cp = strchr(pathbuf,':');
+ if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
+ c = *cp;
+ *cp = 0;
+ lemon_sprintf(path,"%s/%s",pathbuf,name);
+ *cp = c;
+ if( c==0 ) pathbuf[0] = 0;
+ else pathbuf = &cp[1];
+ if( access(path,modemask)==0 ) break;
+ }
+ free(pathbufptr);
+ }
+ }
+ return path;
+}
+
+/* Given an action, compute the integer value for that action
+** which is to be put in the action table of the generated machine.
+** Return negative if no action should be generated.
+*/
+PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
+{
+ int act;
+ switch( ap->type ){
+ case SHIFT: act = ap->x.stp->statenum; break;
+ case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
+ case ERROR: act = lemp->nstate + lemp->nrule; break;
+ case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
+ default: act = -1; break;
+ }
+ return act;
+}
+
+#define LINESIZE 1000
+/* The next cluster of routines are for reading the template file
+** and writing the results to the generated parser */
+/* The first function transfers data from "in" to "out" until
+** a line is seen which begins with "%%". The line number is
+** tracked.
+**
+** if name!=0, then any word that begin with "Parse" is changed to
+** begin with *name instead.
+*/
+PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
+{
+ int i, iStart;
+ char line[LINESIZE];
+ while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
+ (*lineno)++;
+ iStart = 0;
+ if( name ){
+ for(i=0; line[i]; i++){
+ if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
+ && (i==0 || !isalpha(line[i-1]))
+ ){
+ if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
+ fprintf(out,"%s",name);
+ i += 4;
+ iStart = i+1;
+ }
+ }
+ }
+ fprintf(out,"%s",&line[iStart]);
+ }
+}
+
+/* The next function finds the template file and opens it, returning
+** a pointer to the opened file. */
+PRIVATE FILE *tplt_open(struct lemon *lemp)
+{
+ static char templatename[] = "lempar.c";
+ char buf[1000];
+ FILE *in;
+ char *tpltname;
+ char *cp;
+
+ /* first, see if user specified a template filename on the command line. */
+ if (user_templatename != 0) {
+ if( access(user_templatename,004)==-1 ){
+ fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
+ user_templatename);
+ lemp->errorcnt++;
+ return 0;
+ }
+ in = fopen(user_templatename,"rb");
+ if( in==0 ){
+ fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename);
+ lemp->errorcnt++;
+ return 0;
+ }
+ return in;
+ }
+
+ cp = strrchr(lemp->filename,'.');
+ if( cp ){
+ lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
+ }else{
+ lemon_sprintf(buf,"%s.lt",lemp->filename);
+ }
+ if( access(buf,004)==0 ){
+ tpltname = buf;
+ }else if( access(templatename,004)==0 ){
+ tpltname = templatename;
+ }else{
+ tpltname = pathsearch(lemp->argv0,templatename,0);
+ }
+ if( tpltname==0 ){
+ fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
+ templatename);
+ lemp->errorcnt++;
+ return 0;
+ }
+ in = fopen(tpltname,"rb");
+ if( in==0 ){
+ fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
+ lemp->errorcnt++;
+ return 0;
+ }
+ return in;
+}
+
+/* Print a #line directive line to the output file. */
+PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
+{
+ fprintf(out,"#line %d \"",lineno);
+ while( *filename ){
+ if( *filename == '\\' ) putc('\\',out);
+ putc(*filename,out);
+ filename++;
+ }
+ fprintf(out,"\"\n");
+}
+
+/* Print a string to the file and keep the linenumber up to date */
+PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
+{
+ if( str==0 ) return;
+ while( *str ){
+ putc(*str,out);
+ if( *str=='\n' ) (*lineno)++;
+ str++;
+ }
+ if( str[-1]!='\n' ){
+ putc('\n',out);
+ (*lineno)++;
+ }
+ if (!lemp->nolinenosflag) {
+ (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
+ }
+ return;
+}
+
+/*
+** The following routine emits code for the destructor for the
+** symbol sp
+*/
+void emit_destructor_code(
+ FILE *out,
+ struct symbol *sp,
+ struct lemon *lemp,
+ int *lineno
+){
+ char *cp = 0;
+
+ if( sp->type==TERMINAL ){
+ cp = lemp->tokendest;
+ if( cp==0 ) return;
+ fprintf(out,"{\n"); (*lineno)++;
+ }else if( sp->destructor ){
+ cp = sp->destructor;
+ fprintf(out,"{\n"); (*lineno)++;
+ if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); }
+ }else if( lemp->vardest ){
+ cp = lemp->vardest;
+ if( cp==0 ) return;
+ fprintf(out,"{\n"); (*lineno)++;
+ }else{
+ assert( 0 ); /* Cannot happen */
+ }
+ for(; *cp; cp++){
+ if( *cp=='$' && cp[1]=='$' ){
+ fprintf(out,"(yypminor->yy%d)",sp->dtnum);
+ cp++;
+ continue;
+ }
+ if( *cp=='\n' ) (*lineno)++;
+ fputc(*cp,out);
+ }
+ fprintf(out,"\n"); (*lineno)++;
+ if (!lemp->nolinenosflag) {
+ (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
+ }
+ fprintf(out,"}\n"); (*lineno)++;
+ return;
+}
+
+/*
+** Return TRUE (non-zero) if the given symbol has a destructor.
+*/
+int has_destructor(struct symbol *sp, struct lemon *lemp)
+{
+ int ret;
+ if( sp->type==TERMINAL ){
+ ret = lemp->tokendest!=0;
+ }else{
+ ret = lemp->vardest!=0 || sp->destructor!=0;
+ }
+ return ret;
+}
+
+/*
+** Append text to a dynamically allocated string. If zText is 0 then
+** reset the string to be empty again. Always return the complete text
+** of the string (which is overwritten with each call).
+**
+** n bytes of zText are stored. If n==0 then all of zText up to the first
+** \000 terminator is stored. zText can contain up to two instances of
+** %d. The values of p1 and p2 are written into the first and second
+** %d.
+**
+** If n==-1, then the previous character is overwritten.
+*/
+PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
+ static char empty[1] = { 0 };
+ static char *z = 0;
+ static int alloced = 0;
+ static int used = 0;
+ int c;
+ char zInt[40];
+ if( zText==0 ){
+ used = 0;
+ return z;
+ }
+ if( n<=0 ){
+ if( n<0 ){
+ used += n;
+ assert( used>=0 );
+ }
+ n = lemonStrlen(zText);
+ }
+ if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
+ alloced = n + sizeof(zInt)*2 + used + 200;
+ z = (char *) realloc(z, alloced);
+ }
+ if( z==0 ) return empty;
+ while( n-- > 0 ){
+ c = *(zText++);
+ if( c=='%' && n>0 && zText[0]=='d' ){
+ lemon_sprintf(zInt, "%d", p1);
+ p1 = p2;
+ lemon_strcpy(&z[used], zInt);
+ used += lemonStrlen(&z[used]);
+ zText++;
+ n--;
+ }else{
+ z[used++] = c;
+ }
+ }
+ z[used] = 0;
+ return z;
+}
+
+/*
+** zCode is a string that is the action associated with a rule. Expand
+** the symbols in this string so that the refer to elements of the parser
+** stack.
+*/
+PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
+ char *cp, *xp;
+ int i;
+ char lhsused = 0; /* True if the LHS element has been used */
+ char used[MAXRHS]; /* True for each RHS element which is used */
+
+ for(i=0; i<rp->nrhs; i++) used[i] = 0;
+ lhsused = 0;
+
+ if( rp->code==0 ){
+ static char newlinestr[2] = { '\n', '\0' };
+ rp->code = newlinestr;
+ rp->line = rp->ruleline;
+ }
+
+ append_str(0,0,0,0);
+
+ /* This const cast is wrong but harmless, if we're careful. */
+ for(cp=(char *)rp->code; *cp; cp++){
+ if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
+ char saved;
+ for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
+ saved = *xp;
+ *xp = 0;
+ if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
+ append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
+ cp = xp;
+ lhsused = 1;
+ }else{
+ for(i=0; i<rp->nrhs; i++){
+ if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
+ if( cp!=rp->code && cp[-1]=='@' ){
+ /* If the argument is of the form @X then substituted
+ ** the token number of X, not the value of X */
+ append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
+ }else{
+ struct symbol *sp = rp->rhs[i];
+ int dtnum;
+ if( sp->type==MULTITERMINAL ){
+ dtnum = sp->subsym[0]->dtnum;
+ }else{
+ dtnum = sp->dtnum;
+ }
+ append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
+ }
+ cp = xp;
+ used[i] = 1;
+ break;
+ }
+ }
+ }
+ *xp = saved;
+ }
+ append_str(cp, 1, 0, 0);
+ } /* End loop */
+
+ /* Check to make sure the LHS has been used */
+ if( rp->lhsalias && !lhsused ){
+ ErrorMsg(lemp->filename,rp->ruleline,
+ "Label \"%s\" for \"%s(%s)\" is never used.",
+ rp->lhsalias,rp->lhs->name,rp->lhsalias);
+ lemp->errorcnt++;
+ }
+
+ /* Generate destructor code for RHS symbols which are not used in the
+ ** reduce code */
+ for(i=0; i<rp->nrhs; i++){
+ if( rp->rhsalias[i] && !used[i] ){
+ ErrorMsg(lemp->filename,rp->ruleline,
+ "Label %s for \"%s(%s)\" is never used.",
+ rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
+ lemp->errorcnt++;
+ }else if( rp->rhsalias[i]==0 ){
+ if( has_destructor(rp->rhs[i],lemp) ){
+ append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
+ rp->rhs[i]->index,i-rp->nrhs+1);
+ }else{
+ /* No destructor defined for this term */
+ }
+ }
+ }
+ if( rp->code ){
+ cp = append_str(0,0,0,0);
+ rp->code = Strsafe(cp?cp:"");
+ }
+}
+
+/*
+** Generate code which executes when the rule "rp" is reduced. Write
+** the code to "out". Make sure lineno stays up-to-date.
+*/
+PRIVATE void emit_code(
+ FILE *out,
+ struct rule *rp,
+ struct lemon *lemp,
+ int *lineno
+){
+ const char *cp;
+
+ /* Generate code to do the reduce action */
+ if( rp->code ){
+ if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); }
+ fprintf(out,"{%s",rp->code);
+ for(cp=rp->code; *cp; cp++){
+ if( *cp=='\n' ) (*lineno)++;
+ } /* End loop */
+ fprintf(out,"}\n"); (*lineno)++;
+ if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); }
+ } /* End if( rp->code ) */
+
+ return;
+}
+
+/*
+** Print the definition of the union used for the parser's data stack.
+** This union contains fields for every possible data type for tokens
+** and nonterminals. In the process of computing and printing this
+** union, also set the ".dtnum" field of every terminal and nonterminal
+** symbol.
+*/
+void print_stack_union(
+ FILE *out, /* The output stream */
+ struct lemon *lemp, /* The main info structure for this parser */
+ int *plineno, /* Pointer to the line number */
+ int mhflag /* True if generating makeheaders output */
+){
+ int lineno = *plineno; /* The line number of the output */
+ char **types; /* A hash table of datatypes */
+ int arraysize; /* Size of the "types" array */
+ int maxdtlength; /* Maximum length of any ".datatype" field. */
+ char *stddt; /* Standardized name for a datatype */
+ int i,j; /* Loop counters */
+ unsigned hash; /* For hashing the name of a type */
+ const char *name; /* Name of the parser */
+
+ /* Allocate and initialize types[] and allocate stddt[] */
+ arraysize = lemp->nsymbol * 2;
+ types = (char**)calloc( arraysize, sizeof(char*) );
+ if( types==0 ){
+ fprintf(stderr,"Out of memory.\n");
+ exit(1);
+ }
+ for(i=0; i<arraysize; i++) types[i] = 0;
+ maxdtlength = 0;
+ if( lemp->vartype ){
+ maxdtlength = lemonStrlen(lemp->vartype);
+ }
+ for(i=0; i<lemp->nsymbol; i++){
+ int len;
+ struct symbol *sp = lemp->symbols[i];
+ if( sp->datatype==0 ) continue;
+ len = lemonStrlen(sp->datatype);
+ if( len>maxdtlength ) maxdtlength = len;
+ }
+ stddt = (char*)malloc( maxdtlength*2 + 1 );
+ if( stddt==0 ){
+ fprintf(stderr,"Out of memory.\n");
+ exit(1);
+ }
+
+ /* Build a hash table of datatypes. The ".dtnum" field of each symbol
+ ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
+ ** used for terminal symbols. If there is no %default_type defined then
+ ** 0 is also used as the .dtnum value for nonterminals which do not specify
+ ** a datatype using the %type directive.
+ */
+ for(i=0; i<lemp->nsymbol; i++){
+ struct symbol *sp = lemp->symbols[i];
+ char *cp;
+ if( sp==lemp->errsym ){
+ sp->dtnum = arraysize+1;
+ continue;
+ }
+ if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
+ sp->dtnum = 0;
+ continue;
+ }
+ cp = sp->datatype;
+ if( cp==0 ) cp = lemp->vartype;
+ j = 0;
+ while( isspace(*cp) ) cp++;
+ while( *cp ) stddt[j++] = *cp++;
+ while( j>0 && isspace(stddt[j-1]) ) j--;
+ stddt[j] = 0;
+ if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
+ sp->dtnum = 0;
+ continue;
+ }
+ hash = 0;
+ for(j=0; stddt[j]; j++){
+ hash = hash*53 + stddt[j];
+ }
+ hash = (hash & 0x7fffffff)%arraysize;
+ while( types[hash] ){
+ if( strcmp(types[hash],stddt)==0 ){
+ sp->dtnum = hash + 1;
+ break;
+ }
+ hash++;
+ if( hash>=(unsigned)arraysize ) hash = 0;
+ }
+ if( types[hash]==0 ){
+ sp->dtnum = hash + 1;
+ types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
+ if( types[hash]==0 ){
+ fprintf(stderr,"Out of memory.\n");
+ exit(1);
+ }
+ lemon_strcpy(types[hash],stddt);
+ }
+ }
+
+ /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
+ name = lemp->name ? lemp->name : "Parse";
+ lineno = *plineno;
+ if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
+ fprintf(out,"#define %sTOKENTYPE %s\n",name,
+ lemp->tokentype?lemp->tokentype:"void*"); lineno++;
+ if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
+ fprintf(out,"typedef union {\n"); lineno++;
+ fprintf(out," int yyinit;\n"); lineno++;
+ fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
+ for(i=0; i<arraysize; i++){
+ if( types[i]==0 ) continue;
+ fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
+ free(types[i]);
+ }
+ if( lemp->errsym->useCnt ){
+ fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
+ }
+ free(stddt);
+ free(types);
+ fprintf(out,"} YYMINORTYPE;\n"); lineno++;
+ *plineno = lineno;
+}
+
+/*
+** Return the name of a C datatype able to represent values between
+** lwr and upr, inclusive.
+*/
+static const char *minimum_size_type(int lwr, int upr){
+ if( lwr>=0 ){
+ if( upr<=255 ){
+ return "unsigned char";
+ }else if( upr<65535 ){
+ return "unsigned short int";
+ }else{
+ return "unsigned int";
+ }
+ }else if( lwr>=-127 && upr<=127 ){
+ return "signed char";
+ }else if( lwr>=-32767 && upr<32767 ){
+ return "short";
+ }else{
+ return "int";
+ }
+}
+
+/*
+** Each state contains a set of token transaction and a set of
+** nonterminal transactions. Each of these sets makes an instance
+** of the following structure. An array of these structures is used
+** to order the creation of entries in the yy_action[] table.
+*/
+struct axset {
+ struct state *stp; /* A pointer to a state */
+ int isTkn; /* True to use tokens. False for non-terminals */
+ int nAction; /* Number of actions */
+ int iOrder; /* Original order of action sets */
+};
+
+/*
+** Compare to axset structures for sorting purposes
+*/
+static int axset_compare(const void *a, const void *b){
+ struct axset *p1 = (struct axset*)a;
+ struct axset *p2 = (struct axset*)b;
+ int c;
+ c = p2->nAction - p1->nAction;
+ if( c==0 ){
+ c = p2->iOrder - p1->iOrder;
+ }
+ assert( c!=0 || p1==p2 );
+ return c;
+}
+
+/*
+** Write text on "out" that describes the rule "rp".
+*/
+static void writeRuleText(FILE *out, struct rule *rp){
+ int j;
+ fprintf(out,"%s ::=", rp->lhs->name);
+ for(j=0; j<rp->nrhs; j++){
+ struct symbol *sp = rp->rhs[j];
+ if( sp->type!=MULTITERMINAL ){
+ fprintf(out," %s", sp->name);
+ }else{
+ int k;
+ fprintf(out," %s", sp->subsym[0]->name);
+ for(k=1; k<sp->nsubsym; k++){
+ fprintf(out,"|%s",sp->subsym[k]->name);
+ }
+ }
+ }
+}
+
+
+/* Generate C source code for the parser */
+void ReportTable(
+ struct lemon *lemp,
+ int mhflag /* Output in makeheaders format if true */
+){
+ FILE *out, *in;
+ char line[LINESIZE];
+ int lineno;
+ struct state *stp;
+ struct action *ap;
+ struct rule *rp;
+ struct acttab *pActtab;
+ int i, j, n;
+ const char *name;
+ int mnTknOfst, mxTknOfst;
+ int mnNtOfst, mxNtOfst;
+ struct axset *ax;
+
+ in = tplt_open(lemp);
+ if( in==0 ) return;
+ out = file_open(lemp,".c","wb");
+ if( out==0 ){
+ fclose(in);
+ return;
+ }
+ lineno = 1;
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate the include code, if any */
+ tplt_print(out,lemp,lemp->include,&lineno);
+ if( mhflag ){
+ char *name = file_makename(lemp, ".h");
+ fprintf(out,"#include \"%s\"\n", name); lineno++;
+ free(name);
+ }
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate #defines for all tokens */
+ if( mhflag ){
+ const char *prefix;
+ fprintf(out,"#if INTERFACE\n"); lineno++;
+ if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
+ else prefix = "";
+ for(i=1; i<lemp->nterminal; i++){
+ fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
+ lineno++;
+ }
+ fprintf(out,"#endif\n"); lineno++;
+ }
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate the defines */
+ fprintf(out,"#define YYCODETYPE %s\n",
+ minimum_size_type(0, lemp->nsymbol+1)); lineno++;
+ fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
+ fprintf(out,"#define YYACTIONTYPE %s\n",
+ minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
+ if( lemp->wildcard ){
+ fprintf(out,"#define YYWILDCARD %d\n",
+ lemp->wildcard->index); lineno++;
+ }
+ print_stack_union(out,lemp,&lineno,mhflag);
+ fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
+ if( lemp->stacksize ){
+ fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
+ }else{
+ fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
+ }
+ fprintf(out, "#endif\n"); lineno++;
+ if( mhflag ){
+ fprintf(out,"#if INTERFACE\n"); lineno++;
+ }
+ name = lemp->name ? lemp->name : "Parse";
+ if( lemp->arg && lemp->arg[0] ){
+ int i;
+ i = lemonStrlen(lemp->arg);
+ while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
+ while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
+ fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
+ fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
+ fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
+ name,lemp->arg,&lemp->arg[i]); lineno++;
+ fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
+ name,&lemp->arg[i],&lemp->arg[i]); lineno++;
+ }else{
+ fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
+ fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
+ fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
+ fprintf(out,"#define %sARG_STORE\n",name); lineno++;
+ }
+ if( mhflag ){
+ fprintf(out,"#endif\n"); lineno++;
+ }
+ fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
+ fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
+ if( lemp->errsym->useCnt ){
+ fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
+ fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
+ }
+ if( lemp->has_fallback ){
+ fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
+ }
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate the action table and its associates:
+ **
+ ** yy_action[] A single table containing all actions.
+ ** yy_lookahead[] A table containing the lookahead for each entry in
+ ** yy_action. Used to detect hash collisions.
+ ** yy_shift_ofst[] For each state, the offset into yy_action for
+ ** shifting terminals.
+ ** yy_reduce_ofst[] For each state, the offset into yy_action for
+ ** shifting non-terminals after a reduce.
+ ** yy_default[] Default action for each state.
+ */
+
+ /* Compute the actions on all states and count them up */
+ ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0]));
+ if( ax==0 ){
+ fprintf(stderr,"malloc failed\n");
+ exit(1);
+ }
+ for(i=0; i<lemp->nstate; i++){
+ stp = lemp->sorted[i];
+ ax[i*2].stp = stp;
+ ax[i*2].isTkn = 1;
+ ax[i*2].nAction = stp->nTknAct;
+ ax[i*2+1].stp = stp;
+ ax[i*2+1].isTkn = 0;
+ ax[i*2+1].nAction = stp->nNtAct;
+ }
+ mxTknOfst = mnTknOfst = 0;
+ mxNtOfst = mnNtOfst = 0;
+
+ /* Compute the action table. In order to try to keep the size of the
+ ** action table to a minimum, the heuristic of placing the largest action
+ ** sets first is used.
+ */
+ for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i;
+ qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
+ pActtab = acttab_alloc();
+ for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
+ stp = ax[i].stp;
+ if( ax[i].isTkn ){
+ for(ap=stp->ap; ap; ap=ap->next){
+ int action;
+ if( ap->sp->index>=lemp->nterminal ) continue;
+ action = compute_action(lemp, ap);
+ if( action<0 ) continue;
+ acttab_action(pActtab, ap->sp->index, action);
+ }
+ stp->iTknOfst = acttab_insert(pActtab);
+ if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
+ if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
+ }else{
+ for(ap=stp->ap; ap; ap=ap->next){
+ int action;
+ if( ap->sp->index<lemp->nterminal ) continue;
+ if( ap->sp->index==lemp->nsymbol ) continue;
+ action = compute_action(lemp, ap);
+ if( action<0 ) continue;
+ acttab_action(pActtab, ap->sp->index, action);
+ }
+ stp->iNtOfst = acttab_insert(pActtab);
+ if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
+ if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
+ }
+ }
+ free(ax);
+
+ /* Output the yy_action table */
+ n = acttab_size(pActtab);
+ fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
+ fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
+ for(i=j=0; i<n; i++){
+ int action = acttab_yyaction(pActtab, i);
+ if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
+ if( j==0 ) fprintf(out," /* %5d */ ", i);
+ fprintf(out, " %4d,", action);
+ if( j==9 || i==n-1 ){
+ fprintf(out, "\n"); lineno++;
+ j = 0;
+ }else{
+ j++;
+ }
+ }
+ fprintf(out, "};\n"); lineno++;
+
+ /* Output the yy_lookahead table */
+ fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
+ for(i=j=0; i<n; i++){
+ int la = acttab_yylookahead(pActtab, i);
+ if( la<0 ) la = lemp->nsymbol;
+ if( j==0 ) fprintf(out," /* %5d */ ", i);
+ fprintf(out, " %4d,", la);
+ if( j==9 || i==n-1 ){
+ fprintf(out, "\n"); lineno++;
+ j = 0;
+ }else{
+ j++;
+ }
+ }
+ fprintf(out, "};\n"); lineno++;
+
+ /* Output the yy_shift_ofst[] table */
+ fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
+ n = lemp->nstate;
+ while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
+ fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
+ fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
+ fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
+ fprintf(out, "static const %s yy_shift_ofst[] = {\n",
+ minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
+ for(i=j=0; i<n; i++){
+ int ofst;
+ stp = lemp->sorted[i];
+ ofst = stp->iTknOfst;
+ if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
+ if( j==0 ) fprintf(out," /* %5d */ ", i);
+ fprintf(out, " %4d,", ofst);
+ if( j==9 || i==n-1 ){
+ fprintf(out, "\n"); lineno++;
+ j = 0;
+ }else{
+ j++;
+ }
+ }
+ fprintf(out, "};\n"); lineno++;
+
+ /* Output the yy_reduce_ofst[] table */
+ fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
+ n = lemp->nstate;
+ while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
+ fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
+ fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
+ fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
+ fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
+ minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
+ for(i=j=0; i<n; i++){
+ int ofst;
+ stp = lemp->sorted[i];
+ ofst = stp->iNtOfst;
+ if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
+ if( j==0 ) fprintf(out," /* %5d */ ", i);
+ fprintf(out, " %4d,", ofst);
+ if( j==9 || i==n-1 ){
+ fprintf(out, "\n"); lineno++;
+ j = 0;
+ }else{
+ j++;
+ }
+ }
+ fprintf(out, "};\n"); lineno++;
+
+ /* Output the default action table */
+ fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
+ n = lemp->nstate;
+ for(i=j=0; i<n; i++){
+ stp = lemp->sorted[i];
+ if( j==0 ) fprintf(out," /* %5d */ ", i);
+ fprintf(out, " %4d,", stp->iDflt);
+ if( j==9 || i==n-1 ){
+ fprintf(out, "\n"); lineno++;
+ j = 0;
+ }else{
+ j++;
+ }
+ }
+ fprintf(out, "};\n"); lineno++;
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate the table of fallback tokens.
+ */
+ if( lemp->has_fallback ){
+ int mx = lemp->nterminal - 1;
+ while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
+ for(i=0; i<=mx; i++){
+ struct symbol *p = lemp->symbols[i];
+ if( p->fallback==0 ){
+ fprintf(out, " 0, /* %10s => nothing */\n", p->name);
+ }else{
+ fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
+ p->name, p->fallback->name);
+ }
+ lineno++;
+ }
+ }
+ tplt_xfer(lemp->name, in, out, &lineno);
+
+ /* Generate a table containing the symbolic name of every symbol
+ */
+ for(i=0; i<lemp->nsymbol; i++){
+ lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name);
+ fprintf(out," %-15s",line);
+ if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
+ }
+ if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate a table containing a text string that describes every
+ ** rule in the rule set of the grammar. This information is used
+ ** when tracing REDUCE actions.
+ */
+ for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
+ assert( rp->index==i );
+ fprintf(out," /* %3d */ \"", i);
+ writeRuleText(out, rp);
+ fprintf(out,"\",\n"); lineno++;
+ }
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate code which executes every time a symbol is popped from
+ ** the stack while processing errors or while destroying the parser.
+ ** (In other words, generate the %destructor actions)
+ */
+ if( lemp->tokendest ){
+ int once = 1;
+ for(i=0; i<lemp->nsymbol; i++){
+ struct symbol *sp = lemp->symbols[i];
+ if( sp==0 || sp->type!=TERMINAL ) continue;
+ if( once ){
+ fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
+ once = 0;
+ }
+ fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
+ }
+ for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
+ if( i<lemp->nsymbol ){
+ emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
+ fprintf(out," break;\n"); lineno++;
+ }
+ }
+ if( lemp->vardest ){
+ struct symbol *dflt_sp = 0;
+ int once = 1;
+ for(i=0; i<lemp->nsymbol; i++){
+ struct symbol *sp = lemp->symbols[i];
+ if( sp==0 || sp->type==TERMINAL ||
+ sp->index<=0 || sp->destructor!=0 ) continue;
+ if( once ){
+ fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++;
+ once = 0;
+ }
+ fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
+ dflt_sp = sp;
+ }
+ if( dflt_sp!=0 ){
+ emit_destructor_code(out,dflt_sp,lemp,&lineno);
+ }
+ fprintf(out," break;\n"); lineno++;
+ }
+ for(i=0; i<lemp->nsymbol; i++){
+ struct symbol *sp = lemp->symbols[i];
+ if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
+ fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
+
+ /* Combine duplicate destructors into a single case */
+ for(j=i+1; j<lemp->nsymbol; j++){
+ struct symbol *sp2 = lemp->symbols[j];
+ if( sp2 && sp2->type!=TERMINAL && sp2->destructor
+ && sp2->dtnum==sp->dtnum
+ && strcmp(sp->destructor,sp2->destructor)==0 ){
+ fprintf(out," case %d: /* %s */\n",
+ sp2->index, sp2->name); lineno++;
+ sp2->destructor = 0;
+ }
+ }
+
+ emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
+ fprintf(out," break;\n"); lineno++;
+ }
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate code which executes whenever the parser stack overflows */
+ tplt_print(out,lemp,lemp->overflow,&lineno);
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate the table of rule information
+ **
+ ** Note: This code depends on the fact that rules are number
+ ** sequentually beginning with 0.
+ */
+ for(rp=lemp->rule; rp; rp=rp->next){
+ fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
+ }
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate code which execution during each REDUCE action */
+ for(rp=lemp->rule; rp; rp=rp->next){
+ translate_code(lemp, rp);
+ }
+ /* First output rules other than the default: rule */
+ for(rp=lemp->rule; rp; rp=rp->next){
+ struct rule *rp2; /* Other rules with the same action */
+ if( rp->code==0 ) continue;
+ if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
+ fprintf(out," case %d: /* ", rp->index);
+ writeRuleText(out, rp);
+ fprintf(out, " */\n"); lineno++;
+ for(rp2=rp->next; rp2; rp2=rp2->next){
+ if( rp2->code==rp->code ){
+ fprintf(out," case %d: /* ", rp2->index);
+ writeRuleText(out, rp2);
+ fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
+ rp2->code = 0;
+ }
+ }
+ emit_code(out,rp,lemp,&lineno);
+ fprintf(out," break;\n"); lineno++;
+ rp->code = 0;
+ }
+ /* Finally, output the default: rule. We choose as the default: all
+ ** empty actions. */
+ fprintf(out," default:\n"); lineno++;
+ for(rp=lemp->rule; rp; rp=rp->next){
+ if( rp->code==0 ) continue;
+ assert( rp->code[0]=='\n' && rp->code[1]==0 );
+ fprintf(out," /* (%d) ", rp->index);
+ writeRuleText(out, rp);
+ fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
+ }
+ fprintf(out," break;\n"); lineno++;
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate code which executes if a parse fails */
+ tplt_print(out,lemp,lemp->failure,&lineno);
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate code which executes when a syntax error occurs */
+ tplt_print(out,lemp,lemp->error,&lineno);
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Generate code which executes when the parser accepts its input */
+ tplt_print(out,lemp,lemp->accept,&lineno);
+ tplt_xfer(lemp->name,in,out,&lineno);
+
+ /* Append any addition code the user desires */
+ tplt_print(out,lemp,lemp->extracode,&lineno);
+
+ fclose(in);
+ fclose(out);
+ return;
+}
+
+/* Generate a header file for the parser */
+void ReportHeader(struct lemon *lemp)
+{
+ FILE *out, *in;
+ const char *prefix;
+ char line[LINESIZE];
+ char pattern[LINESIZE];
+ int i;
+
+ if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
+ else prefix = "";
+ in = file_open(lemp,".h","rb");
+ if( in ){
+ int nextChar;
+ for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
+ lemon_sprintf(pattern,"#define %s%-30s %3d\n",
+ prefix,lemp->symbols[i]->name,i);
+ if( strcmp(line,pattern) ) break;
+ }
+ nextChar = fgetc(in);
+ fclose(in);
+ if( i==lemp->nterminal && nextChar==EOF ){
+ /* No change in the file. Don't rewrite it. */
+ return;
+ }
+ }
+ out = file_open(lemp,".h","wb");
+ if( out ){
+ for(i=1; i<lemp->nterminal; i++){
+ fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
+ }
+ fclose(out);
+ }
+ return;
+}
+
+/* Reduce the size of the action tables, if possible, by making use
+** of defaults.
+**
+** In this version, we take the most frequent REDUCE action and make
+** it the default. Except, there is no default if the wildcard token
+** is a possible look-ahead.
+*/
+void CompressTables(struct lemon *lemp)
+{
+ struct state *stp;
+ struct action *ap, *ap2;
+ struct rule *rp, *rp2, *rbest;
+ int nbest, n;
+ int i;
+ int usesWildcard;
+
+ for(i=0; i<lemp->nstate; i++){
+ stp = lemp->sorted[i];
+ nbest = 0;
+ rbest = 0;
+ usesWildcard = 0;
+
+ for(ap=stp->ap; ap; ap=ap->next){
+ if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
+ usesWildcard = 1;
+ }
+ if( ap->type!=REDUCE ) continue;
+ rp = ap->x.rp;
+ if( rp->lhsStart ) continue;
+ if( rp==rbest ) continue;
+ n = 1;
+ for(ap2=ap->next; ap2; ap2=ap2->next){
+ if( ap2->type!=REDUCE ) continue;
+ rp2 = ap2->x.rp;
+ if( rp2==rbest ) continue;
+ if( rp2==rp ) n++;
+ }
+ if( n>nbest ){
+ nbest = n;
+ rbest = rp;
+ }
+ }
+
+ /* Do not make a default if the number of rules to default
+ ** is not at least 1 or if the wildcard token is a possible
+ ** lookahead.
+ */
+ if( nbest<1 || usesWildcard ) continue;
+
+
+ /* Combine matching REDUCE actions into a single default */
+ for(ap=stp->ap; ap; ap=ap->next){
+ if( ap->type==REDUCE && ap->x.rp==rbest ) break;
+ }
+ assert( ap );
+ ap->sp = Symbol_new("{default}");
+ for(ap=ap->next; ap; ap=ap->next){
+ if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
+ }
+ stp->ap = Action_sort(stp->ap);
+ }
+}
+
+
+/*
+** Compare two states for sorting purposes. The smaller state is the
+** one with the most non-terminal actions. If they have the same number
+** of non-terminal actions, then the smaller is the one with the most
+** token actions.
+*/
+static int stateResortCompare(const void *a, const void *b){
+ const struct state *pA = *(const struct state**)a;
+ const struct state *pB = *(const struct state**)b;
+ int n;
+
+ n = pB->nNtAct - pA->nNtAct;
+ if( n==0 ){
+ n = pB->nTknAct - pA->nTknAct;
+ if( n==0 ){
+ n = pB->statenum - pA->statenum;
+ }
+ }
+ assert( n!=0 );
+ return n;
+}
+
+
+/*
+** Renumber and resort states so that states with fewer choices
+** occur at the end. Except, keep state 0 as the first state.
+*/
+void ResortStates(struct lemon *lemp)
+{
+ int i;
+ struct state *stp;
+ struct action *ap;
+
+ for(i=0; i<lemp->nstate; i++){
+ stp = lemp->sorted[i];
+ stp->nTknAct = stp->nNtAct = 0;
+ stp->iDflt = lemp->nstate + lemp->nrule;
+ stp->iTknOfst = NO_OFFSET;
+ stp->iNtOfst = NO_OFFSET;
+ for(ap=stp->ap; ap; ap=ap->next){
+ if( compute_action(lemp,ap)>=0 ){
+ if( ap->sp->index<lemp->nterminal ){
+ stp->nTknAct++;
+ }else if( ap->sp->index<lemp->nsymbol ){
+ stp->nNtAct++;
+ }else{
+ stp->iDflt = compute_action(lemp, ap);
+ }
+ }
+ }
+ }
+ qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
+ stateResortCompare);
+ for(i=0; i<lemp->nstate; i++){
+ lemp->sorted[i]->statenum = i;
+ }
+}
+
+
+/***************** From the file "set.c" ************************************/
+/*
+** Set manipulation routines for the LEMON parser generator.
+*/
+
+static int size = 0;
+
+/* Set the set size */
+void SetSize(int n)
+{
+ size = n+1;
+}
+
+/* Allocate a new set */
+char *SetNew(){
+ char *s;
+ s = (char*)calloc( size, 1);
+ if( s==0 ){
+ extern void memory_error();
+ memory_error();
+ }
+ return s;
+}
+
+/* Deallocate a set */
+void SetFree(char *s)
+{
+ free(s);
+}
+
+/* Add a new element to the set. Return TRUE if the element was added
+** and FALSE if it was already there. */
+int SetAdd(char *s, int e)
+{
+ int rv;
+ assert( e>=0 && e<size );
+ rv = s[e];
+ s[e] = 1;
+ return !rv;
+}
+
+/* Add every element of s2 to s1. Return TRUE if s1 changes. */
+int SetUnion(char *s1, char *s2)
+{
+ int i, progress;
+ progress = 0;
+ for(i=0; i<size; i++){
+ if( s2[i]==0 ) continue;
+ if( s1[i]==0 ){
+ progress = 1;
+ s1[i] = 1;
+ }
+ }
+ return progress;
+}
+/********************** From the file "table.c" ****************************/
+/*
+** All code in this file has been automatically generated
+** from a specification in the file
+** "table.q"
+** by the associative array code building program "aagen".
+** Do not edit this file! Instead, edit the specification
+** file, then rerun aagen.
+*/
+/*
+** Code for processing tables in the LEMON parser generator.
+*/
+
+PRIVATE unsigned strhash(const char *x)
+{
+ unsigned h = 0;
+ while( *x ) h = h*13 + *(x++);
+ return h;
+}
+
+/* Works like strdup, sort of. Save a string in malloced memory, but
+** keep strings in a table so that the same string is not in more
+** than one place.
+*/
+const char *Strsafe(const char *y)
+{
+ const char *z;
+ char *cpy;
+
+ if( y==0 ) return 0;
+ z = Strsafe_find(y);
+ if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
+ lemon_strcpy(cpy,y);
+ z = cpy;
+ Strsafe_insert(z);
+ }
+ MemoryCheck(z);
+ return z;
+}
+
+/* There is one instance of the following structure for each
+** associative array of type "x1".
+*/
+struct s_x1 {
+ int size; /* The number of available slots. */
+ /* Must be a power of 2 greater than or */
+ /* equal to 1 */
+ int count; /* Number of currently slots filled */
+ struct s_x1node *tbl; /* The data stored here */
+ struct s_x1node **ht; /* Hash table for lookups */
+};
+
+/* There is one instance of this structure for every data element
+** in an associative array of type "x1".
+*/
+typedef struct s_x1node {
+ const char *data; /* The data */
+ struct s_x1node *next; /* Next entry with the same hash */
+ struct s_x1node **from; /* Previous link */
+} x1node;
+
+/* There is only one instance of the array, which is the following */
+static struct s_x1 *x1a;
+
+/* Allocate a new associative array */
+void Strsafe_init(){
+ if( x1a ) return;
+ x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
+ if( x1a ){
+ x1a->size = 1024;
+ x1a->count = 0;
+ x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
+ if( x1a->tbl==0 ){
+ free(x1a);
+ x1a = 0;
+ }else{
+ int i;
+ x1a->ht = (x1node**)&(x1a->tbl[1024]);
+ for(i=0; i<1024; i++) x1a->ht[i] = 0;
+ }
+ }
+}
+/* Insert a new record into the array. Return TRUE if successful.
+** Prior data with the same key is NOT overwritten */
+int Strsafe_insert(const char *data)
+{
+ x1node *np;
+ unsigned h;
+ unsigned ph;
+
+ if( x1a==0 ) return 0;
+ ph = strhash(data);
+ h = ph & (x1a->size-1);
+ np = x1a->ht[h];
+ while( np ){
+ if( strcmp(np->data,data)==0 ){
+ /* An existing entry with the same key is found. */
+ /* Fail because overwrite is not allows. */
+ return 0;
+ }
+ np = np->next;
+ }
+ if( x1a->count>=x1a->size ){
+ /* Need to make the hash table bigger */
+ int i,size;
+ struct s_x1 array;
+ array.size = size = x1a->size*2;
+ array.count = x1a->count;
+ array.tbl = (x1node*)calloc(size, sizeof(x1node) + sizeof(x1node*));
+ if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
+ array.ht = (x1node**)&(array.tbl[size]);
+ for(i=0; i<size; i++) array.ht[i] = 0;
+ for(i=0; i<x1a->count; i++){
+ x1node *oldnp, *newnp;
+ oldnp = &(x1a->tbl[i]);
+ h = strhash(oldnp->data) & (size-1);
+ newnp = &(array.tbl[i]);
+ if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
+ newnp->next = array.ht[h];
+ newnp->data = oldnp->data;
+ newnp->from = &(array.ht[h]);
+ array.ht[h] = newnp;
+ }
+ free(x1a->tbl);
+ *x1a = array;
+ }
+ /* Insert the new data */
+ h = ph & (x1a->size-1);
+ np = &(x1a->tbl[x1a->count++]);
+ np->data = data;
+ if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
+ np->next = x1a->ht[h];
+ x1a->ht[h] = np;
+ np->from = &(x1a->ht[h]);
+ return 1;
+}
+
+/* Return a pointer to data assigned to the given key. Return NULL
+** if no such key. */
+const char *Strsafe_find(const char *key)
+{
+ unsigned h;
+ x1node *np;
+
+ if( x1a==0 ) return 0;
+ h = strhash(key) & (x1a->size-1);
+ np = x1a->ht[h];
+ while( np ){
+ if( strcmp(np->data,key)==0 ) break;
+ np = np->next;
+ }
+ return np ? np->data : 0;
+}
+
+/* Return a pointer to the (terminal or nonterminal) symbol "x".
+** Create a new symbol if this is the first time "x" has been seen.
+*/
+struct symbol *Symbol_new(const char *x)
+{
+ struct symbol *sp;
+
+ sp = Symbol_find(x);
+ if( sp==0 ){
+ sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
+ MemoryCheck(sp);
+ sp->name = Strsafe(x);
+ sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
+ sp->rule = 0;
+ sp->fallback = 0;
+ sp->prec = -1;
+ sp->assoc = UNK;
+ sp->firstset = 0;
+ sp->lambda = LEMON_FALSE;
+ sp->destructor = 0;
+ sp->destLineno = 0;
+ sp->datatype = 0;
+ sp->useCnt = 0;
+ Symbol_insert(sp,sp->name);
+ }
+ sp->useCnt++;
+ return sp;
+}
+
+/* Compare two symbols for sorting purposes. Return negative,
+** zero, or positive if a is less then, equal to, or greater
+** than b.
+**
+** Symbols that begin with upper case letters (terminals or tokens)
+** must sort before symbols that begin with lower case letters
+** (non-terminals). And MULTITERMINAL symbols (created using the
+** %token_class directive) must sort at the very end. Other than
+** that, the order does not matter.
+**
+** We find experimentally that leaving the symbols in their original
+** order (the order they appeared in the grammar file) gives the
+** smallest parser tables in SQLite.
+*/
+int Symbolcmpp(const void *_a, const void *_b)
+{
+ const struct symbol *a = *(const struct symbol **) _a;
+ const struct symbol *b = *(const struct symbol **) _b;
+ int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
+ int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
+ return i1==i2 ? a->index - b->index : i1 - i2;
+}
+
+/* There is one instance of the following structure for each
+** associative array of type "x2".
+*/
+struct s_x2 {
+ int size; /* The number of available slots. */
+ /* Must be a power of 2 greater than or */
+ /* equal to 1 */
+ int count; /* Number of currently slots filled */
+ struct s_x2node *tbl; /* The data stored here */
+ struct s_x2node **ht; /* Hash table for lookups */
+};
+
+/* There is one instance of this structure for every data element
+** in an associative array of type "x2".
+*/
+typedef struct s_x2node {
+ struct symbol *data; /* The data */
+ const char *key; /* The key */
+ struct s_x2node *next; /* Next entry with the same hash */
+ struct s_x2node **from; /* Previous link */
+} x2node;
+
+/* There is only one instance of the array, which is the following */
+static struct s_x2 *x2a;
+
+/* Allocate a new associative array */
+void Symbol_init(){
+ if( x2a ) return;
+ x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
+ if( x2a ){
+ x2a->size = 128;
+ x2a->count = 0;
+ x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
+ if( x2a->tbl==0 ){
+ free(x2a);
+ x2a = 0;
+ }else{
+ int i;
+ x2a->ht = (x2node**)&(x2a->tbl[128]);
+ for(i=0; i<128; i++) x2a->ht[i] = 0;
+ }
+ }
+}
+/* Insert a new record into the array. Return TRUE if successful.
+** Prior data with the same key is NOT overwritten */
+int Symbol_insert(struct symbol *data, const char *key)
+{
+ x2node *np;
+ unsigned h;
+ unsigned ph;
+
+ if( x2a==0 ) return 0;
+ ph = strhash(key);
+ h = ph & (x2a->size-1);
+ np = x2a->ht[h];
+ while( np ){
+ if( strcmp(np->key,key)==0 ){
+ /* An existing entry with the same key is found. */
+ /* Fail because overwrite is not allows. */
+ return 0;
+ }
+ np = np->next;
+ }
+ if( x2a->count>=x2a->size ){
+ /* Need to make the hash table bigger */
+ int i,size;
+ struct s_x2 array;
+ array.size = size = x2a->size*2;
+ array.count = x2a->count;
+ array.tbl = (x2node*)calloc(size, sizeof(x2node) + sizeof(x2node*));
+ if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
+ array.ht = (x2node**)&(array.tbl[size]);
+ for(i=0; i<size; i++) array.ht[i] = 0;
+ for(i=0; i<x2a->count; i++){
+ x2node *oldnp, *newnp;
+ oldnp = &(x2a->tbl[i]);
+ h = strhash(oldnp->key) & (size-1);
+ newnp = &(array.tbl[i]);
+ if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
+ newnp->next = array.ht[h];
+ newnp->key = oldnp->key;
+ newnp->data = oldnp->data;
+ newnp->from = &(array.ht[h]);
+ array.ht[h] = newnp;
+ }
+ free(x2a->tbl);
+ *x2a = array;
+ }
+ /* Insert the new data */
+ h = ph & (x2a->size-1);
+ np = &(x2a->tbl[x2a->count++]);
+ np->key = key;
+ np->data = data;
+ if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
+ np->next = x2a->ht[h];
+ x2a->ht[h] = np;
+ np->from = &(x2a->ht[h]);
+ return 1;
+}
+
+/* Return a pointer to data assigned to the given key. Return NULL
+** if no such key. */
+struct symbol *Symbol_find(const char *key)
+{
+ unsigned h;
+ x2node *np;
+
+ if( x2a==0 ) return 0;
+ h = strhash(key) & (x2a->size-1);
+ np = x2a->ht[h];
+ while( np ){
+ if( strcmp(np->key,key)==0 ) break;
+ np = np->next;
+ }
+ return np ? np->data : 0;
+}
+
+/* Return the n-th data. Return NULL if n is out of range. */
+struct symbol *Symbol_Nth(int n)
+{
+ struct symbol *data;
+ if( x2a && n>0 && n<=x2a->count ){
+ data = x2a->tbl[n-1].data;
+ }else{
+ data = 0;
+ }
+ return data;
+}
+
+/* Return the size of the array */
+int Symbol_count()
+{
+ return x2a ? x2a->count : 0;
+}
+
+/* Return an array of pointers to all data in the table.
+** The array is obtained from malloc. Return NULL if memory allocation
+** problems, or if the array is empty. */
+struct symbol **Symbol_arrayof()
+{
+ struct symbol **array;
+ int i,size;
+ if( x2a==0 ) return 0;
+ size = x2a->count;
+ array = (struct symbol **)calloc(size, sizeof(struct symbol *));
+ if( array ){
+ for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
+ }
+ return array;
+}
+
+/* Compare two configurations */
+int Configcmp(const char *_a,const char *_b)
+{
+ const struct config *a = (struct config *) _a;
+ const struct config *b = (struct config *) _b;
+ int x;
+ x = a->rp->index - b->rp->index;
+ if( x==0 ) x = a->dot - b->dot;
+ return x;
+}
+
+/* Compare two states */
+PRIVATE int statecmp(struct config *a, struct config *b)
+{
+ int rc;
+ for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
+ rc = a->rp->index - b->rp->index;
+ if( rc==0 ) rc = a->dot - b->dot;
+ }
+ if( rc==0 ){
+ if( a ) rc = 1;
+ if( b ) rc = -1;
+ }
+ return rc;
+}
+
+/* Hash a state */
+PRIVATE unsigned statehash(struct config *a)
+{
+ unsigned h=0;
+ while( a ){
+ h = h*571 + a->rp->index*37 + a->dot;
+ a = a->bp;
+ }
+ return h;
+}
+
+/* Allocate a new state structure */
+struct state *State_new()
+{
+ struct state *newstate;
+ newstate = (struct state *)calloc(1, sizeof(struct state) );
+ MemoryCheck(newstate);
+ return newstate;
+}
+
+/* There is one instance of the following structure for each
+** associative array of type "x3".
+*/
+struct s_x3 {
+ int size; /* The number of available slots. */
+ /* Must be a power of 2 greater than or */
+ /* equal to 1 */
+ int count; /* Number of currently slots filled */
+ struct s_x3node *tbl; /* The data stored here */
+ struct s_x3node **ht; /* Hash table for lookups */
+};
+
+/* There is one instance of this structure for every data element
+** in an associative array of type "x3".
+*/
+typedef struct s_x3node {
+ struct state *data; /* The data */
+ struct config *key; /* The key */
+ struct s_x3node *next; /* Next entry with the same hash */
+ struct s_x3node **from; /* Previous link */
+} x3node;
+
+/* There is only one instance of the array, which is the following */
+static struct s_x3 *x3a;
+
+/* Allocate a new associative array */
+void State_init(){
+ if( x3a ) return;
+ x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
+ if( x3a ){
+ x3a->size = 128;
+ x3a->count = 0;
+ x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
+ if( x3a->tbl==0 ){
+ free(x3a);
+ x3a = 0;
+ }else{
+ int i;
+ x3a->ht = (x3node**)&(x3a->tbl[128]);
+ for(i=0; i<128; i++) x3a->ht[i] = 0;
+ }
+ }
+}
+/* Insert a new record into the array. Return TRUE if successful.
+** Prior data with the same key is NOT overwritten */
+int State_insert(struct state *data, struct config *key)
+{
+ x3node *np;
+ unsigned h;
+ unsigned ph;
+
+ if( x3a==0 ) return 0;
+ ph = statehash(key);
+ h = ph & (x3a->size-1);
+ np = x3a->ht[h];
+ while( np ){
+ if( statecmp(np->key,key)==0 ){
+ /* An existing entry with the same key is found. */
+ /* Fail because overwrite is not allows. */
+ return 0;
+ }
+ np = np->next;
+ }
+ if( x3a->count>=x3a->size ){
+ /* Need to make the hash table bigger */
+ int i,size;
+ struct s_x3 array;
+ array.size = size = x3a->size*2;
+ array.count = x3a->count;
+ array.tbl = (x3node*)calloc(size, sizeof(x3node) + sizeof(x3node*));
+ if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
+ array.ht = (x3node**)&(array.tbl[size]);
+ for(i=0; i<size; i++) array.ht[i] = 0;
+ for(i=0; i<x3a->count; i++){
+ x3node *oldnp, *newnp;
+ oldnp = &(x3a->tbl[i]);
+ h = statehash(oldnp->key) & (size-1);
+ newnp = &(array.tbl[i]);
+ if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
+ newnp->next = array.ht[h];
+ newnp->key = oldnp->key;
+ newnp->data = oldnp->data;
+ newnp->from = &(array.ht[h]);
+ array.ht[h] = newnp;
+ }
+ free(x3a->tbl);
+ *x3a = array;
+ }
+ /* Insert the new data */
+ h = ph & (x3a->size-1);
+ np = &(x3a->tbl[x3a->count++]);
+ np->key = key;
+ np->data = data;
+ if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
+ np->next = x3a->ht[h];
+ x3a->ht[h] = np;
+ np->from = &(x3a->ht[h]);
+ return 1;
+}
+
+/* Return a pointer to data assigned to the given key. Return NULL
+** if no such key. */
+struct state *State_find(struct config *key)
+{
+ unsigned h;
+ x3node *np;
+
+ if( x3a==0 ) return 0;
+ h = statehash(key) & (x3a->size-1);
+ np = x3a->ht[h];
+ while( np ){
+ if( statecmp(np->key,key)==0 ) break;
+ np = np->next;
+ }
+ return np ? np->data : 0;
+}
+
+/* Return an array of pointers to all data in the table.
+** The array is obtained from malloc. Return NULL if memory allocation
+** problems, or if the array is empty. */
+struct state **State_arrayof()
+{
+ struct state **array;
+ int i,size;
+ if( x3a==0 ) return 0;
+ size = x3a->count;
+ array = (struct state **)calloc(size, sizeof(struct state *));
+ if( array ){
+ for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
+ }
+ return array;
+}
+
+/* Hash a configuration */
+PRIVATE unsigned confighash(struct config *a)
+{
+ unsigned h=0;
+ h = h*571 + a->rp->index*37 + a->dot;
+ return h;
+}
+
+/* There is one instance of the following structure for each
+** associative array of type "x4".
+*/
+struct s_x4 {
+ int size; /* The number of available slots. */
+ /* Must be a power of 2 greater than or */
+ /* equal to 1 */
+ int count; /* Number of currently slots filled */
+ struct s_x4node *tbl; /* The data stored here */
+ struct s_x4node **ht; /* Hash table for lookups */
+};
+
+/* There is one instance of this structure for every data element
+** in an associative array of type "x4".
+*/
+typedef struct s_x4node {
+ struct config *data; /* The data */
+ struct s_x4node *next; /* Next entry with the same hash */
+ struct s_x4node **from; /* Previous link */
+} x4node;
+
+/* There is only one instance of the array, which is the following */
+static struct s_x4 *x4a;
+
+/* Allocate a new associative array */
+void Configtable_init(){
+ if( x4a ) return;
+ x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
+ if( x4a ){
+ x4a->size = 64;
+ x4a->count = 0;
+ x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
+ if( x4a->tbl==0 ){
+ free(x4a);
+ x4a = 0;
+ }else{
+ int i;
+ x4a->ht = (x4node**)&(x4a->tbl[64]);
+ for(i=0; i<64; i++) x4a->ht[i] = 0;
+ }
+ }
+}
+/* Insert a new record into the array. Return TRUE if successful.
+** Prior data with the same key is NOT overwritten */
+int Configtable_insert(struct config *data)
+{
+ x4node *np;
+ unsigned h;
+ unsigned ph;
+
+ if( x4a==0 ) return 0;
+ ph = confighash(data);
+ h = ph & (x4a->size-1);
+ np = x4a->ht[h];
+ while( np ){
+ if( Configcmp((const char *) np->data,(const char *) data)==0 ){
+ /* An existing entry with the same key is found. */
+ /* Fail because overwrite is not allows. */
+ return 0;
+ }
+ np = np->next;
+ }
+ if( x4a->count>=x4a->size ){
+ /* Need to make the hash table bigger */
+ int i,size;
+ struct s_x4 array;
+ array.size = size = x4a->size*2;
+ array.count = x4a->count;
+ array.tbl = (x4node*)calloc(size, sizeof(x4node) + sizeof(x4node*));
+ if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
+ array.ht = (x4node**)&(array.tbl[size]);
+ for(i=0; i<size; i++) array.ht[i] = 0;
+ for(i=0; i<x4a->count; i++){
+ x4node *oldnp, *newnp;
+ oldnp = &(x4a->tbl[i]);
+ h = confighash(oldnp->data) & (size-1);
+ newnp = &(array.tbl[i]);
+ if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
+ newnp->next = array.ht[h];
+ newnp->data = oldnp->data;
+ newnp->from = &(array.ht[h]);
+ array.ht[h] = newnp;
+ }
+ free(x4a->tbl);
+ *x4a = array;
+ }
+ /* Insert the new data */
+ h = ph & (x4a->size-1);
+ np = &(x4a->tbl[x4a->count++]);
+ np->data = data;
+ if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
+ np->next = x4a->ht[h];
+ x4a->ht[h] = np;
+ np->from = &(x4a->ht[h]);
+ return 1;
+}
+
+/* Return a pointer to data assigned to the given key. Return NULL
+** if no such key. */
+struct config *Configtable_find(struct config *key)
+{
+ int h;
+ x4node *np;
+
+ if( x4a==0 ) return 0;
+ h = confighash(key) & (x4a->size-1);
+ np = x4a->ht[h];
+ while( np ){
+ if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
+ np = np->next;
+ }
+ return np ? np->data : 0;
+}
+
+/* Remove all data from the table. Pass each data to the function "f"
+** as it is removed. ("f" may be null to avoid this step.) */
+void Configtable_clear(int(*f)(struct config *))
+{
+ int i;
+ if( x4a==0 || x4a->count==0 ) return;
+ if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
+ for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
+ x4a->count = 0;
+ return;
+}
diff --git a/contrib/lempar.c b/contrib/lempar.c
new file mode 100644
index 0000000..a4e3c07
--- /dev/null
+++ b/contrib/lempar.c
@@ -0,0 +1,851 @@
+/* Driver template for the LEMON parser generator.
+** The author disclaims copyright to this source code.
+*/
+/* First off, code is included that follows the "include" declaration
+** in the input grammar file. */
+#include <stdio.h>
+%%
+/* Next is all token values, in a form suitable for use by makeheaders.
+** This section will be null unless lemon is run with the -m switch.
+*/
+/*
+** These constants (all generated automatically by the parser generator)
+** specify the various kinds of tokens (terminals) that the parser
+** understands.
+**
+** Each symbol here is a terminal symbol in the grammar.
+*/
+%%
+/* Make sure the INTERFACE macro is defined.
+*/
+#ifndef INTERFACE
+# define INTERFACE 1
+#endif
+/* The next thing included is series of defines which control
+** various aspects of the generated parser.
+** YYCODETYPE is the data type used for storing terminal
+** and nonterminal numbers. "unsigned char" is
+** used if there are fewer than 250 terminals
+** and nonterminals. "int" is used otherwise.
+** YYNOCODE is a number of type YYCODETYPE which corresponds
+** to no legal terminal or nonterminal number. This
+** number is used to fill in empty slots of the hash
+** table.
+** YYFALLBACK If defined, this indicates that one or more tokens
+** have fall-back values which should be used if the
+** original value of the token will not parse.
+** YYACTIONTYPE is the data type used for storing terminal
+** and nonterminal numbers. "unsigned char" is
+** used if there are fewer than 250 rules and
+** states combined. "int" is used otherwise.
+** ParseTOKENTYPE is the data type used for minor tokens given
+** directly to the parser from the tokenizer.
+** YYMINORTYPE is the data type used for all minor tokens.
+** This is typically a union of many types, one of
+** which is ParseTOKENTYPE. The entry in the union
+** for base tokens is called "yy0".
+** YYSTACKDEPTH is the maximum depth of the parser's stack. If
+** zero the stack is dynamically sized using realloc()
+** ParseARG_SDECL A static variable declaration for the %extra_argument
+** ParseARG_PDECL A parameter declaration for the %extra_argument
+** ParseARG_STORE Code to store %extra_argument into yypParser
+** ParseARG_FETCH Code to extract %extra_argument from yypParser
+** YYNSTATE the combined number of states.
+** YYNRULE the number of rules in the grammar
+** YYERRORSYMBOL is the code number of the error symbol. If not
+** defined, then do no error processing.
+*/
+%%
+#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
+#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
+#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
+
+/* The yyzerominor constant is used to initialize instances of
+** YYMINORTYPE objects to zero. */
+static const YYMINORTYPE yyzerominor = { 0 };
+
+/* Define the yytestcase() macro to be a no-op if is not already defined
+** otherwise.
+**
+** Applications can choose to define yytestcase() in the %include section
+** to a macro that can assist in verifying code coverage. For production
+** code the yytestcase() macro should be turned off. But it is useful
+** for testing.
+*/
+#ifndef yytestcase
+# define yytestcase(X)
+#endif
+
+
+/* Next are the tables used to determine what action to take based on the
+** current state and lookahead token. These tables are used to implement
+** functions that take a state number and lookahead value and return an
+** action integer.
+**
+** Suppose the action integer is N. Then the action is determined as
+** follows
+**
+** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
+** token onto the stack and goto state N.
+**
+** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
+**
+** N == YYNSTATE+YYNRULE A syntax error has occurred.
+**
+** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
+**
+** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
+** slots in the yy_action[] table.
+**
+** The action table is constructed as a single large table named yy_action[].
+** Given state S and lookahead X, the action is computed as
+**
+** yy_action[ yy_shift_ofst[S] + X ]
+**
+** If the index value yy_shift_ofst[S]+X is out of range or if the value
+** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
+** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
+** and that yy_default[S] should be used instead.
+**
+** The formula above is for computing the action when the lookahead is
+** a terminal symbol. If the lookahead is a non-terminal (as occurs after
+** a reduce action) then the yy_reduce_ofst[] array is used in place of
+** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
+** YY_SHIFT_USE_DFLT.
+**
+** The following are the tables generated in this section:
+**
+** yy_action[] A single table containing all actions.
+** yy_lookahead[] A table containing the lookahead for each entry in
+** yy_action. Used to detect hash collisions.
+** yy_shift_ofst[] For each state, the offset into yy_action for
+** shifting terminals.
+** yy_reduce_ofst[] For each state, the offset into yy_action for
+** shifting non-terminals after a reduce.
+** yy_default[] Default action for each state.
+*/
+%%
+
+/* The next table maps tokens into fallback tokens. If a construct
+** like the following:
+**
+** %fallback ID X Y Z.
+**
+** appears in the grammar, then ID becomes a fallback token for X, Y,
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
+** but it does not parse, the type of the token is changed to ID and
+** the parse is retried before an error is thrown.
+*/
+#ifdef YYFALLBACK
+static const YYCODETYPE yyFallback[] = {
+%%
+};
+#endif /* YYFALLBACK */
+
+/* The following structure represents a single element of the
+** parser's stack. Information stored includes:
+**
+** + The state number for the parser at this level of the stack.
+**
+** + The value of the token stored at this level of the stack.
+** (In other words, the "major" token.)
+**
+** + The semantic value stored at this level of the stack. This is
+** the information used by the action routines in the grammar.
+** It is sometimes called the "minor" token.
+*/
+struct yyStackEntry {
+ YYACTIONTYPE stateno; /* The state-number */
+ YYCODETYPE major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
+};
+typedef struct yyStackEntry yyStackEntry;
+
+/* The state of the parser is completely contained in an instance of
+** the following structure */
+struct yyParser {
+ int yyidx; /* Index of top element in stack */
+#ifdef YYTRACKMAXSTACKDEPTH
+ int yyidxMax; /* Maximum value of yyidx */
+#endif
+ int yyerrcnt; /* Shifts left before out of the error */
+ ParseARG_SDECL /* A place to hold %extra_argument */
+#if YYSTACKDEPTH<=0
+ int yystksz; /* Current side of the stack */
+ yyStackEntry *yystack; /* The parser's stack */
+#else
+ yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
+#endif
+};
+typedef struct yyParser yyParser;
+
+#ifndef NDEBUG
+#include <stdio.h>
+static FILE *yyTraceFILE = 0;
+static char *yyTracePrompt = 0;
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Turn parser tracing on by giving a stream to which to write the trace
+** and a prompt to preface each trace message. Tracing is turned off
+** by making either argument NULL
+**
+** Inputs:
+** <ul>
+** <li> A FILE* to which trace output should be written.
+** If NULL, then tracing is turned off.
+** <li> A prefix string written at the beginning of every
+** line of trace output. If NULL, then tracing is
+** turned off.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+void ParseTrace(FILE *TraceFILE, char *zTracePrompt);
+void ParseTrace(FILE *TraceFILE, char *zTracePrompt){
+ yyTraceFILE = TraceFILE;
+ yyTracePrompt = zTracePrompt;
+ if( yyTraceFILE==0 ) yyTracePrompt = 0;
+ else if( yyTracePrompt==0 ) yyTraceFILE = 0;
+}
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing shifts, the names of all terminals and nonterminals
+** are required. The following table supplies these names */
+static const char *const yyTokenName[] = {
+%%
+};
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing reduce actions, the names of all rules are required.
+*/
+static const char *const yyRuleName[] = {
+%%
+};
+#endif /* NDEBUG */
+
+
+#if YYSTACKDEPTH<=0
+/*
+** Try to increase the size of the parser stack.
+*/
+static void yyGrowStack(yyParser *p){
+ int newSize;
+ yyStackEntry *pNew;
+
+ newSize = p->yystksz*2 + 100;
+ pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
+ if( pNew ){
+ p->yystack = pNew;
+ p->yystksz = newSize;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
+ yyTracePrompt, p->yystksz);
+ }
+#endif
+ }
+}
+#endif
+
+/*
+** This function allocates a new parser.
+** The only argument is a pointer to a function which works like
+** malloc.
+**
+** Inputs:
+** A pointer to the function used to allocate memory.
+**
+** Outputs:
+** A pointer to a parser. This pointer is used in subsequent calls
+** to Parse and ParseFree.
+*/
+void *ParseAlloc(void *(*mallocProc)(size_t)){
+ yyParser *pParser;
+ pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
+ if( pParser ){
+ pParser->yyidx = -1;
+#ifdef YYTRACKMAXSTACKDEPTH
+ pParser->yyidxMax = 0;
+#endif
+#if YYSTACKDEPTH<=0
+ pParser->yystack = NULL;
+ pParser->yystksz = 0;
+ yyGrowStack(pParser);
+#endif
+ }
+ return pParser;
+}
+
+/* The following function deletes the value associated with a
+** symbol. The symbol can be either a terminal or nonterminal.
+** "yymajor" is the symbol code, and "yypminor" is a pointer to
+** the value.
+*/
+static void yy_destructor(
+ yyParser *yypParser, /* The parser */
+ YYCODETYPE yymajor, /* Type code for object to destroy */
+ YYMINORTYPE *yypminor /* The object to be destroyed */
+){
+ ParseARG_FETCH;
+ switch( yymajor ){
+ /* Here is inserted the actions which take place when a
+ ** terminal or non-terminal is destroyed. This can happen
+ ** when the symbol is popped from the stack during a
+ ** reduce or during error processing or when a parser is
+ ** being destroyed before it is finished parsing.
+ **
+ ** Note: during a reduce, the only symbols destroyed are those
+ ** which appear on the RHS of the rule, but which are not used
+ ** inside the C code.
+ */
+%%
+ default: break; /* If no destructor action specified: do nothing */
+ }
+}
+
+/*
+** Pop the parser's stack once.
+**
+** If there is a destructor routine associated with the token which
+** is popped from the stack, then call it.
+**
+** Return the major token number for the symbol popped.
+*/
+static int yy_pop_parser_stack(yyParser *pParser){
+ YYCODETYPE yymajor;
+ yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
+
+ if( pParser->yyidx<0 ) return 0;
+#ifndef NDEBUG
+ if( yyTraceFILE && pParser->yyidx>=0 ){
+ fprintf(yyTraceFILE,"%sPopping %s\n",
+ yyTracePrompt,
+ yyTokenName[yytos->major]);
+ }
+#endif
+ yymajor = yytos->major;
+ yy_destructor(pParser, yymajor, &yytos->minor);
+ pParser->yyidx--;
+ return yymajor;
+}
+
+/*
+** Deallocate and destroy a parser. Destructors are all called for
+** all stack elements before shutting the parser down.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser. This should be a pointer
+** obtained from ParseAlloc.
+** <li> A pointer to a function used to reclaim memory obtained
+** from malloc.
+** </ul>
+*/
+void ParseFree(
+ void *p, /* The parser to be deleted */
+ void (*freeProc)(void*) /* Function used to reclaim memory */
+){
+ yyParser *pParser = (yyParser*)p;
+ if( pParser==0 ) return;
+ while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
+#if YYSTACKDEPTH<=0
+ free(pParser->yystack);
+#endif
+ (*freeProc)((void*)pParser);
+}
+
+/*
+** Return the peak depth of the stack for a parser.
+*/
+#ifdef YYTRACKMAXSTACKDEPTH
+int ParseStackPeak(void *p){
+ yyParser *pParser = (yyParser*)p;
+ return pParser->yyidxMax;
+}
+#endif
+
+/*
+** Find the appropriate action for a parser given the terminal
+** look-ahead token iLookAhead.
+**
+** If the look-ahead token is YYNOCODE, then check to see if the action is
+** independent of the look-ahead. If it is, return the action, otherwise
+** return YY_NO_ACTION.
+*/
+static int yy_find_shift_action(
+ yyParser *pParser, /* The parser */
+ YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+ int stateno = pParser->yystack[pParser->yyidx].stateno;
+
+ if( stateno>YY_SHIFT_COUNT
+ || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
+ return yy_default[stateno];
+ }
+ assert( iLookAhead!=YYNOCODE );
+ i += iLookAhead;
+ if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
+ if( iLookAhead>0 ){
+#ifdef YYFALLBACK
+ YYCODETYPE iFallback; /* Fallback token */
+ if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
+ && (iFallback = yyFallback[iLookAhead])!=0 ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
+ }
+#endif
+ return yy_find_shift_action(pParser, iFallback);
+ }
+#endif
+#ifdef YYWILDCARD
+ {
+ int j = i - iLookAhead + YYWILDCARD;
+ if(
+#if YY_SHIFT_MIN+YYWILDCARD<0
+ j>=0 &&
+#endif
+#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
+ j<YY_ACTTAB_COUNT &&
+#endif
+ yy_lookahead[j]==YYWILDCARD
+ ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
+ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
+ }
+#endif /* NDEBUG */
+ return yy_action[j];
+ }
+ }
+#endif /* YYWILDCARD */
+ }
+ return yy_default[stateno];
+ }else{
+ return yy_action[i];
+ }
+}
+
+/*
+** Find the appropriate action for a parser given the non-terminal
+** look-ahead token iLookAhead.
+**
+** If the look-ahead token is YYNOCODE, then check to see if the action is
+** independent of the look-ahead. If it is, return the action, otherwise
+** return YY_NO_ACTION.
+*/
+static int yy_find_reduce_action(
+ int stateno, /* Current state number */
+ YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+#ifdef YYERRORSYMBOL
+ if( stateno>YY_REDUCE_COUNT ){
+ return yy_default[stateno];
+ }
+#else
+ assert( stateno<=YY_REDUCE_COUNT );
+#endif
+ i = yy_reduce_ofst[stateno];
+ assert( i!=YY_REDUCE_USE_DFLT );
+ assert( iLookAhead!=YYNOCODE );
+ i += iLookAhead;
+#ifdef YYERRORSYMBOL
+ if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
+ return yy_default[stateno];
+ }
+#else
+ assert( i>=0 && i<YY_ACTTAB_COUNT );
+ assert( yy_lookahead[i]==iLookAhead );
+#endif
+ return yy_action[i];
+}
+
+/*
+** The following routine is called if the stack overflows.
+*/
+static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
+ ParseARG_FETCH;
+ yypParser->yyidx--;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will execute if the parser
+ ** stack every overflows */
+%%
+ ParseARG_STORE; /* Suppress warning about unused %extra_argument var */
+}
+
+/*
+** Perform a shift action.
+*/
+static void yy_shift(
+ yyParser *yypParser, /* The parser to be shifted */
+ int yyNewState, /* The new state to shift in */
+ int yyMajor, /* The major token to shift in */
+ YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */
+){
+ yyStackEntry *yytos;
+ yypParser->yyidx++;
+#ifdef YYTRACKMAXSTACKDEPTH
+ if( yypParser->yyidx>yypParser->yyidxMax ){
+ yypParser->yyidxMax = yypParser->yyidx;
+ }
+#endif
+#if YYSTACKDEPTH>0
+ if( yypParser->yyidx>=YYSTACKDEPTH ){
+ yyStackOverflow(yypParser, yypMinor);
+ return;
+ }
+#else
+ if( yypParser->yyidx>=yypParser->yystksz ){
+ yyGrowStack(yypParser);
+ if( yypParser->yyidx>=yypParser->yystksz ){
+ yyStackOverflow(yypParser, yypMinor);
+ return;
+ }
+ }
+#endif
+ yytos = &yypParser->yystack[yypParser->yyidx];
+ yytos->stateno = (YYACTIONTYPE)yyNewState;
+ yytos->major = (YYCODETYPE)yyMajor;
+ yytos->minor = *yypMinor;
+#ifndef NDEBUG
+ if( yyTraceFILE && yypParser->yyidx>0 ){
+ int i;
+ fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
+ fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
+ for(i=1; i<=yypParser->yyidx; i++)
+ fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
+ fprintf(yyTraceFILE,"\n");
+ }
+#endif
+}
+
+/* The following table contains information about every rule that
+** is used during the reduce.
+*/
+static const struct {
+ YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
+ unsigned char nrhs; /* Number of right-hand side symbols in the rule */
+} yyRuleInfo[] = {
+%%
+};
+
+static void yy_accept(yyParser*); /* Forward Declaration */
+
+/*
+** Perform a reduce action and the shift that must immediately
+** follow the reduce.
+*/
+static void yy_reduce(
+ yyParser *yypParser, /* The parser */
+ int yyruleno /* Number of the rule by which to reduce */
+){
+ int yygoto; /* The next state */
+ int yyact; /* The next action */
+ YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
+ yyStackEntry *yymsp; /* The top of the parser's stack */
+ int yysize; /* Amount to pop the stack */
+ ParseARG_FETCH;
+ yymsp = &yypParser->yystack[yypParser->yyidx];
+#ifndef NDEBUG
+ if( yyTraceFILE && yyruleno>=0
+ && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
+ fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
+ yyRuleName[yyruleno]);
+ }
+#endif /* NDEBUG */
+
+ /* Silence complaints from purify about yygotominor being uninitialized
+ ** in some cases when it is copied into the stack after the following
+ ** switch. yygotominor is uninitialized when a rule reduces that does
+ ** not set the value of its left-hand side nonterminal. Leaving the
+ ** value of the nonterminal uninitialized is utterly harmless as long
+ ** as the value is never used. So really the only thing this code
+ ** accomplishes is to quieten purify.
+ **
+ ** 2007-01-16: The wireshark project (www.wireshark.org) reports that
+ ** without this code, their parser segfaults. I'm not sure what there
+ ** parser is doing to make this happen. This is the second bug report
+ ** from wireshark this week. Clearly they are stressing Lemon in ways
+ ** that it has not been previously stressed... (SQLite ticket #2172)
+ */
+ /*memset(&yygotominor, 0, sizeof(yygotominor));*/
+ yygotominor = yyzerominor;
+
+
+ switch( yyruleno ){
+ /* Beginning here are the reduction cases. A typical example
+ ** follows:
+ ** case 0:
+ ** #line <lineno> <grammarfile>
+ ** { ... } // User supplied code
+ ** #line <lineno> <thisfile>
+ ** break;
+ */
+%%
+ };
+ yygoto = yyRuleInfo[yyruleno].lhs;
+ yysize = yyRuleInfo[yyruleno].nrhs;
+ yypParser->yyidx -= yysize;
+ yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
+ if( yyact < YYNSTATE ){
+#ifdef NDEBUG
+ /* If we are not debugging and the reduce action popped at least
+ ** one element off the stack, then we can push the new element back
+ ** onto the stack here, and skip the stack overflow test in yy_shift().
+ ** That gives a significant speed improvement. */
+ if( yysize ){
+ yypParser->yyidx++;
+ yymsp -= yysize-1;
+ yymsp->stateno = (YYACTIONTYPE)yyact;
+ yymsp->major = (YYCODETYPE)yygoto;
+ yymsp->minor = yygotominor;
+ }else
+#endif
+ {
+ yy_shift(yypParser,yyact,yygoto,&yygotominor);
+ }
+ }else{
+ assert( yyact == YYNSTATE + YYNRULE + 1 );
+ yy_accept(yypParser);
+ }
+}
+
+/*
+** The following code executes when the parse fails
+*/
+#ifndef YYNOERRORRECOVERY
+static void yy_parse_failed(
+ yyParser *yypParser /* The parser */
+){
+ ParseARG_FETCH;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser fails */
+%%
+ ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+#endif /* YYNOERRORRECOVERY */
+
+/*
+** The following code executes when a syntax error first occurs.
+*/
+static void yy_syntax_error(
+ yyParser *yypParser, /* The parser */
+ int yymajor, /* The major type of the error token */
+ YYMINORTYPE yyminor /* The minor type of the error token */
+){
+ ParseARG_FETCH;
+#define TOKEN (yyminor.yy0)
+%%
+ ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/*
+** The following is executed when the parser accepts
+*/
+static void yy_accept(
+ yyParser *yypParser /* The parser */
+){
+ ParseARG_FETCH;
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
+ }
+#endif
+ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser accepts */
+%%
+ ParseARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/* The main parser program.
+** The first argument is a pointer to a structure obtained from
+** "ParseAlloc" which describes the current state of the parser.
+** The second argument is the major token number. The third is
+** the minor token. The fourth optional argument is whatever the
+** user wants (and specified in the grammar) and is available for
+** use by the action routines.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser (an opaque structure.)
+** <li> The major token number.
+** <li> The minor token number.
+** <li> An option argument of a grammar-specified type.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+void Parse(
+ void *yyp, /* The parser */
+ int yymajor, /* The major token code number */
+ ParseTOKENTYPE yyminor /* The value for the token */
+ ParseARG_PDECL /* Optional %extra_argument parameter */
+){
+ YYMINORTYPE yyminorunion;
+ int yyact; /* The parser action. */
+ int yyendofinput; /* True if we are at the end of input */
+#ifdef YYERRORSYMBOL
+ int yyerrorhit = 0; /* True if yymajor has invoked an error */
+#endif
+ yyParser *yypParser; /* The parser */
+
+ /* (re)initialize the parser, if necessary */
+ yypParser = (yyParser*)yyp;
+ if( yypParser->yyidx<0 ){
+#if YYSTACKDEPTH<=0
+ if( yypParser->yystksz <=0 ){
+ /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
+ yyminorunion = yyzerominor;
+ yyStackOverflow(yypParser, &yyminorunion);
+ return;
+ }
+#endif
+ yypParser->yyidx = 0;
+ yypParser->yyerrcnt = -1;
+ yypParser->yystack[0].stateno = 0;
+ yypParser->yystack[0].major = 0;
+ }
+ yyminorunion.yy0 = yyminor;
+ yyendofinput = (yymajor==0);
+ ParseARG_STORE;
+
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+
+ do{
+ yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
+ if( yyact<YYNSTATE ){
+ assert( !yyendofinput ); /* Impossible to shift the $ token */
+ yy_shift(yypParser,yyact,yymajor,&yyminorunion);
+ yypParser->yyerrcnt--;
+ yymajor = YYNOCODE;
+ }else if( yyact < YYNSTATE + YYNRULE ){
+ yy_reduce(yypParser,yyact-YYNSTATE);
+ }else{
+ assert( yyact == YY_ERROR_ACTION );
+#ifdef YYERRORSYMBOL
+ int yymx;
+#endif
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
+ }
+#endif
+#ifdef YYERRORSYMBOL
+ /* A syntax error has occurred.
+ ** The response to an error depends upon whether or not the
+ ** grammar defines an error token "ERROR".
+ **
+ ** This is what we do if the grammar does define ERROR:
+ **
+ ** * Call the %syntax_error function.
+ **
+ ** * Begin popping the stack until we enter a state where
+ ** it is legal to shift the error symbol, then shift
+ ** the error symbol.
+ **
+ ** * Set the error count to three.
+ **
+ ** * Begin accepting and shifting new tokens. No new error
+ ** processing will occur until three tokens have been
+ ** shifted successfully.
+ **
+ */
+ if( yypParser->yyerrcnt<0 ){
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ }
+ yymx = yypParser->yystack[yypParser->yyidx].major;
+ if( yymx==YYERRORSYMBOL || yyerrorhit ){
+#ifndef NDEBUG
+ if( yyTraceFILE ){
+ fprintf(yyTraceFILE,"%sDiscard input token %s\n",
+ yyTracePrompt,yyTokenName[yymajor]);
+ }
+#endif
+ yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion);
+ yymajor = YYNOCODE;
+ }else{
+ while(
+ yypParser->yyidx >= 0 &&
+ yymx != YYERRORSYMBOL &&
+ (yyact = yy_find_reduce_action(
+ yypParser->yystack[yypParser->yyidx].stateno,
+ YYERRORSYMBOL)) >= YYNSTATE
+ ){
+ yy_pop_parser_stack(yypParser);
+ }
+ if( yypParser->yyidx < 0 || yymajor==0 ){
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ yy_parse_failed(yypParser);
+ yymajor = YYNOCODE;
+ }else if( yymx!=YYERRORSYMBOL ){
+ YYMINORTYPE u2;
+ u2.YYERRSYMDT = 0;
+ yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
+ }
+ }
+ yypParser->yyerrcnt = 3;
+ yyerrorhit = 1;
+#elif defined(YYNOERRORRECOVERY)
+ /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
+ ** do any kind of error recovery. Instead, simply invoke the syntax
+ ** error routine and continue going as if nothing had happened.
+ **
+ ** Applications can set this macro (for example inside %include) if
+ ** they intend to abandon the parse upon the first syntax error seen.
+ */
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ yymajor = YYNOCODE;
+
+#else /* YYERRORSYMBOL is not defined */
+ /* This is what we do if the grammar does not define ERROR:
+ **
+ ** * Report an error message, and throw away the input token.
+ **
+ ** * If the input token is $, then fail the parse.
+ **
+ ** As before, subsequent error messages are suppressed until
+ ** three input tokens have been successfully shifted.
+ */
+ if( yypParser->yyerrcnt<=0 ){
+ yy_syntax_error(yypParser,yymajor,yyminorunion);
+ }
+ yypParser->yyerrcnt = 3;
+ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
+ if( yyendofinput ){
+ yy_parse_failed(yypParser);
+ }
+ yymajor = YYNOCODE;
+#endif
+ }
+ }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
+ return;
+}