1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
|
/*
* Copyright (c) 2007, Cameron Rich
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the axTLS project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @defgroup bigint_api Big Integer API
* @brief The bigint implementation as used by the axTLS project.
*
* The bigint library is for RSA encryption/decryption as well as signing.
* This code tries to minimise use of malloc/free by maintaining a small
* cache. A bigint context may maintain state by being made "permanent".
* It be be later released with a bi_depermanent() and bi_free() call.
*
* It supports the following reduction techniques:
* - Classical
* - Barrett
* - Montgomery
*
* It also implements the following:
* - Karatsuba multiplication
* - Squaring
* - Sliding window exponentiation
* - Chinese Remainder Theorem (implemented in rsa.c).
*
* All the algorithms used are pretty standard, and designed for different
* data bus sizes. Negative numbers are not dealt with at all, so a subtraction
* may need to be tested for negativity.
*
* This library steals some ideas from Jef Poskanzer
* <http://cs.marlboro.edu/term/cs-fall02/algorithms/crypto/RSA/bigint>
* and GMP <http://www.swox.com/gmp>. It gets most of its implementation
* detail from "The Handbook of Applied Cryptography"
* <http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf>
* @{
*/
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "bigint.h"
#define V1 v->comps[v->size-1] /**< v1 for division */
#define V2 v->comps[v->size-2] /**< v2 for division */
#define U(j) tmp_u->comps[tmp_u->size-j-1] /**< uj for division */
#define Q(j) quotient->comps[quotient->size-j-1] /**< qj for division */
static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bi, comp i);
static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom);
static bigint *alloc(BI_CTX *ctx, int size);
static bigint *trim(bigint *bi);
static void more_comps(bigint *bi, int n);
#if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \
defined(CONFIG_BIGINT_MONTGOMERY)
static bigint *comp_right_shift(bigint *biR, int num_shifts);
static bigint *comp_left_shift(bigint *biR, int num_shifts);
#endif
#ifdef CONFIG_BIGINT_CHECK_ON
static void check(const bigint *bi);
#else
#define check(A) /**< disappears in normal production mode */
#endif
/**
* @brief Start a new bigint context.
* @return A bigint context.
*/
BI_CTX *bi_initialize(void)
{
/* calloc() sets everything to zero */
BI_CTX *ctx = (BI_CTX *)calloc(1, sizeof(BI_CTX));
/* the radix */
ctx->bi_radix = alloc(ctx, 2);
ctx->bi_radix->comps[0] = 0;
ctx->bi_radix->comps[1] = 1;
bi_permanent(ctx->bi_radix);
return ctx;
}
/**
* @brief Close the bigint context and free any resources.
*
* Free up any used memory - a check is done if all objects were not
* properly freed.
* @param ctx [in] The bigint session context.
*/
void bi_terminate(BI_CTX *ctx)
{
bi_depermanent(ctx->bi_radix);
bi_free(ctx, ctx->bi_radix);
if (ctx->active_count != 0)
{
#ifdef CONFIG_SSL_FULL_MODE
printf("bi_terminate: there were %d un-freed bigints\n",
ctx->active_count);
#endif
abort();
}
bi_clear_cache(ctx);
free(ctx);
}
/**
*@brief Clear the memory cache.
*/
void bi_clear_cache(BI_CTX *ctx)
{
bigint *p, *pn;
if (ctx->free_list == NULL)
return;
for (p = ctx->free_list; p != NULL; p = pn)
{
pn = p->next;
free(p->comps);
free(p);
}
ctx->free_count = 0;
ctx->free_list = NULL;
}
/**
* @brief Increment the number of references to this object.
* It does not do a full copy.
* @param bi [in] The bigint to copy.
* @return A reference to the same bigint.
*/
bigint *bi_copy(bigint *bi)
{
check(bi);
if (bi->refs != PERMANENT)
bi->refs++;
return bi;
}
/**
* @brief Simply make a bigint object "unfreeable" if bi_free() is called on it.
*
* For this object to be freed, bi_depermanent() must be called.
* @param bi [in] The bigint to be made permanent.
*/
void bi_permanent(bigint *bi)
{
check(bi);
if (bi->refs != 1)
{
#ifdef CONFIG_SSL_FULL_MODE
printf("bi_permanent: refs was not 1\n");
#endif
abort();
}
bi->refs = PERMANENT;
}
/**
* @brief Take a permanent object and make it eligible for freedom.
* @param bi [in] The bigint to be made back to temporary.
*/
void bi_depermanent(bigint *bi)
{
check(bi);
if (bi->refs != PERMANENT)
{
#ifdef CONFIG_SSL_FULL_MODE
printf("bi_depermanent: bigint was not permanent\n");
#endif
abort();
}
bi->refs = 1;
}
/**
* @brief Free a bigint object so it can be used again.
*
* The memory itself it not actually freed, just tagged as being available
* @param ctx [in] The bigint session context.
* @param bi [in] The bigint to be freed.
*/
void bi_free(BI_CTX *ctx, bigint *bi)
{
check(bi);
if (bi->refs == PERMANENT)
{
return;
}
if (--bi->refs > 0)
{
return;
}
bi->next = ctx->free_list;
ctx->free_list = bi;
ctx->free_count++;
if (--ctx->active_count < 0)
{
#ifdef CONFIG_SSL_FULL_MODE
printf("bi_free: active_count went negative "
"- double-freed bigint?\n");
#endif
abort();
}
}
/**
* @brief Convert an (unsigned) integer into a bigint.
* @param ctx [in] The bigint session context.
* @param i [in] The (unsigned) integer to be converted.
*
*/
bigint *int_to_bi(BI_CTX *ctx, comp i)
{
bigint *biR = alloc(ctx, 1);
biR->comps[0] = i;
return biR;
}
/**
* @brief Do a full copy of the bigint object.
* @param ctx [in] The bigint session context.
* @param bi [in] The bigint object to be copied.
*/
bigint *bi_clone(BI_CTX *ctx, const bigint *bi)
{
bigint *biR = alloc(ctx, bi->size);
check(bi);
memcpy(biR->comps, bi->comps, bi->size*COMP_BYTE_SIZE);
return biR;
}
/**
* @brief Perform an addition operation between two bigints.
* @param ctx [in] The bigint session context.
* @param bia [in] A bigint.
* @param bib [in] Another bigint.
* @return The result of the addition.
*/
bigint *bi_add(BI_CTX *ctx, bigint *bia, bigint *bib)
{
int n;
comp carry = 0;
comp *pa, *pb;
check(bia);
check(bib);
n = max(bia->size, bib->size);
more_comps(bia, n+1);
more_comps(bib, n);
pa = bia->comps;
pb = bib->comps;
do
{
comp sl, rl, cy1;
sl = *pa + *pb++;
rl = sl + carry;
cy1 = sl < *pa;
carry = cy1 | (rl < sl);
*pa++ = rl;
} while (--n != 0);
*pa = carry; /* do overflow */
bi_free(ctx, bib);
return trim(bia);
}
/**
* @brief Perform a subtraction operation between two bigints.
* @param ctx [in] The bigint session context.
* @param bia [in] A bigint.
* @param bib [in] Another bigint.
* @param is_negative [out] If defined, indicates that the result was negative.
* is_negative may be null.
* @return The result of the subtraction. The result is always positive.
*/
bigint *bi_subtract(BI_CTX *ctx,
bigint *bia, bigint *bib, int *is_negative)
{
int n = bia->size;
comp *pa, *pb, carry = 0;
check(bia);
check(bib);
more_comps(bib, n);
pa = bia->comps;
pb = bib->comps;
do
{
comp sl, rl, cy1;
sl = *pa - *pb++;
rl = sl - carry;
cy1 = sl > *pa;
carry = cy1 | (rl > sl);
*pa++ = rl;
} while (--n != 0);
if (is_negative) /* indicate a negative result */
{
*is_negative = carry;
}
bi_free(ctx, trim(bib)); /* put bib back to the way it was */
return trim(bia);
}
/**
* Perform a multiply between a bigint an an (unsigned) integer
*/
static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bia, comp b)
{
int j = 0, n = bia->size;
bigint *biR = alloc(ctx, n + 1);
comp carry = 0;
comp *r = biR->comps;
comp *a = bia->comps;
check(bia);
/* clear things to start with */
memset(r, 0, ((n+1)*COMP_BYTE_SIZE));
do
{
long_comp tmp = *r + (long_comp)a[j]*b + carry;
*r++ = (comp)tmp; /* downsize */
carry = (comp)(tmp >> COMP_BIT_SIZE);
} while (++j < n);
*r = carry;
bi_free(ctx, bia);
return trim(biR);
}
/**
* @brief Does both division and modulo calculations.
*
* Used extensively when doing classical reduction.
* @param ctx [in] The bigint session context.
* @param u [in] A bigint which is the numerator.
* @param v [in] Either the denominator or the modulus depending on the mode.
* @param is_mod [n] Determines if this is a normal division (0) or a reduction
* (1).
* @return The result of the division/reduction.
*/
bigint *bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod)
{
int n = v->size, m = u->size-n;
int j = 0, orig_u_size = u->size;
uint8_t mod_offset = ctx->mod_offset;
comp d;
bigint *quotient, *tmp_u;
comp q_dash;
check(u);
check(v);
/* if doing reduction and we are < mod, then return mod */
if (is_mod && bi_compare(v, u) > 0)
{
bi_free(ctx, v);
return u;
}
quotient = alloc(ctx, m+1);
tmp_u = alloc(ctx, n+1);
v = trim(v); /* make sure we have no leading 0's */
d = (comp)((long_comp)COMP_RADIX/(V1+1));
/* clear things to start with */
memset(quotient->comps, 0, ((quotient->size)*COMP_BYTE_SIZE));
/* normalise */
if (d > 1)
{
u = bi_int_multiply(ctx, u, d);
if (is_mod)
{
v = ctx->bi_normalised_mod[mod_offset];
}
else
{
v = bi_int_multiply(ctx, v, d);
}
}
if (orig_u_size == u->size) /* new digit position u0 */
{
more_comps(u, orig_u_size + 1);
}
do
{
/* get a temporary short version of u */
memcpy(tmp_u->comps, &u->comps[u->size-n-1-j], (n+1)*COMP_BYTE_SIZE);
/* calculate q' */
if (U(0) == V1)
{
q_dash = COMP_RADIX-1;
}
else
{
q_dash = (comp)(((long_comp)U(0)*COMP_RADIX + U(1))/V1);
}
if (v->size > 1 && V2)
{
/* we are implementing the following:
if (V2*q_dash > (((U(0)*COMP_RADIX + U(1) -
q_dash*V1)*COMP_RADIX) + U(2))) ... */
comp inner = (comp)((long_comp)COMP_RADIX*U(0) + U(1) -
(long_comp)q_dash*V1);
if ((long_comp)V2*q_dash > (long_comp)inner*COMP_RADIX + U(2))
{
q_dash--;
}
}
/* multiply and subtract */
if (q_dash)
{
int is_negative;
tmp_u = bi_subtract(ctx, tmp_u,
bi_int_multiply(ctx, bi_copy(v), q_dash), &is_negative);
more_comps(tmp_u, n+1);
Q(j) = q_dash;
/* add back */
if (is_negative)
{
Q(j)--;
tmp_u = bi_add(ctx, tmp_u, bi_copy(v));
/* lop off the carry */
tmp_u->size--;
v->size--;
}
}
else
{
Q(j) = 0;
}
/* copy back to u */
memcpy(&u->comps[u->size-n-1-j], tmp_u->comps, (n+1)*COMP_BYTE_SIZE);
} while (++j <= m);
bi_free(ctx, tmp_u);
bi_free(ctx, v);
if (is_mod) /* get the remainder */
{
bi_free(ctx, quotient);
return bi_int_divide(ctx, trim(u), d);
}
else /* get the quotient */
{
bi_free(ctx, u);
return trim(quotient);
}
}
/*
* Perform an integer divide on a bigint.
*/
static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom)
{
int i = biR->size - 1;
long_comp r = 0;
check(biR);
do
{
r = (r<<COMP_BIT_SIZE) + biR->comps[i];
biR->comps[i] = (comp)(r / denom);
r %= denom;
} while (--i >= 0);
return trim(biR);
}
#ifdef CONFIG_BIGINT_MONTGOMERY
/**
* There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
* where B^-1(B-1) mod N=1. Actually, only the least significant part of
* N' is needed, hence the definition N0'=N' mod b. We reproduce below the
* simple algorithm from an article by Dusse and Kaliski to efficiently
* find N0' from N0 and b */
static comp modular_inverse(bigint *bim)
{
int i;
comp t = 1;
comp two_2_i_minus_1 = 2; /* 2^(i-1) */
long_comp two_2_i = 4; /* 2^i */
comp N = bim->comps[0];
for (i = 2; i <= COMP_BIT_SIZE; i++)
{
if ((long_comp)N*t%two_2_i >= two_2_i_minus_1)
{
t += two_2_i_minus_1;
}
two_2_i_minus_1 <<= 1;
two_2_i <<= 1;
}
return (comp)(COMP_RADIX-t);
}
#endif
#if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \
defined(CONFIG_BIGINT_MONTGOMERY)
/**
* Take each component and shift down (in terms of components)
*/
static bigint *comp_right_shift(bigint *biR, int num_shifts)
{
int i = biR->size-num_shifts;
comp *x = biR->comps;
comp *y = &biR->comps[num_shifts];
check(biR);
if (i <= 0) /* have we completely right shifted? */
{
biR->comps[0] = 0; /* return 0 */
biR->size = 1;
return biR;
}
do
{
*x++ = *y++;
} while (--i > 0);
biR->size -= num_shifts;
return biR;
}
/**
* Take each component and shift it up (in terms of components)
*/
static bigint *comp_left_shift(bigint *biR, int num_shifts)
{
int i = biR->size-1;
comp *x, *y;
check(biR);
if (num_shifts <= 0)
{
return biR;
}
more_comps(biR, biR->size + num_shifts);
x = &biR->comps[i+num_shifts];
y = &biR->comps[i];
do
{
*x-- = *y--;
} while (i--);
memset(biR->comps, 0, num_shifts*COMP_BYTE_SIZE); /* zero LS comps */
return biR;
}
#endif
/**
* @brief Allow a binary sequence to be imported as a bigint.
* @param ctx [in] The bigint session context.
* @param data [in] The data to be converted.
* @param size [in] The number of bytes of data.
* @return A bigint representing this data.
*/
bigint *bi_import(BI_CTX *ctx, const uint8_t *data, int size)
{
bigint *biR = alloc(ctx, (size+COMP_BYTE_SIZE-1)/COMP_BYTE_SIZE);
int i, j = 0, offset = 0;
memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE);
for (i = size-1; i >= 0; i--)
{
biR->comps[offset] += data[i] << (j*8);
if (++j == COMP_BYTE_SIZE)
{
j = 0;
offset ++;
}
}
return trim(biR);
}
#ifdef CONFIG_SSL_FULL_MODE
/**
* @brief The testharness uses this code to import text hex-streams and
* convert them into bigints.
* @param ctx [in] The bigint session context.
* @param data [in] A string consisting of hex characters. The characters must
* be in upper case.
* @return A bigint representing this data.
*/
bigint *bi_str_import(BI_CTX *ctx, const char *data)
{
int size = strlen(data);
bigint *biR = alloc(ctx, (size+COMP_NUM_NIBBLES-1)/COMP_NUM_NIBBLES);
int i, j = 0, offset = 0;
memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE);
for (i = size-1; i >= 0; i--)
{
int num = (data[i] <= '9') ? (data[i] - '0') : (data[i] - 'A' + 10);
biR->comps[offset] += num << (j*4);
if (++j == COMP_NUM_NIBBLES)
{
j = 0;
offset ++;
}
}
return biR;
}
void bi_print(const char *label, bigint *x)
{
int i, j;
if (x == NULL)
{
printf("%s: (null)\n", label);
return;
}
printf("%s: (size %d)\n", label, x->size);
for (i = x->size-1; i >= 0; i--)
{
for (j = COMP_NUM_NIBBLES-1; j >= 0; j--)
{
comp mask = 0x0f << (j*4);
comp num = (x->comps[i] & mask) >> (j*4);
putc((num <= 9) ? (num + '0') : (num + 'A' - 10), stdout);
}
}
printf("\n");
}
#endif
/**
* @brief Take a bigint and convert it into a byte sequence.
*
* This is useful after a decrypt operation.
* @param ctx [in] The bigint session context.
* @param x [in] The bigint to be converted.
* @param data [out] The converted data as a byte stream.
* @param size [in] The maximum size of the byte stream. Unused bytes will be
* zeroed.
*/
void bi_export(BI_CTX *ctx, bigint *x, uint8_t *data, int size)
{
int i, j, k = size-1;
check(x);
memset(data, 0, size); /* ensure all leading 0's are cleared */
for (i = 0; i < x->size; i++)
{
for (j = 0; j < COMP_BYTE_SIZE; j++)
{
comp mask = 0xff << (j*8);
int num = (x->comps[i] & mask) >> (j*8);
data[k--] = num;
if (k < 0)
{
break;
}
}
}
bi_free(ctx, x);
}
/**
* @brief Pre-calculate some of the expensive steps in reduction.
*
* This function should only be called once (normally when a session starts).
* When the session is over, bi_free_mod() should be called. bi_mod_power()
* relies on this function being called.
* @param ctx [in] The bigint session context.
* @param bim [in] The bigint modulus that will be used.
* @param mod_offset [in] There are three moduluii that can be stored - the
* standard modulus, and its two primes p and q. This offset refers to which
* modulus we are referring to.
* @see bi_free_mod(), bi_mod_power().
*/
void bi_set_mod(BI_CTX *ctx, bigint *bim, int mod_offset)
{
int k = bim->size;
comp d = (comp)((long_comp)COMP_RADIX/(bim->comps[k-1]+1));
#ifdef CONFIG_BIGINT_MONTGOMERY
bigint *R, *R2;
#endif
ctx->bi_mod[mod_offset] = bim;
bi_permanent(ctx->bi_mod[mod_offset]);
ctx->bi_normalised_mod[mod_offset] = bi_int_multiply(ctx, bim, d);
bi_permanent(ctx->bi_normalised_mod[mod_offset]);
#if defined(CONFIG_BIGINT_MONTGOMERY)
/* set montgomery variables */
R = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k-1); /* R */
R2 = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k*2-1); /* R^2 */
ctx->bi_RR_mod_m[mod_offset] = bi_mod(ctx, R2); /* R^2 mod m */
ctx->bi_R_mod_m[mod_offset] = bi_mod(ctx, R); /* R mod m */
bi_permanent(ctx->bi_RR_mod_m[mod_offset]);
bi_permanent(ctx->bi_R_mod_m[mod_offset]);
ctx->N0_dash[mod_offset] = modular_inverse(ctx->bi_mod[mod_offset]);
#elif defined (CONFIG_BIGINT_BARRETT)
ctx->bi_mu[mod_offset] =
bi_divide(ctx, comp_left_shift(
bi_clone(ctx, ctx->bi_radix), k*2-1), ctx->bi_mod[mod_offset], 0);
bi_permanent(ctx->bi_mu[mod_offset]);
#endif
}
/**
* @brief Used when cleaning various bigints at the end of a session.
* @param ctx [in] The bigint session context.
* @param mod_offset [in] The offset to use.
* @see bi_set_mod().
*/
void bi_free_mod(BI_CTX *ctx, int mod_offset)
{
bi_depermanent(ctx->bi_mod[mod_offset]);
bi_free(ctx, ctx->bi_mod[mod_offset]);
#if defined (CONFIG_BIGINT_MONTGOMERY)
bi_depermanent(ctx->bi_RR_mod_m[mod_offset]);
bi_depermanent(ctx->bi_R_mod_m[mod_offset]);
bi_free(ctx, ctx->bi_RR_mod_m[mod_offset]);
bi_free(ctx, ctx->bi_R_mod_m[mod_offset]);
#elif defined(CONFIG_BIGINT_BARRETT)
bi_depermanent(ctx->bi_mu[mod_offset]);
bi_free(ctx, ctx->bi_mu[mod_offset]);
#endif
bi_depermanent(ctx->bi_normalised_mod[mod_offset]);
bi_free(ctx, ctx->bi_normalised_mod[mod_offset]);
}
/**
* Perform a standard multiplication between two bigints.
*/
static bigint *regular_multiply(BI_CTX *ctx, bigint *bia, bigint *bib)
{
int i, j, i_plus_j;
int n = bia->size;
int t = bib->size;
bigint *biR = alloc(ctx, n + t);
comp *sr = biR->comps;
comp *sa = bia->comps;
comp *sb = bib->comps;
check(bia);
check(bib);
/* clear things to start with */
memset(biR->comps, 0, ((n+t)*COMP_BYTE_SIZE));
i = 0;
do
{
comp carry = 0;
comp b = *sb++;
i_plus_j = i;
j = 0;
do
{
long_comp tmp = sr[i_plus_j] + (long_comp)sa[j]*b + carry;
sr[i_plus_j++] = (comp)tmp; /* downsize */
carry = (comp)(tmp >> COMP_BIT_SIZE);
} while (++j < n);
sr[i_plus_j] = carry;
} while (++i < t);
bi_free(ctx, bia);
bi_free(ctx, bib);
return trim(biR);
}
#ifdef CONFIG_BIGINT_KARATSUBA
/*
* Karatsuba improves on regular multiplication due to only 3 multiplications
* being done instead of 4. The additional additions/subtractions are O(N)
* rather than O(N^2) and so for big numbers it saves on a few operations
*/
static bigint *karatsuba(BI_CTX *ctx, bigint *bia, bigint *bib, int is_square)
{
bigint *x0, *x1;
bigint *p0, *p1, *p2;
int m;
if (is_square)
{
m = (bia->size + 1)/2;
}
else
{
m = (max(bia->size, bib->size) + 1)/2;
}
x0 = bi_clone(ctx, bia);
x0->size = m;
x1 = bi_clone(ctx, bia);
comp_right_shift(x1, m);
bi_free(ctx, bia);
/* work out the 3 partial products */
if (is_square)
{
p0 = bi_square(ctx, bi_copy(x0));
p2 = bi_square(ctx, bi_copy(x1));
p1 = bi_square(ctx, bi_add(ctx, x0, x1));
}
else /* normal multiply */
{
bigint *y0, *y1;
y0 = bi_clone(ctx, bib);
y0->size = m;
y1 = bi_clone(ctx, bib);
comp_right_shift(y1, m);
bi_free(ctx, bib);
p0 = bi_multiply(ctx, bi_copy(x0), bi_copy(y0));
p2 = bi_multiply(ctx, bi_copy(x1), bi_copy(y1));
p1 = bi_multiply(ctx, bi_add(ctx, x0, x1), bi_add(ctx, y0, y1));
}
p1 = bi_subtract(ctx,
bi_subtract(ctx, p1, bi_copy(p2), NULL), bi_copy(p0), NULL);
comp_left_shift(p1, m);
comp_left_shift(p2, 2*m);
return bi_add(ctx, p1, bi_add(ctx, p0, p2));
}
#endif
/**
* @brief Perform a multiplication operation between two bigints.
* @param ctx [in] The bigint session context.
* @param bia [in] A bigint.
* @param bib [in] Another bigint.
* @return The result of the multiplication.
*/
bigint *bi_multiply(BI_CTX *ctx, bigint *bia, bigint *bib)
{
check(bia);
check(bib);
#ifdef CONFIG_BIGINT_KARATSUBA
if (min(bia->size, bib->size) < MUL_KARATSUBA_THRESH)
{
return regular_multiply(ctx, bia, bib);
}
return karatsuba(ctx, bia, bib, 0);
#else
return regular_multiply(ctx, bia, bib);
#endif
}
#ifdef CONFIG_BIGINT_SQUARE
/*
* Perform the actual square operion. It takes into account overflow.
*/
static bigint *regular_square(BI_CTX *ctx, bigint *bi)
{
int t = bi->size;
int i = 0, j;
bigint *biR = alloc(ctx, t*2);
comp *w = biR->comps;
comp *x = bi->comps;
comp carry;
memset(w, 0, biR->size*COMP_BYTE_SIZE);
do
{
long_comp tmp = w[2*i] + (long_comp)x[i]*x[i];
comp u = 0;
w[2*i] = (comp)tmp;
carry = (comp)(tmp >> COMP_BIT_SIZE);
for (j = i+1; j < t; j++)
{
long_comp xx = (long_comp)x[i]*x[j];
long_comp xx2 = 2*xx;
long_comp blob = (long_comp)w[i+j]+carry;
if (u) /* previous overflow */
{
blob += COMP_RADIX;
}
u = 0;
tmp = xx2 + blob;
/* check for overflow */
if ((COMP_MAX-xx) < xx || (COMP_MAX-xx2) < blob)
{
u = 1;
}
w[i+j] = (comp)tmp;
carry = (comp)(tmp >> COMP_BIT_SIZE);
}
w[i+t] += carry;
if (u)
{
w[i+t+1] = 1; /* add carry */
}
} while (++i < t);
bi_free(ctx, bi);
return trim(biR);
}
/**
* @brief Perform a square operation on a bigint.
* @param ctx [in] The bigint session context.
* @param bia [in] A bigint.
* @return The result of the multiplication.
*/
bigint *bi_square(BI_CTX *ctx, bigint *bia)
{
check(bia);
#ifdef CONFIG_BIGINT_KARATSUBA
if (bia->size < SQU_KARATSUBA_THRESH)
{
return regular_square(ctx, bia);
}
return karatsuba(ctx, bia, NULL, 1);
#else
return regular_square(ctx, bia);
#endif
}
#endif
/**
* @brief Compare two bigints.
* @param bia [in] A bigint.
* @param bib [in] Another bigint.
* @return -1 if smaller, 1 if larger and 0 if equal.
*/
int bi_compare(bigint *bia, bigint *bib)
{
int r, i;
check(bia);
check(bib);
if (bia->size > bib->size)
r = 1;
else if (bia->size < bib->size)
r = -1;
else
{
comp *a = bia->comps;
comp *b = bib->comps;
/* Same number of components. Compare starting from the high end
* and working down. */
r = 0;
i = bia->size - 1;
do
{
if (a[i] > b[i])
{
r = 1;
break;
}
else if (a[i] < b[i])
{
r = -1;
break;
}
} while (--i >= 0);
}
return r;
}
/*
* Allocate and zero more components. Does not consume bi.
*/
static void more_comps(bigint *bi, int n)
{
if (n > bi->max_comps)
{
bi->max_comps = max(bi->max_comps * 2, n);
bi->comps = (comp*)realloc(bi->comps, bi->max_comps * COMP_BYTE_SIZE);
}
if (n > bi->size)
{
memset(&bi->comps[bi->size], 0, (n-bi->size)*COMP_BYTE_SIZE);
}
bi->size = n;
}
/*
* Make a new empty bigint. It may just use an old one if one is available.
* Otherwise get one off the heap.
*/
static bigint *alloc(BI_CTX *ctx, int size)
{
bigint *biR;
/* Can we recycle an old bigint? */
if (ctx->free_list != NULL)
{
biR = ctx->free_list;
ctx->free_list = biR->next;
ctx->free_count--;
if (biR->refs != 0)
{
#ifdef CONFIG_SSL_FULL_MODE
printf("alloc: refs was not 0\n");
#endif
abort(); /* create a stack trace from a core dump */
}
more_comps(biR, size);
}
else
{
/* No free bigints available - create a new one. */
biR = (bigint *)malloc(sizeof(bigint));
biR->comps = (comp*)malloc(size * COMP_BYTE_SIZE);
biR->max_comps = size; /* give some space to spare */
}
biR->size = size;
biR->refs = 1;
biR->next = NULL;
ctx->active_count++;
return biR;
}
/*
* Work out the highest '1' bit in an exponent. Used when doing sliding-window
* exponentiation.
*/
static int find_max_exp_index(bigint *biexp)
{
int i = COMP_BIT_SIZE-1;
comp shift = COMP_RADIX/2;
comp test = biexp->comps[biexp->size-1]; /* assume no leading zeroes */
check(biexp);
do
{
if (test & shift)
{
return i+(biexp->size-1)*COMP_BIT_SIZE;
}
shift >>= 1;
} while (--i != 0);
return -1; /* error - must have been a leading 0 */
}
/*
* Is a particular bit is an exponent 1 or 0? Used when doing sliding-window
* exponentiation.
*/
static int exp_bit_is_one(bigint *biexp, int offset)
{
comp test = biexp->comps[offset / COMP_BIT_SIZE];
int num_shifts = offset % COMP_BIT_SIZE;
comp shift = 1;
int i;
check(biexp);
for (i = 0; i < num_shifts; i++)
{
shift <<= 1;
}
return test & shift;
}
#ifdef CONFIG_BIGINT_CHECK_ON
/*
* Perform a sanity check on bi.
*/
static void check(const bigint *bi)
{
if (bi->refs <= 0)
{
printf("check: zero or negative refs in bigint\n");
abort();
}
if (bi->next != NULL)
{
printf("check: attempt to use a bigint from "
"the free list\n");
abort();
}
}
#endif
/*
* Delete any leading 0's (and allow for 0).
*/
static bigint *trim(bigint *bi)
{
check(bi);
while (bi->comps[bi->size-1] == 0 && bi->size > 1)
{
bi->size--;
}
return bi;
}
#if defined(CONFIG_BIGINT_MONTGOMERY)
/**
* @brief Perform a single montgomery reduction.
* @param ctx [in] The bigint session context.
* @param bixy [in] A bigint.
* @return The result of the montgomery reduction.
*/
bigint *bi_mont(BI_CTX *ctx, bigint *bixy)
{
int i = 0, n;
uint8_t mod_offset = ctx->mod_offset;
bigint *bim = ctx->bi_mod[mod_offset];
comp mod_inv = ctx->N0_dash[mod_offset];
check(bixy);
if (ctx->use_classical) /* just use classical instead */
{
return bi_mod(ctx, bixy);
}
n = bim->size;
do
{
bixy = bi_add(ctx, bixy, comp_left_shift(
bi_int_multiply(ctx, bim, bixy->comps[i]*mod_inv), i));
} while (++i < n);
comp_right_shift(bixy, n);
if (bi_compare(bixy, bim) >= 0)
{
bixy = bi_subtract(ctx, bixy, bim, NULL);
}
return bixy;
}
#elif defined(CONFIG_BIGINT_BARRETT)
/*
* Stomp on the most significant components to give the illusion of a "mod base
* radix" operation
*/
static bigint *comp_mod(bigint *bi, int mod)
{
check(bi);
if (bi->size > mod)
{
bi->size = mod;
}
return bi;
}
/*
* Barrett reduction has no need for some parts of the product, so ignore bits
* of the multiply. This routine gives Barrett its big performance
* improvements over Classical/Montgomery reduction methods.
*/
static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib,
int inner_partial, int outer_partial)
{
int i = 0, j, n = bia->size, t = bib->size;
bigint *biR;
comp carry;
comp *sr, *sa, *sb;
check(bia);
check(bib);
biR = alloc(ctx, n + t);
sa = bia->comps;
sb = bib->comps;
sr = biR->comps;
if (inner_partial)
{
memset(sr, 0, inner_partial*COMP_BYTE_SIZE);
}
else /* outer partial */
{
if (n < outer_partial || t < outer_partial) /* should we bother? */
{
bi_free(ctx, bia);
bi_free(ctx, bib);
biR->comps[0] = 0; /* return 0 */
biR->size = 1;
return biR;
}
memset(&sr[outer_partial], 0, (n+t-outer_partial)*COMP_BYTE_SIZE);
}
do
{
comp *a = sa;
comp b = *sb++;
long_comp tmp;
int i_plus_j = i;
carry = 0;
j = n;
if (outer_partial && i_plus_j < outer_partial)
{
i_plus_j = outer_partial;
a = &sa[outer_partial-i];
j = n-(outer_partial-i);
}
do
{
if (inner_partial && i_plus_j >= inner_partial)
{
break;
}
tmp = sr[i_plus_j] + ((long_comp)*a++)*b + carry;
sr[i_plus_j++] = (comp)tmp; /* downsize */
carry = (comp)(tmp >> COMP_BIT_SIZE);
} while (--j != 0);
sr[i_plus_j] = carry;
} while (++i < t);
bi_free(ctx, bia);
bi_free(ctx, bib);
return trim(biR);
}
/**
* @brief Perform a single Barrett reduction.
* @param ctx [in] The bigint session context.
* @param bi [in] A bigint.
* @return The result of the Barrett reduction.
*/
bigint *bi_barrett(BI_CTX *ctx, bigint *bi)
{
bigint *q1, *q2, *q3, *r1, *r2, *r;
uint8_t mod_offset = ctx->mod_offset;
bigint *bim = ctx->bi_mod[mod_offset];
int k = bim->size;
check(bi);
check(bim);
/* use Classical method instead - Barrett cannot help here */
if (bi->size > k*2)
{
return bi_mod(ctx, bi);
}
q1 = comp_right_shift(bi_clone(ctx, bi), k-1);
/* do outer partial multiply */
q2 = partial_multiply(ctx, q1, ctx->bi_mu[mod_offset], 0, k-1);
q3 = comp_right_shift(q2, k+1);
r1 = comp_mod(bi, k+1);
/* do inner partial multiply */
r2 = comp_mod(partial_multiply(ctx, q3, bim, k+1, 0), k+1);
r = bi_subtract(ctx, r1, r2, NULL);
/* if (r >= m) r = r - m; */
if (bi_compare(r, bim) >= 0)
{
r = bi_subtract(ctx, r, bim, NULL);
}
return r;
}
#endif /* CONFIG_BIGINT_BARRETT */
#ifdef CONFIG_BIGINT_SLIDING_WINDOW
/*
* Work out g1, g3, g5, g7... etc for the sliding-window algorithm
*/
static void precompute_slide_window(BI_CTX *ctx, int window, bigint *g1)
{
int k = 1, i;
bigint *g2;
for (i = 0; i < window-1; i++) /* compute 2^(window-1) */
{
k <<= 1;
}
ctx->g = (bigint **)malloc(k*sizeof(bigint *));
ctx->g[0] = bi_clone(ctx, g1);
bi_permanent(ctx->g[0]);
g2 = bi_residue(ctx, bi_square(ctx, ctx->g[0])); /* g^2 */
for (i = 1; i < k; i++)
{
ctx->g[i] = bi_residue(ctx, bi_multiply(ctx, ctx->g[i-1], bi_copy(g2)));
bi_permanent(ctx->g[i]);
}
bi_free(ctx, g2);
ctx->window = k;
}
#endif
/**
* @brief Perform a modular exponentiation.
*
* This function requires bi_set_mod() to have been called previously. This is
* one of the optimisations used for performance.
* @param ctx [in] The bigint session context.
* @param bi [in] The bigint on which to perform the mod power operation.
* @param biexp [in] The bigint exponent.
* @return The result of the mod exponentiation operation
* @see bi_set_mod().
*/
bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp)
{
int i = find_max_exp_index(biexp), j, window_size = 1;
bigint *biR = int_to_bi(ctx, 1);
#if defined(CONFIG_BIGINT_MONTGOMERY)
uint8_t mod_offset = ctx->mod_offset;
if (!ctx->use_classical)
{
/* preconvert */
bi = bi_mont(ctx,
bi_multiply(ctx, bi, ctx->bi_RR_mod_m[mod_offset])); /* x' */
bi_free(ctx, biR);
biR = ctx->bi_R_mod_m[mod_offset]; /* A */
}
#endif
check(bi);
check(biexp);
#ifdef CONFIG_BIGINT_SLIDING_WINDOW
for (j = i; j > 32; j /= 5) /* work out an optimum size */
window_size++;
/* work out the slide constants */
precompute_slide_window(ctx, window_size, bi);
#else /* just one constant */
ctx->g = (bigint **)malloc(sizeof(bigint *));
ctx->g[0] = bi_clone(ctx, bi);
ctx->window = 1;
bi_permanent(ctx->g[0]);
#endif
/* if sliding-window is off, then only one bit will be done at a time and
* will reduce to standard left-to-right exponentiation */
do
{
if (exp_bit_is_one(biexp, i))
{
int l = i-window_size+1;
int part_exp = 0;
if (l < 0) /* LSB of exponent will always be 1 */
l = 0;
else
{
while (exp_bit_is_one(biexp, l) == 0)
l++; /* go back up */
}
/* build up the section of the exponent */
for (j = i; j >= l; j--)
{
biR = bi_residue(ctx, bi_square(ctx, biR));
if (exp_bit_is_one(biexp, j))
part_exp++;
if (j != l)
part_exp <<= 1;
}
part_exp = (part_exp-1)/2; /* adjust for array */
biR = bi_residue(ctx, bi_multiply(ctx, biR, ctx->g[part_exp]));
i = l-1;
}
else /* square it */
{
biR = bi_residue(ctx, bi_square(ctx, biR));
i--;
}
} while (i >= 0);
/* cleanup */
for (i = 0; i < ctx->window; i++)
{
bi_depermanent(ctx->g[i]);
bi_free(ctx, ctx->g[i]);
}
free(ctx->g);
bi_free(ctx, bi);
bi_free(ctx, biexp);
#if defined CONFIG_BIGINT_MONTGOMERY
return ctx->use_classical ? biR : bi_mont(ctx, biR); /* convert back */
#else /* CONFIG_BIGINT_CLASSICAL or CONFIG_BIGINT_BARRETT */
return biR;
#endif
}
#ifdef CONFIG_SSL_CERT_VERIFICATION
/**
* @brief Perform a modular exponentiation using a temporary modulus.
*
* We need this function to check the signatures of certificates. The modulus
* of this function is temporary as it's just used for authentication.
* @param ctx [in] The bigint session context.
* @param bi [in] The bigint to perform the exp/mod.
* @param bim [in] The temporary modulus.
* @param biexp [in] The bigint exponent.
* @return The result of the mod exponentiation operation
* @see bi_set_mod().
*/
bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp)
{
bigint *biR, *tmp_biR;
/* Set up a temporary bigint context and transfer what we need between
* them. We need to do this since we want to keep the original modulus
* which is already in this context. This operation is only called when
* doing peer verification, and so is not expensive :-) */
BI_CTX *tmp_ctx = bi_initialize();
bi_set_mod(tmp_ctx, bi_clone(tmp_ctx, bim), BIGINT_M_OFFSET);
tmp_biR = bi_mod_power(tmp_ctx,
bi_clone(tmp_ctx, bi),
bi_clone(tmp_ctx, biexp));
biR = bi_clone(ctx, tmp_biR);
bi_free(tmp_ctx, tmp_biR);
bi_free_mod(tmp_ctx, BIGINT_M_OFFSET);
bi_terminate(tmp_ctx);
bi_free(ctx, bi);
bi_free(ctx, bim);
bi_free(ctx, biexp);
return biR;
}
#endif
#ifdef CONFIG_BIGINT_CRT
/**
* @brief Use the Chinese Remainder Theorem to quickly perform RSA decrypts.
*
* @param ctx [in] The bigint session context.
* @param bi [in] The bigint to perform the exp/mod.
* @param dP [in] CRT's dP bigint
* @param dQ [in] CRT's dQ bigint
* @param p [in] CRT's p bigint
* @param q [in] CRT's q bigint
* @param qInv [in] CRT's qInv bigint
* @return The result of the CRT operation
*/
bigint *bi_crt(BI_CTX *ctx, bigint *bi,
bigint *dP, bigint *dQ,
bigint *p, bigint *q, bigint *qInv)
{
bigint *m1, *m2, *h;
/* Montgomery has a condition the 0 < x, y < m and these products violate
* that condition. So disable Montgomery when using CRT */
#if defined(CONFIG_BIGINT_MONTGOMERY)
ctx->use_classical = 1;
#endif
ctx->mod_offset = BIGINT_P_OFFSET;
m1 = bi_mod_power(ctx, bi_copy(bi), dP);
ctx->mod_offset = BIGINT_Q_OFFSET;
m2 = bi_mod_power(ctx, bi, dQ);
h = bi_subtract(ctx, bi_add(ctx, m1, p), bi_copy(m2), NULL);
h = bi_multiply(ctx, h, qInv);
ctx->mod_offset = BIGINT_P_OFFSET;
h = bi_residue(ctx, h);
#if defined(CONFIG_BIGINT_MONTGOMERY)
ctx->use_classical = 0; /* reset for any further operation */
#endif
return bi_add(ctx, m2, bi_multiply(ctx, q, h));
}
#endif
/** @} */
|