summaryrefslogtreecommitdiffhomepage
path: root/tests/test_pkey.py
blob: 0cc201330dca6c88be83ec3e61dca034a466472b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
# -*- coding: utf-8 -*-
# Copyright (C) 2003-2009  Robey Pointer <robeypointer@gmail.com>
#
# This file is part of paramiko.
#
# Paramiko is free software; you can redistribute it and/or modify it under the
# terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 2.1 of the License, or (at your option)
# any later version.
#
# Paramiko is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with Paramiko; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA.

"""
Some unit tests for public/private key objects.
"""

import unittest
import os
from binascii import hexlify
from hashlib import md5

from paramiko import (
    RSAKey,
    DSSKey,
    ECDSAKey,
    Ed25519Key,
    Message,
    util,
    SSHException,
)
from paramiko.py3compat import StringIO, byte_chr, b, bytes, PY2

from cryptography.exceptions import UnsupportedAlgorithm
from cryptography.hazmat.primitives.asymmetric.rsa import RSAPrivateNumbers
from mock import patch
import pytest

from .util import _support, is_low_entropy


# from openssh's ssh-keygen
PUB_RSA = "ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEA049W6geFpmsljTwfvI1UmKWWJPNFI74+vNKTk4dmzkQY2yAMs6FhlvhlI8ysU4oj71ZsRYMecHbBbxdN79+JRFVYTKaLqjwGENeTd+yv4q+V2PvZv3fLnzApI3l7EJCqhWwJUHJ1jAkZzqDx0tyOL4uoZpww3nmE0kb3y21tH4c="  # noqa
PUB_DSS = "ssh-dss AAAAB3NzaC1kc3MAAACBAOeBpgNnfRzr/twmAQRu2XwWAp3CFtrVnug6s6fgwj/oLjYbVtjAy6pl/h0EKCWx2rf1IetyNsTxWrniA9I6HeDj65X1FyDkg6g8tvCnaNB8Xp/UUhuzHuGsMIipRxBxw9LF608EqZcj1E3ytktoW5B5OcjrkEoz3xG7C+rpIjYvAAAAFQDwz4UnmsGiSNu5iqjn3uTzwUpshwAAAIEAkxfFeY8P2wZpDjX0MimZl5wkoFQDL25cPzGBuB4OnB8NoUk/yjAHIIpEShw8V+LzouMK5CTJQo5+Ngw3qIch/WgRmMHy4kBq1SsXMjQCte1So6HBMvBPIW5SiMTmjCfZZiw4AYHK+B/JaOwaG9yRg2Ejg4Ok10+XFDxlqZo8Y+wAAACARmR7CCPjodxASvRbIyzaVpZoJ/Z6x7dAumV+ysrV1BVYd0lYukmnjO1kKBWApqpH1ve9XDQYN8zgxM4b16L21kpoWQnZtXrY3GZ4/it9kUgyB7+NwacIBlXa8cMDL7Q/69o0d54U0X/NeX5QxuYR6OMJlrkQB7oiW/P/1mwjQgE="  # noqa
PUB_ECDSA_256 = "ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBJSPZm3ZWkvk/Zx8WP+fZRZ5/NBBHnGQwR6uIC6XHGPDIHuWUzIjAwA0bzqkOUffEsbLe+uQgKl5kbc/L8KA/eo="  # noqa
PUB_ECDSA_384 = "ecdsa-sha2-nistp384 AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBBbGibQLW9AAZiGN2hEQxWYYoFaWKwN3PKSaDJSMqmIn1Z9sgRUuw8Y/w502OGvXL/wFk0i2z50l3pWZjD7gfMH7gX5TUiCzwrQkS+Hn1U2S9aF5WJp0NcIzYxXw2r4M2A=="  # noqa
PUB_ECDSA_521 = "ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBACaOaFLZGuxa5AW16qj6VLypFbLrEWrt9AZUloCMefxO8bNLjK/O5g0rAVasar1TnyHE9qj4NwzANZASWjQNbc4MAG8vzqezFwLIn/kNyNTsXNfqEko9OgHZknlj2Z79dwTJcRAL4QLcT5aND0EHZLB2fAUDXiWIb2j4rg1mwPlBMiBXA=="  # noqa
PUB_RSA_2K_OPENSSH = "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDF+Dpr54DX0WdeTDpNAMdkCWEkl3OXtNgf58qlN1gX572OLBqLf0zT4bHstUEpU3piazph/rSWcUMuBoD46tZ6jiH7H9b9Pem2eYQWaELDDkM+v9BMbEy5rMbFRLol5OtEvPFqneyEAanPOgvd8t3yyhSev9QVusakzJ8j8LGgrA8huYZ+Srnw0shEWLG70KUKCh3rG0QIvA8nfhtUOisr2Gp+F0YxMGb5gwBlQYAYE5l6u1SjZ7hNjyNosjK+wRBFgFFBYVpkZKJgWoK9w4ijFyzMZTucnZMqKOKAjIJvHfKBf2/cEfYxSq1EndqTqjYsd9T7/s2vcn1OH5a0wkER"  # noqa
RSA_2K_OPENSSH_P = 161773687847617758886803946572654778625119997081005961935077336594287351354258259920334554906235187683459069634729972458348855793639393524799865799559575414247668746919721196359908321800753913350455861871582087986355637886875933045224711827701526739934602161222599672381604211130651397331775901258858869418853  # noqa
RSA_2K_OPENSSH_Q = 154483416325630619558401349033571772244816915504195060221073502923720741119664820208064202825686848103224453777955988437823797692957091438442833606009978046057345917301441832647551208158342812551003395417862260727795454409459089912659057393394458150862012620127030757893820711157099494238156383382454310199869  # noqa
PUB_DSS_1K_OPENSSH = "ssh-dss AAAAB3NzaC1kc3MAAACBAL8XEx7F9xuwBNles+vWpNF+YcofrBhjX1r5QhpBe0eoYWLHRcroN6lxwCdGYRfgOoRjTncBiixQX/uUxAY96zDh3ir492s2BcJt4ihvNn/AY0I0OTuX/2IwGk9CGzafjaeZNVYxMa8lcVt0hSOTjkPQ7gVuk6bJzMInvie+VWKLAAAAFQDUgYdY+rhR0SkKbC09BS/SIHcB+wAAAIB44+4zpCNcd0CGvZlowH99zyPX8uxQtmTLQFuR2O8O0FgVVuCdDgD0D9W8CLOp32oatpM0jyyN89EdvSWzjHzZJ+L6H1FtZps7uhpDFWHdva1R25vyGecLMUuXjo5t/D7oCDih+HwHoSAxoi0QvsPd8/qqHQVznNJKtR6thUpXEwAAAIAG4DCBjbgTTgpBw0egRkJwBSz0oTt+1IcapNU2jA6N8urMSk9YXHEQHKN68BAF3YJ59q2Ujv3LOXmBqGd1T+kzwUszfMlgzq8MMu19Yfzse6AIK1Agn1Vj6F7YXLsXDN+T4KszX5+FJa7t/Zsp3nALWy6l0f4WKivEF5Y2QpEFcQ=="  # noqa
PUB_EC_384_OPENSSH = "ecdsa-sha2-nistp384 AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBIch5LXTq/L/TWsTGG6dIktxD8DIMh7EfvoRmWsks6CuNDTvFvbQNtY4QO1mn5OXegHbS0M5DPIS++wpKGFP3suDEH08O35vZQasLNrL0tO2jyyEnzB2ZEx3PPYci811yg=="  # noqa

FINGER_RSA = "1024 60:73:38:44:cb:51:86:65:7f:de:da:a2:2b:5a:57:d5"
FINGER_DSS = "1024 44:78:f0:b9:a2:3c:c5:18:20:09:ff:75:5b:c1:d2:6c"
FINGER_ECDSA_256 = "256 25:19:eb:55:e6:a1:47:ff:4f:38:d2:75:6f:a5:d5:60"
FINGER_ECDSA_384 = "384 c1:8d:a0:59:09:47:41:8e:a8:a6:07:01:29:23:b4:65"
FINGER_ECDSA_521 = "521 44:58:22:52:12:33:16:0e:ce:0e:be:2c:7c:7e:cc:1e"
SIGNED_RSA = "20:d7:8a:31:21:cb:f7:92:12:f2:a4:89:37:f5:78:af:e6:16:b6:25:b9:97:3d:a2:cd:5f:ca:20:21:73:4c:ad:34:73:8f:20:77:28:e2:94:15:08:d8:91:40:7a:85:83:bf:18:37:95:dc:54:1a:9b:88:29:6c:73:ca:38:b4:04:f1:56:b9:f2:42:9d:52:1b:29:29:b4:4f:fd:c9:2d:af:47:d2:40:76:30:f3:63:45:0c:d9:1d:43:86:0f:1c:70:e2:93:12:34:f3:ac:c5:0a:2f:14:50:66:59:f1:88:ee:c1:4a:e9:d1:9c:4e:46:f0:0e:47:6f:38:74:f1:44:a8"  # noqa
SIGNED_RSA_256 = "cc:6:60:e0:0:2c:ac:9e:26:bc:d5:68:64:3f:9f:a7:e5:aa:41:eb:88:4a:25:5:9c:93:84:66:ef:ef:60:f4:34:fb:f4:c8:3d:55:33:6a:77:bd:b2:ee:83:f:71:27:41:7e:f5:7:5:0:a9:4c:7:80:6f:be:76:67:cb:58:35:b9:2b:f3:c2:d3:3c:ee:e1:3f:59:e0:fa:e4:5c:92:ed:ae:74:de:d:d6:27:16:8f:84:a3:86:68:c:94:90:7d:6e:cc:81:12:d8:b6:ad:aa:31:a8:13:3d:63:81:3e:bb:5:b6:38:4d:2:d:1b:5b:70:de:83:cc:3a:cb:31"  # noqa
SIGNED_RSA_512 = "87:46:8b:75:92:33:78:a0:22:35:32:39:23:c6:ab:e1:6:92:ad:bc:7f:6e:ab:19:32:e4:78:b2:2c:8f:1d:c:65:da:fc:a5:7:ca:b6:55:55:31:83:b1:a0:af:d1:95:c5:2e:af:56:ba:f5:41:64:f:39:9d:af:82:43:22:8f:90:52:9d:89:e7:45:97:df:f3:f2:bc:7b:3a:db:89:e:34:fd:18:62:25:1b:ef:77:aa:c6:6c:99:36:3a:84:d6:9c:2a:34:8c:7f:f4:bb:c9:a5:9a:6c:11:f2:cf:da:51:5e:1e:7f:90:27:34:de:b2:f3:15:4f:db:47:32:6b:a7"  # noqa
FINGER_RSA_2K_OPENSSH = "2048 68:d1:72:01:bf:c0:0c:66:97:78:df:ce:75:74:46:d6"
FINGER_DSS_1K_OPENSSH = "1024 cf:1d:eb:d7:61:d3:12:94:c6:c0:c6:54:35:35:b0:82"
FINGER_EC_384_OPENSSH = "384 72:14:df:c1:9a:c3:e6:0e:11:29:d6:32:18:7b:ea:9b"

RSA_PRIVATE_OUT = """\
-----BEGIN RSA PRIVATE KEY-----
MIICWgIBAAKBgQDTj1bqB4WmayWNPB+8jVSYpZYk80Ujvj680pOTh2bORBjbIAyz
oWGW+GUjzKxTiiPvVmxFgx5wdsFvF03v34lEVVhMpouqPAYQ15N37K/ir5XY+9m/
d8ufMCkjeXsQkKqFbAlQcnWMCRnOoPHS3I4vi6hmnDDeeYTSRvfLbW0fhwIBIwKB
gBIiOqZYaoqbeD9OS9z2K9KR2atlTxGxOJPXiP4ESqP3NVScWNwyZ3NXHpyrJLa0
EbVtzsQhLn6rF+TzXnOlcipFvjsem3iYzCpuChfGQ6SovTcOjHV9z+hnpXvQ/fon
soVRZY65wKnF7IAoUwTmJS9opqgrN6kRgCd3DASAMd1bAkEA96SBVWFt/fJBNJ9H
tYnBKZGw0VeHOYmVYbvMSstssn8un+pQpUm9vlG/bp7Oxd/m+b9KWEh2xPfv6zqU
avNwHwJBANqzGZa/EpzF4J8pGti7oIAPUIDGMtfIcmqNXVMckrmzQ2vTfqtkEZsA
4rE1IERRyiJQx6EJsz21wJmGV9WJQ5kCQQDwkS0uXqVdFzgHO6S++tjmjYcxwr3g
H0CoFYSgbddOT6miqRskOQF3DZVkJT3kyuBgU2zKygz52ukQZMqxCb1fAkASvuTv
qfpH87Qq5kQhNKdbbwbmd2NxlNabazPijWuphGTdW0VfJdWfklyS2Kr+iqrs/5wV
HhathJt636Eg7oIjAkA8ht3MQ+XSl9yIJIS8gVpbPxSw5OMfw0PjVE7tBdQruiSc
nvuQES5C9BMHjF39LZiGH1iLQy7FgdHyoP+eodI7
-----END RSA PRIVATE KEY-----
"""

DSS_PRIVATE_OUT = """\
-----BEGIN DSA PRIVATE KEY-----
MIIBuwIBAAKBgQDngaYDZ30c6/7cJgEEbtl8FgKdwhba1Z7oOrOn4MI/6C42G1bY
wMuqZf4dBCglsdq39SHrcjbE8Vq54gPSOh3g4+uV9Rcg5IOoPLbwp2jQfF6f1FIb
sx7hrDCIqUcQccPSxetPBKmXI9RN8rZLaFuQeTnI65BKM98Ruwvq6SI2LwIVAPDP
hSeawaJI27mKqOfe5PPBSmyHAoGBAJMXxXmPD9sGaQ419DIpmZecJKBUAy9uXD8x
gbgeDpwfDaFJP8owByCKREocPFfi86LjCuQkyUKOfjYMN6iHIf1oEZjB8uJAatUr
FzI0ArXtUqOhwTLwTyFuUojE5own2WYsOAGByvgfyWjsGhvckYNhI4ODpNdPlxQ8
ZamaPGPsAoGARmR7CCPjodxASvRbIyzaVpZoJ/Z6x7dAumV+ysrV1BVYd0lYukmn
jO1kKBWApqpH1ve9XDQYN8zgxM4b16L21kpoWQnZtXrY3GZ4/it9kUgyB7+NwacI
BlXa8cMDL7Q/69o0d54U0X/NeX5QxuYR6OMJlrkQB7oiW/P/1mwjQgECFGI9QPSc
h9pT9XHqn+1rZ4bK+QGA
-----END DSA PRIVATE KEY-----
"""

ECDSA_PRIVATE_OUT_256 = """\
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEIKB6ty3yVyKEnfF/zprx0qwC76MsMlHY4HXCnqho2eKioAoGCCqGSM49
AwEHoUQDQgAElI9mbdlaS+T9nHxY/59lFnn80EEecZDBHq4gLpccY8Mge5ZTMiMD
ADRvOqQ5R98Sxst765CAqXmRtz8vwoD96g==
-----END EC PRIVATE KEY-----
"""

ECDSA_PRIVATE_OUT_384 = """\
-----BEGIN EC PRIVATE KEY-----
MIGkAgEBBDBDdO8IXvlLJgM7+sNtPl7tI7FM5kzuEUEEPRjXIPQM7mISciwJPBt+
y43EuG8nL4mgBwYFK4EEACKhZANiAAQWxom0C1vQAGYhjdoREMVmGKBWlisDdzyk
mgyUjKpiJ9WfbIEVLsPGP8OdNjhr1y/8BZNIts+dJd6VmYw+4HzB+4F+U1Igs8K0
JEvh59VNkvWheViadDXCM2MV8Nq+DNg=
-----END EC PRIVATE KEY-----
"""

ECDSA_PRIVATE_OUT_521 = """\
-----BEGIN EC PRIVATE KEY-----
MIHcAgEBBEIAprQtAS3OF6iVUkT8IowTHWicHzShGgk86EtuEXvfQnhZFKsWm6Jo
iqAr1yEaiuI9LfB3Xs8cjuhgEEfbduYr/f6gBwYFK4EEACOhgYkDgYYABACaOaFL
ZGuxa5AW16qj6VLypFbLrEWrt9AZUloCMefxO8bNLjK/O5g0rAVasar1TnyHE9qj
4NwzANZASWjQNbc4MAG8vzqezFwLIn/kNyNTsXNfqEko9OgHZknlj2Z79dwTJcRA
L4QLcT5aND0EHZLB2fAUDXiWIb2j4rg1mwPlBMiBXA==
-----END EC PRIVATE KEY-----
"""

x1234 = b"\x01\x02\x03\x04"

TEST_KEY_BYTESTR_2 = "\x00\x00\x00\x07ssh-rsa\x00\x00\x00\x01#\x00\x00\x00\x81\x00\xd3\x8fV\xea\x07\x85\xa6k%\x8d<\x1f\xbc\x8dT\x98\xa5\x96$\xf3E#\xbe>\xbc\xd2\x93\x93\x87f\xceD\x18\xdb \x0c\xb3\xa1a\x96\xf8e#\xcc\xacS\x8a#\xefVlE\x83\x1epv\xc1o\x17M\xef\xdf\x89DUXL\xa6\x8b\xaa<\x06\x10\xd7\x93w\xec\xaf\xe2\xaf\x95\xd8\xfb\xd9\xbfw\xcb\x9f0)#y{\x10\x90\xaa\x85l\tPru\x8c\t\x19\xce\xa0\xf1\xd2\xdc\x8e/\x8b\xa8f\x9c0\xdey\x84\xd2F\xf7\xcbmm\x1f\x87"  # noqa
TEST_KEY_BYTESTR_3 = "\x00\x00\x00\x07ssh-rsa\x00\x00\x00\x01#\x00\x00\x00\x00ӏV\x07k%<\x1fT$E#>ғfD\x18 \x0cae#̬S#VlE\x1epvo\x17M߉DUXL<\x06\x10דw\u2bd5ٿw˟0)#y{\x10l\tPru\t\x19Π\u070e/f0yFmm\x1f"  # noqa


class KeyTest(unittest.TestCase):
    def setUp(self):
        pass

    def tearDown(self):
        pass

    def assert_keyfile_is_encrypted(self, keyfile):
        """
        A quick check that filename looks like an encrypted key.
        """
        with open(keyfile, "r") as fh:
            self.assertEqual(
                fh.readline()[:-1], "-----BEGIN RSA PRIVATE KEY-----"
            )
            self.assertEqual(fh.readline()[:-1], "Proc-Type: 4,ENCRYPTED")
            self.assertEqual(fh.readline()[0:10], "DEK-Info: ")

    def test_generate_key_bytes(self):
        key = util.generate_key_bytes(md5, x1234, "happy birthday", 30)
        exp = b"\x61\xE1\xF2\x72\xF4\xC1\xC4\x56\x15\x86\xBD\x32\x24\x98\xC0\xE9\x24\x67\x27\x80\xF4\x7B\xB3\x7D\xDA\x7D\x54\x01\x9E\x64"  # noqa
        self.assertEqual(exp, key)

    def test_load_rsa(self):
        key = RSAKey.from_private_key_file(_support("test_rsa.key"))
        self.assertEqual("ssh-rsa", key.get_name())
        exp_rsa = b(FINGER_RSA.split()[1].replace(":", ""))
        my_rsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_rsa, my_rsa)
        self.assertEqual(PUB_RSA.split()[1], key.get_base64())
        self.assertEqual(1024, key.get_bits())

        s = StringIO()
        key.write_private_key(s)
        self.assertEqual(RSA_PRIVATE_OUT, s.getvalue())
        s.seek(0)
        key2 = RSAKey.from_private_key(s)
        self.assertEqual(key, key2)

    def test_load_rsa_transmutes_crypto_exceptions(self):
        # TODO: nix unittest for pytest
        for exception in (TypeError("onoz"), UnsupportedAlgorithm("oops")):
            with patch(
                "paramiko.rsakey.serialization.load_der_private_key"
            ) as loader:
                loader.side_effect = exception
                with pytest.raises(SSHException, match=str(exception)):
                    RSAKey.from_private_key_file(_support("test_rsa.key"))

    def test_load_rsa_password(self):
        key = RSAKey.from_private_key_file(
            _support("test_rsa_password.key"), "television"
        )
        self.assertEqual("ssh-rsa", key.get_name())
        exp_rsa = b(FINGER_RSA.split()[1].replace(":", ""))
        my_rsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_rsa, my_rsa)
        self.assertEqual(PUB_RSA.split()[1], key.get_base64())
        self.assertEqual(1024, key.get_bits())

    def test_load_dss(self):
        key = DSSKey.from_private_key_file(_support("test_dss.key"))
        self.assertEqual("ssh-dss", key.get_name())
        exp_dss = b(FINGER_DSS.split()[1].replace(":", ""))
        my_dss = hexlify(key.get_fingerprint())
        self.assertEqual(exp_dss, my_dss)
        self.assertEqual(PUB_DSS.split()[1], key.get_base64())
        self.assertEqual(1024, key.get_bits())

        s = StringIO()
        key.write_private_key(s)
        self.assertEqual(DSS_PRIVATE_OUT, s.getvalue())
        s.seek(0)
        key2 = DSSKey.from_private_key(s)
        self.assertEqual(key, key2)

    def test_load_dss_password(self):
        key = DSSKey.from_private_key_file(
            _support("test_dss_password.key"), "television"
        )
        self.assertEqual("ssh-dss", key.get_name())
        exp_dss = b(FINGER_DSS.split()[1].replace(":", ""))
        my_dss = hexlify(key.get_fingerprint())
        self.assertEqual(exp_dss, my_dss)
        self.assertEqual(PUB_DSS.split()[1], key.get_base64())
        self.assertEqual(1024, key.get_bits())

    def test_compare_rsa(self):
        # verify that the private & public keys compare equal
        key = RSAKey.from_private_key_file(_support("test_rsa.key"))
        self.assertEqual(key, key)
        pub = RSAKey(data=key.asbytes())
        self.assertTrue(key.can_sign())
        self.assertTrue(not pub.can_sign())
        self.assertEqual(key, pub)

    def test_compare_dss(self):
        # verify that the private & public keys compare equal
        key = DSSKey.from_private_key_file(_support("test_dss.key"))
        self.assertEqual(key, key)
        pub = DSSKey(data=key.asbytes())
        self.assertTrue(key.can_sign())
        self.assertTrue(not pub.can_sign())
        self.assertEqual(key, pub)

    def _sign_and_verify_rsa(self, algorithm, saved_sig):
        key = RSAKey.from_private_key_file(_support("test_rsa.key"))
        msg = key.sign_ssh_data(b"ice weasels", algorithm)
        assert isinstance(msg, Message)
        msg.rewind()
        assert msg.get_text() == algorithm
        expected = bytes().join(
            [byte_chr(int(x, 16)) for x in saved_sig.split(":")]
        )
        assert msg.get_binary() == expected
        msg.rewind()
        pub = RSAKey(data=key.asbytes())
        self.assertTrue(pub.verify_ssh_sig(b"ice weasels", msg))

    def test_sign_and_verify_ssh_rsa(self):
        self._sign_and_verify_rsa("ssh-rsa", SIGNED_RSA)

    def test_sign_and_verify_rsa_sha2_512(self):
        self._sign_and_verify_rsa("rsa-sha2-512", SIGNED_RSA_512)

    def test_sign_and_verify_rsa_sha2_256(self):
        self._sign_and_verify_rsa("rsa-sha2-256", SIGNED_RSA_256)

    def test_sign_dss(self):
        # verify that the dss private key can sign and verify
        key = DSSKey.from_private_key_file(_support("test_dss.key"))
        msg = key.sign_ssh_data(b"ice weasels")
        self.assertTrue(type(msg) is Message)
        msg.rewind()
        self.assertEqual("ssh-dss", msg.get_text())
        # can't do the same test as we do for RSA, because DSS signatures
        # are usually different each time.  but we can test verification
        # anyway so it's ok.
        self.assertEqual(40, len(msg.get_binary()))
        msg.rewind()
        pub = DSSKey(data=key.asbytes())
        self.assertTrue(pub.verify_ssh_sig(b"ice weasels", msg))

    def test_generate_rsa(self):
        key = RSAKey.generate(1024)
        msg = key.sign_ssh_data(b"jerri blank")
        msg.rewind()
        self.assertTrue(key.verify_ssh_sig(b"jerri blank", msg))

    def test_generate_dss(self):
        key = DSSKey.generate(1024)
        msg = key.sign_ssh_data(b"jerri blank")
        msg.rewind()
        self.assertTrue(key.verify_ssh_sig(b"jerri blank", msg))

    def test_generate_ecdsa(self):
        key = ECDSAKey.generate()
        msg = key.sign_ssh_data(b"jerri blank")
        msg.rewind()
        self.assertTrue(key.verify_ssh_sig(b"jerri blank", msg))
        self.assertEqual(key.get_bits(), 256)
        self.assertEqual(key.get_name(), "ecdsa-sha2-nistp256")

        key = ECDSAKey.generate(bits=256)
        msg = key.sign_ssh_data(b"jerri blank")
        msg.rewind()
        self.assertTrue(key.verify_ssh_sig(b"jerri blank", msg))
        self.assertEqual(key.get_bits(), 256)
        self.assertEqual(key.get_name(), "ecdsa-sha2-nistp256")

        key = ECDSAKey.generate(bits=384)
        msg = key.sign_ssh_data(b"jerri blank")
        msg.rewind()
        self.assertTrue(key.verify_ssh_sig(b"jerri blank", msg))
        self.assertEqual(key.get_bits(), 384)
        self.assertEqual(key.get_name(), "ecdsa-sha2-nistp384")

        key = ECDSAKey.generate(bits=521)
        msg = key.sign_ssh_data(b"jerri blank")
        msg.rewind()
        self.assertTrue(key.verify_ssh_sig(b"jerri blank", msg))
        self.assertEqual(key.get_bits(), 521)
        self.assertEqual(key.get_name(), "ecdsa-sha2-nistp521")

    def test_load_ecdsa_256(self):
        key = ECDSAKey.from_private_key_file(_support("test_ecdsa_256.key"))
        self.assertEqual("ecdsa-sha2-nistp256", key.get_name())
        exp_ecdsa = b(FINGER_ECDSA_256.split()[1].replace(":", ""))
        my_ecdsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_ecdsa, my_ecdsa)
        self.assertEqual(PUB_ECDSA_256.split()[1], key.get_base64())
        self.assertEqual(256, key.get_bits())

        s = StringIO()
        key.write_private_key(s)
        self.assertEqual(ECDSA_PRIVATE_OUT_256, s.getvalue())
        s.seek(0)
        key2 = ECDSAKey.from_private_key(s)
        self.assertEqual(key, key2)

    def test_load_ecdsa_password_256(self):
        key = ECDSAKey.from_private_key_file(
            _support("test_ecdsa_password_256.key"), b"television"
        )
        self.assertEqual("ecdsa-sha2-nistp256", key.get_name())
        exp_ecdsa = b(FINGER_ECDSA_256.split()[1].replace(":", ""))
        my_ecdsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_ecdsa, my_ecdsa)
        self.assertEqual(PUB_ECDSA_256.split()[1], key.get_base64())
        self.assertEqual(256, key.get_bits())

    def test_compare_ecdsa_256(self):
        # verify that the private & public keys compare equal
        key = ECDSAKey.from_private_key_file(_support("test_ecdsa_256.key"))
        self.assertEqual(key, key)
        pub = ECDSAKey(data=key.asbytes())
        self.assertTrue(key.can_sign())
        self.assertTrue(not pub.can_sign())
        self.assertEqual(key, pub)

    def test_sign_ecdsa_256(self):
        # verify that the rsa private key can sign and verify
        key = ECDSAKey.from_private_key_file(_support("test_ecdsa_256.key"))
        msg = key.sign_ssh_data(b"ice weasels")
        self.assertTrue(type(msg) is Message)
        msg.rewind()
        self.assertEqual("ecdsa-sha2-nistp256", msg.get_text())
        # ECDSA signatures, like DSS signatures, tend to be different
        # each time, so we can't compare against a "known correct"
        # signature.
        # Even the length of the signature can change.

        msg.rewind()
        pub = ECDSAKey(data=key.asbytes())
        self.assertTrue(pub.verify_ssh_sig(b"ice weasels", msg))

    def test_load_ecdsa_384(self):
        key = ECDSAKey.from_private_key_file(_support("test_ecdsa_384.key"))
        self.assertEqual("ecdsa-sha2-nistp384", key.get_name())
        exp_ecdsa = b(FINGER_ECDSA_384.split()[1].replace(":", ""))
        my_ecdsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_ecdsa, my_ecdsa)
        self.assertEqual(PUB_ECDSA_384.split()[1], key.get_base64())
        self.assertEqual(384, key.get_bits())

        s = StringIO()
        key.write_private_key(s)
        self.assertEqual(ECDSA_PRIVATE_OUT_384, s.getvalue())
        s.seek(0)
        key2 = ECDSAKey.from_private_key(s)
        self.assertEqual(key, key2)

    def test_load_ecdsa_password_384(self):
        key = ECDSAKey.from_private_key_file(
            _support("test_ecdsa_password_384.key"), b"television"
        )
        self.assertEqual("ecdsa-sha2-nistp384", key.get_name())
        exp_ecdsa = b(FINGER_ECDSA_384.split()[1].replace(":", ""))
        my_ecdsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_ecdsa, my_ecdsa)
        self.assertEqual(PUB_ECDSA_384.split()[1], key.get_base64())
        self.assertEqual(384, key.get_bits())

    def test_load_ecdsa_transmutes_crypto_exceptions(self):
        path = _support("test_ecdsa_256.key")
        # TODO: nix unittest for pytest
        for exception in (TypeError("onoz"), UnsupportedAlgorithm("oops")):
            with patch(
                "paramiko.ecdsakey.serialization.load_der_private_key"
            ) as loader:
                loader.side_effect = exception
                with pytest.raises(SSHException, match=str(exception)):
                    ECDSAKey.from_private_key_file(path)

    def test_compare_ecdsa_384(self):
        # verify that the private & public keys compare equal
        key = ECDSAKey.from_private_key_file(_support("test_ecdsa_384.key"))
        self.assertEqual(key, key)
        pub = ECDSAKey(data=key.asbytes())
        self.assertTrue(key.can_sign())
        self.assertTrue(not pub.can_sign())
        self.assertEqual(key, pub)

    def test_sign_ecdsa_384(self):
        # verify that the rsa private key can sign and verify
        key = ECDSAKey.from_private_key_file(_support("test_ecdsa_384.key"))
        msg = key.sign_ssh_data(b"ice weasels")
        self.assertTrue(type(msg) is Message)
        msg.rewind()
        self.assertEqual("ecdsa-sha2-nistp384", msg.get_text())
        # ECDSA signatures, like DSS signatures, tend to be different
        # each time, so we can't compare against a "known correct"
        # signature.
        # Even the length of the signature can change.

        msg.rewind()
        pub = ECDSAKey(data=key.asbytes())
        self.assertTrue(pub.verify_ssh_sig(b"ice weasels", msg))

    def test_load_ecdsa_521(self):
        key = ECDSAKey.from_private_key_file(_support("test_ecdsa_521.key"))
        self.assertEqual("ecdsa-sha2-nistp521", key.get_name())
        exp_ecdsa = b(FINGER_ECDSA_521.split()[1].replace(":", ""))
        my_ecdsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_ecdsa, my_ecdsa)
        self.assertEqual(PUB_ECDSA_521.split()[1], key.get_base64())
        self.assertEqual(521, key.get_bits())

        s = StringIO()
        key.write_private_key(s)
        # Different versions of OpenSSL (SSLeay versions 0x1000100f and
        # 0x1000207f for instance) use different apparently valid (as far as
        # ssh-keygen is concerned) padding. So we can't check the actual value
        # of the pem encoded key.
        s.seek(0)
        key2 = ECDSAKey.from_private_key(s)
        self.assertEqual(key, key2)

    def test_load_ecdsa_password_521(self):
        key = ECDSAKey.from_private_key_file(
            _support("test_ecdsa_password_521.key"), b"television"
        )
        self.assertEqual("ecdsa-sha2-nistp521", key.get_name())
        exp_ecdsa = b(FINGER_ECDSA_521.split()[1].replace(":", ""))
        my_ecdsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_ecdsa, my_ecdsa)
        self.assertEqual(PUB_ECDSA_521.split()[1], key.get_base64())
        self.assertEqual(521, key.get_bits())

    def test_compare_ecdsa_521(self):
        # verify that the private & public keys compare equal
        key = ECDSAKey.from_private_key_file(_support("test_ecdsa_521.key"))
        self.assertEqual(key, key)
        pub = ECDSAKey(data=key.asbytes())
        self.assertTrue(key.can_sign())
        self.assertTrue(not pub.can_sign())
        self.assertEqual(key, pub)

    def test_sign_ecdsa_521(self):
        # verify that the rsa private key can sign and verify
        key = ECDSAKey.from_private_key_file(_support("test_ecdsa_521.key"))
        msg = key.sign_ssh_data(b"ice weasels")
        self.assertTrue(type(msg) is Message)
        msg.rewind()
        self.assertEqual("ecdsa-sha2-nistp521", msg.get_text())
        # ECDSA signatures, like DSS signatures, tend to be different
        # each time, so we can't compare against a "known correct"
        # signature.
        # Even the length of the signature can change.

        msg.rewind()
        pub = ECDSAKey(data=key.asbytes())
        self.assertTrue(pub.verify_ssh_sig(b"ice weasels", msg))

    def test_load_openssh_format_RSA_key(self):
        key = RSAKey.from_private_key_file(
            _support("test_rsa_openssh.key"), b"television"
        )
        self.assertEqual("ssh-rsa", key.get_name())
        self.assertEqual(PUB_RSA_2K_OPENSSH.split()[1], key.get_base64())
        self.assertEqual(2048, key.get_bits())
        exp_rsa = b(FINGER_RSA_2K_OPENSSH.split()[1].replace(":", ""))
        my_rsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_rsa, my_rsa)

    def test_loading_openssh_RSA_keys_uses_correct_p_q(self):
        # Re #1723 - not the most elegant test but given how deep it is...
        with patch(
            "paramiko.rsakey.rsa.RSAPrivateNumbers", wraps=RSAPrivateNumbers
        ) as spy:
            # Load key
            RSAKey.from_private_key_file(
                _support("test_rsa_openssh.key"), b"television"
            )
            # Ensure spy saw the correct P and Q values as derived from
            # hardcoded test private key value
            kwargs = spy.call_args[1]
            assert kwargs["p"] == RSA_2K_OPENSSH_P
            assert kwargs["q"] == RSA_2K_OPENSSH_Q

    def test_load_openssh_format_DSS_key(self):
        key = DSSKey.from_private_key_file(
            _support("test_dss_openssh.key"), b"television"
        )
        self.assertEqual("ssh-dss", key.get_name())
        self.assertEqual(PUB_DSS_1K_OPENSSH.split()[1], key.get_base64())
        self.assertEqual(1024, key.get_bits())
        exp_rsa = b(FINGER_DSS_1K_OPENSSH.split()[1].replace(":", ""))
        my_rsa = hexlify(key.get_fingerprint())
        self.assertEqual(exp_rsa, my_rsa)

    def test_load_openssh_format_EC_key(self):
        key = ECDSAKey.from_private_key_file(
            _support("test_ecdsa_384_openssh.key"), b"television"
        )
        self.assertEqual("ecdsa-sha2-nistp384", key.get_name())
        self.assertEqual(PUB_EC_384_OPENSSH.split()[1], key.get_base64())
        self.assertEqual(384, key.get_bits())
        exp_fp = b(FINGER_EC_384_OPENSSH.split()[1].replace(":", ""))
        my_fp = hexlify(key.get_fingerprint())
        self.assertEqual(exp_fp, my_fp)

    def test_salt_size(self):
        # Read an existing encrypted private key
        file_ = _support("test_rsa_password.key")
        password = "television"
        newfile = file_ + ".new"
        newpassword = "radio"
        key = RSAKey(filename=file_, password=password)
        # Write out a newly re-encrypted copy with a new password.
        # When the bug under test exists, this will ValueError.
        try:
            key.write_private_key_file(newfile, password=newpassword)
            self.assert_keyfile_is_encrypted(newfile)
            # Verify the inner key data still matches (when no ValueError)
            key2 = RSAKey(filename=newfile, password=newpassword)
            self.assertEqual(key, key2)
        finally:
            os.remove(newfile)

    def test_load_openssh_format_RSA_nopad(self):
        # check just not exploding with 'Invalid key'
        RSAKey.from_private_key_file(_support("test_rsa_openssh_nopad.key"))

    def test_stringification(self):
        key = RSAKey.from_private_key_file(_support("test_rsa.key"))
        comparable = TEST_KEY_BYTESTR_2 if PY2 else TEST_KEY_BYTESTR_3
        self.assertEqual(str(key), comparable)

    def test_ed25519(self):
        key1 = Ed25519Key.from_private_key_file(_support("test_ed25519.key"))
        key2 = Ed25519Key.from_private_key_file(
            _support("test_ed25519_password.key"), b"abc123"
        )
        self.assertNotEqual(key1.asbytes(), key2.asbytes())

    def test_ed25519_funky_padding(self):
        # Proves #1306 by just not exploding with 'Invalid key'.
        Ed25519Key.from_private_key_file(
            _support("test_ed25519-funky-padding.key")
        )

    def test_ed25519_funky_padding_with_passphrase(self):
        # Proves #1306 by just not exploding with 'Invalid key'.
        Ed25519Key.from_private_key_file(
            _support("test_ed25519-funky-padding_password.key"), b"asdf"
        )

    def test_ed25519_compare(self):
        # verify that the private & public keys compare equal
        key = Ed25519Key.from_private_key_file(_support("test_ed25519.key"))
        self.assertEqual(key, key)
        pub = Ed25519Key(data=key.asbytes())
        self.assertTrue(key.can_sign())
        self.assertTrue(not pub.can_sign())
        self.assertEqual(key, pub)

    # No point testing on systems that never exhibited the bug originally
    @pytest.mark.skipif(
        not is_low_entropy(), reason="Not a low-entropy system"
    )
    def test_ed25519_32bit_collision(self):
        # Re: 2021.10.19 security report email: two different private keys
        # which Paramiko compared as equal on low-entropy platforms.
        original = Ed25519Key.from_private_key_file(
            _support("badhash_key1.ed25519.key")
        )
        generated = Ed25519Key.from_private_key_file(
            _support("badhash_key2.ed25519.key")
        )
        assert original != generated

    def keys(self):
        for key_class, filename in [
            (RSAKey, "test_rsa.key"),
            (DSSKey, "test_dss.key"),
            (ECDSAKey, "test_ecdsa_256.key"),
            (Ed25519Key, "test_ed25519.key"),
        ]:
            key1 = key_class.from_private_key_file(_support(filename))
            key2 = key_class.from_private_key_file(_support(filename))
            yield key1, key2

    def test_keys_are_comparable(self):
        for key1, key2 in self.keys():
            assert key1 == key2

    def test_keys_are_hashable(self):
        # NOTE: this isn't a great test due to hashseed randomization under
        # Python 3 preventing use of static values, but it does still prove
        # that __hash__ is implemented/doesn't explode & works across instances
        for key1, key2 in self.keys():
            assert hash(key1) == hash(key2)

    def test_ed25519_nonbytes_password(self):
        # https://github.com/paramiko/paramiko/issues/1039
        Ed25519Key.from_private_key_file(
            _support("test_ed25519_password.key"),
            # NOTE: not a bytes. Amusingly, the test above for same key DOES
            # explicitly cast to bytes...code smell!
            "abc123",
        )
        # No exception -> it's good. Meh.

    def test_ed25519_load_from_file_obj(self):
        with open(_support("test_ed25519.key")) as pkey_fileobj:
            key = Ed25519Key.from_private_key(pkey_fileobj)
        self.assertEqual(key, key)
        self.assertTrue(key.can_sign())

    def test_keyfile_is_actually_encrypted(self):
        # Read an existing encrypted private key
        file_ = _support("test_rsa_password.key")
        password = "television"
        newfile = file_ + ".new"
        newpassword = "radio"
        key = RSAKey(filename=file_, password=password)
        # Write out a newly re-encrypted copy with a new password.
        # When the bug under test exists, this will ValueError.
        try:
            key.write_private_key_file(newfile, password=newpassword)
            self.assert_keyfile_is_encrypted(newfile)
        finally:
            os.remove(newfile)

    def test_certificates(self):
        # NOTE: we also test 'live' use of cert auth for all key types in
        # test_client.py; this and nearby cert tests are more about the gritty
        # details.
        # PKey.load_certificate
        key_path = _support(os.path.join("cert_support", "test_rsa.key"))
        key = RSAKey.from_private_key_file(key_path)
        self.assertTrue(key.public_blob is None)
        cert_path = _support(
            os.path.join("cert_support", "test_rsa.key-cert.pub")
        )
        key.load_certificate(cert_path)
        self.assertTrue(key.public_blob is not None)
        self.assertEqual(
            key.public_blob.key_type, "ssh-rsa-cert-v01@openssh.com"
        )
        self.assertEqual(key.public_blob.comment, "test_rsa.key.pub")
        # Delve into blob contents, for test purposes
        msg = Message(key.public_blob.key_blob)
        self.assertEqual(msg.get_text(), "ssh-rsa-cert-v01@openssh.com")
        msg.get_string()
        e = msg.get_mpint()
        n = msg.get_mpint()
        self.assertEqual(e, key.public_numbers.e)
        self.assertEqual(n, key.public_numbers.n)
        # Serial number
        self.assertEqual(msg.get_int64(), 1234)

        # Prevented from loading certificate that doesn't match
        key_path = _support(os.path.join("cert_support", "test_ed25519.key"))
        key1 = Ed25519Key.from_private_key_file(key_path)
        self.assertRaises(
            ValueError,
            key1.load_certificate,
            _support("test_rsa.key-cert.pub"),
        )