/*
 * Copyright (c) 2007, Cameron Rich
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions are met:
 *
 * * Redistributions of source code must retain the above copyright notice, 
 *   this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright notice, 
 *   this list of conditions and the following disclaimer in the documentation 
 *   and/or other materials provided with the distribution.
 * * Neither the name of the axTLS project nor the names of its contributors 
 *   may be used to endorse or promote products derived from this software 
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 * @defgroup bigint_api Big Integer API
 * @brief The bigint implementation as used by the axTLS project.
 *
 * The bigint library is for RSA encryption/decryption as well as signing.
 * This code tries to minimise use of malloc/free by maintaining a small 
 * cache. A bigint context may maintain state by being made "permanent". 
 * It be be later released with a bi_depermanent() and bi_free() call.
 *
 * It supports the following reduction techniques:
 * - Classical
 * - Barrett
 * - Montgomery
 *
 * It also implements the following:
 * - Karatsuba multiplication
 * - Squaring
 * - Sliding window exponentiation
 * - Chinese Remainder Theorem (implemented in rsa.c).
 *
 * All the algorithms used are pretty standard, and designed for different
 * data bus sizes. Negative numbers are not dealt with at all, so a subtraction
 * may need to be tested for negativity.
 *
 * This library steals some ideas from Jef Poskanzer
 * <http://cs.marlboro.edu/term/cs-fall02/algorithms/crypto/RSA/bigint>
 * and GMP <http://www.swox.com/gmp>. It gets most of its implementation
 * detail from "The Handbook of Applied Cryptography"
 * <http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf>
 * @{
 */

#include <stdlib.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "bigint.h"

#define V1      v->comps[v->size-1]                 /**< v1 for division */
#define V2      v->comps[v->size-2]                 /**< v2 for division */
#define U(j)    tmp_u->comps[tmp_u->size-j-1]       /**< uj for division */
#define Q(j)    quotient->comps[quotient->size-j-1] /**< qj for division */

static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bi, comp i);
static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom);
static bigint *alloc(BI_CTX *ctx, int size);
static bigint *trim(bigint *bi);
static void more_comps(bigint *bi, int n);
#if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \
    defined(CONFIG_BIGINT_MONTGOMERY)
static bigint *comp_right_shift(bigint *biR, int num_shifts);
static bigint *comp_left_shift(bigint *biR, int num_shifts);
#endif

#ifdef CONFIG_BIGINT_CHECK_ON
static void check(const bigint *bi);
#else
#define check(A)                /**< disappears in normal production mode */
#endif


/**
 * @brief Start a new bigint context.
 * @return A bigint context.
 */
BI_CTX *bi_initialize(void)
{
    /* calloc() sets everything to zero */
    BI_CTX *ctx = (BI_CTX *)calloc(1, sizeof(BI_CTX));
   
    /* the radix */
    ctx->bi_radix = alloc(ctx, 2); 
    ctx->bi_radix->comps[0] = 0;
    ctx->bi_radix->comps[1] = 1;
    bi_permanent(ctx->bi_radix);
    return ctx;
}

/**
 * @brief Close the bigint context and free any resources.
 *
 * Free up any used memory - a check is done if all objects were not 
 * properly freed.
 * @param ctx [in]   The bigint session context.
 */
void bi_terminate(BI_CTX *ctx)
{
    bi_depermanent(ctx->bi_radix); 
    bi_free(ctx, ctx->bi_radix);

    if (ctx->active_count != 0)
    {
#ifdef CONFIG_SSL_FULL_MODE
        printf("bi_terminate: there were %d un-freed bigints\n",
                       ctx->active_count);
#endif
        abort();
    }

    bi_clear_cache(ctx);
    free(ctx);
}

/**
 *@brief Clear the memory cache.
 */
void bi_clear_cache(BI_CTX *ctx)
{
    bigint *p, *pn;

    if (ctx->free_list == NULL)
        return;
    
    for (p = ctx->free_list; p != NULL; p = pn)
    {
        pn = p->next;
        free(p->comps);
        free(p);
    }

    ctx->free_count = 0;
    ctx->free_list = NULL;
}

/**
 * @brief Increment the number of references to this object. 
 * It does not do a full copy.
 * @param bi [in]   The bigint to copy.
 * @return A reference to the same bigint.
 */
bigint *bi_copy(bigint *bi)
{
    check(bi);
    if (bi->refs != PERMANENT)
        bi->refs++;
    return bi;
}

/**
 * @brief Simply make a bigint object "unfreeable" if bi_free() is called on it.
 *
 * For this object to be freed, bi_depermanent() must be called.
 * @param bi [in]   The bigint to be made permanent.
 */
void bi_permanent(bigint *bi)
{
    check(bi);
    if (bi->refs != 1)
    {
#ifdef CONFIG_SSL_FULL_MODE
        printf("bi_permanent: refs was not 1\n");
#endif
        abort();
    }

    bi->refs = PERMANENT;
}

/**
 * @brief Take a permanent object and make it eligible for freedom.
 * @param bi [in]   The bigint to be made back to temporary.
 */
void bi_depermanent(bigint *bi)
{
    check(bi);
    if (bi->refs != PERMANENT)
    {
#ifdef CONFIG_SSL_FULL_MODE
        printf("bi_depermanent: bigint was not permanent\n");
#endif
        abort();
    }

    bi->refs = 1;
}

/**
 * @brief Free a bigint object so it can be used again. 
 *
 * The memory itself it not actually freed, just tagged as being available 
 * @param ctx [in]   The bigint session context.
 * @param bi [in]    The bigint to be freed.
 */
void bi_free(BI_CTX *ctx, bigint *bi)
{
    check(bi);
    if (bi->refs == PERMANENT)
    {
        return;
    }

    if (--bi->refs > 0)
    {
        return;
    }

    bi->next = ctx->free_list;
    ctx->free_list = bi;
    ctx->free_count++;

    if (--ctx->active_count < 0)
    {
#ifdef CONFIG_SSL_FULL_MODE
        printf("bi_free: active_count went negative "
                "- double-freed bigint?\n");
#endif
        abort();
    }
}

/**
 * @brief Convert an (unsigned) integer into a bigint.
 * @param ctx [in]   The bigint session context.
 * @param i [in]     The (unsigned) integer to be converted.
 * 
 */
bigint *int_to_bi(BI_CTX *ctx, comp i)
{
    bigint *biR = alloc(ctx, 1);
    biR->comps[0] = i;
    return biR;
}

/**
 * @brief Do a full copy of the bigint object.
 * @param ctx [in]   The bigint session context.
 * @param bi  [in]   The bigint object to be copied.
 */
bigint *bi_clone(BI_CTX *ctx, const bigint *bi)
{
    bigint *biR = alloc(ctx, bi->size);
    check(bi);
    memcpy(biR->comps, bi->comps, bi->size*COMP_BYTE_SIZE);
    return biR;
}

/**
 * @brief Perform an addition operation between two bigints.
 * @param ctx [in]  The bigint session context.
 * @param bia [in]  A bigint.
 * @param bib [in]  Another bigint.
 * @return The result of the addition.
 */
bigint *bi_add(BI_CTX *ctx, bigint *bia, bigint *bib)
{
    int n;
    comp carry = 0;
    comp *pa, *pb;

    check(bia);
    check(bib);

    n = max(bia->size, bib->size);
    more_comps(bia, n+1);
    more_comps(bib, n);
    pa = bia->comps;
    pb = bib->comps;

    do
    {
        comp  sl, rl, cy1;
        sl = *pa + *pb++;
        rl = sl + carry;
        cy1 = sl < *pa;
        carry = cy1 | (rl < sl);
        *pa++ = rl;
    } while (--n != 0);

    *pa = carry;                  /* do overflow */
    bi_free(ctx, bib);
    return trim(bia);
}

/**
 * @brief Perform a subtraction operation between two bigints.
 * @param ctx [in]  The bigint session context.
 * @param bia [in]  A bigint.
 * @param bib [in]  Another bigint.
 * @param is_negative [out] If defined, indicates that the result was negative.
 * is_negative may be null.
 * @return The result of the subtraction. The result is always positive.
 */
bigint *bi_subtract(BI_CTX *ctx, 
        bigint *bia, bigint *bib, int *is_negative)
{
    int n = bia->size;
    comp *pa, *pb, carry = 0;

    check(bia);
    check(bib);

    more_comps(bib, n);
    pa = bia->comps;
    pb = bib->comps;

    do 
    {
        comp sl, rl, cy1;
        sl = *pa - *pb++;
        rl = sl - carry;
        cy1 = sl > *pa;
        carry = cy1 | (rl > sl);
        *pa++ = rl;
    } while (--n != 0);

    if (is_negative)    /* indicate a negative result */
    {
        *is_negative = carry;
    }

    bi_free(ctx, trim(bib));    /* put bib back to the way it was */
    return trim(bia);
}

/**
 * Perform a multiply between a bigint an an (unsigned) integer
 */
static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bia, comp b)
{
    int j = 0, n = bia->size;
    bigint *biR = alloc(ctx, n + 1);
    comp carry = 0;
    comp *r = biR->comps;
    comp *a = bia->comps;

    check(bia);

    /* clear things to start with */
    memset(r, 0, ((n+1)*COMP_BYTE_SIZE));

    do
    {
        long_comp tmp = *r + (long_comp)a[j]*b + carry;
        *r++ = (comp)tmp;              /* downsize */
        carry = (comp)(tmp >> COMP_BIT_SIZE);
    } while (++j < n);

    *r = carry;
    bi_free(ctx, bia);
    return trim(biR);
}

/**
 * @brief Does both division and modulo calculations. 
 *
 * Used extensively when doing classical reduction.
 * @param ctx [in]  The bigint session context.
 * @param u [in]    A bigint which is the numerator.
 * @param v [in]    Either the denominator or the modulus depending on the mode.
 * @param is_mod [n] Determines if this is a normal division (0) or a reduction
 * (1).
 * @return  The result of the division/reduction.
 */
bigint *bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod)
{
    int n = v->size, m = u->size-n;
    int j = 0, orig_u_size = u->size;
    uint8_t mod_offset = ctx->mod_offset;
    comp d;
    bigint *quotient, *tmp_u;
    comp q_dash;

    check(u);
    check(v);

    /* if doing reduction and we are < mod, then return mod */
    if (is_mod && bi_compare(v, u) > 0)
    {
        bi_free(ctx, v);
        return u;
    }

    quotient = alloc(ctx, m+1);
    tmp_u = alloc(ctx, n+1);
    v = trim(v);        /* make sure we have no leading 0's */
    d = (comp)((long_comp)COMP_RADIX/(V1+1));

    /* clear things to start with */
    memset(quotient->comps, 0, ((quotient->size)*COMP_BYTE_SIZE));

    /* normalise */
    if (d > 1)
    {
        u = bi_int_multiply(ctx, u, d);

        if (is_mod)
        {
            v = ctx->bi_normalised_mod[mod_offset];
        }
        else
        {
            v = bi_int_multiply(ctx, v, d);
        }
    }

    if (orig_u_size == u->size)  /* new digit position u0 */
    {
        more_comps(u, orig_u_size + 1);
    }

    do
    {
        /* get a temporary short version of u */
        memcpy(tmp_u->comps, &u->comps[u->size-n-1-j], (n+1)*COMP_BYTE_SIZE);

        /* calculate q' */
        if (U(0) == V1)
        {
            q_dash = COMP_RADIX-1;
        }
        else
        {
            q_dash = (comp)(((long_comp)U(0)*COMP_RADIX + U(1))/V1);
        }

        if (v->size > 1 && V2)
        {
            /* we are implementing the following:
            if (V2*q_dash > (((U(0)*COMP_RADIX + U(1) - 
                    q_dash*V1)*COMP_RADIX) + U(2))) ... */
            comp inner = (comp)((long_comp)COMP_RADIX*U(0) + U(1) - 
                                        (long_comp)q_dash*V1);
            if ((long_comp)V2*q_dash > (long_comp)inner*COMP_RADIX + U(2))
            {
                q_dash--;
            }
        }

        /* multiply and subtract */
        if (q_dash)
        {
            int is_negative;
            tmp_u = bi_subtract(ctx, tmp_u, 
                    bi_int_multiply(ctx, bi_copy(v), q_dash), &is_negative);
            more_comps(tmp_u, n+1);

            Q(j) = q_dash; 

            /* add back */
            if (is_negative)
            {
                Q(j)--;
                tmp_u = bi_add(ctx, tmp_u, bi_copy(v));

                /* lop off the carry */
                tmp_u->size--;
                v->size--;
            }
        }
        else
        {
            Q(j) = 0; 
        }

        /* copy back to u */
        memcpy(&u->comps[u->size-n-1-j], tmp_u->comps, (n+1)*COMP_BYTE_SIZE);
    } while (++j <= m);

    bi_free(ctx, tmp_u);
    bi_free(ctx, v);

    if (is_mod)     /* get the remainder */
    {
        bi_free(ctx, quotient);
        return bi_int_divide(ctx, trim(u), d);
    }
    else            /* get the quotient */
    {
        bi_free(ctx, u);
        return trim(quotient);
    }
}

/*
 * Perform an integer divide on a bigint.
 */
static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom)
{
    int i = biR->size - 1;
    long_comp r = 0;

    check(biR);

    do
    {
        r = (r<<COMP_BIT_SIZE) + biR->comps[i];
        biR->comps[i] = (comp)(r / denom);
        r %= denom;
    } while (--i >= 0);

    return trim(biR);
}

#ifdef CONFIG_BIGINT_MONTGOMERY
/**
 * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1, 
 * where B^-1(B-1) mod N=1. Actually, only the least significant part of 
 * N' is needed, hence the definition N0'=N' mod b. We reproduce below the 
 * simple algorithm from an article by Dusse and Kaliski to efficiently 
 * find N0' from N0 and b */
static comp modular_inverse(bigint *bim)
{
    int i;
    comp t = 1;
    comp two_2_i_minus_1 = 2;   /* 2^(i-1) */
    long_comp two_2_i = 4;      /* 2^i */
    comp N = bim->comps[0];

    for (i = 2; i <= COMP_BIT_SIZE; i++)
    {
        if ((long_comp)N*t%two_2_i >= two_2_i_minus_1)
        {
            t += two_2_i_minus_1;
        }

        two_2_i_minus_1 <<= 1;
        two_2_i <<= 1;
    }

    return (comp)(COMP_RADIX-t);
}
#endif

#if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \
    defined(CONFIG_BIGINT_MONTGOMERY)
/**
 * Take each component and shift down (in terms of components) 
 */
static bigint *comp_right_shift(bigint *biR, int num_shifts)
{
    int i = biR->size-num_shifts;
    comp *x = biR->comps;
    comp *y = &biR->comps[num_shifts];

    check(biR);

    if (i <= 0)     /* have we completely right shifted? */
    {
        biR->comps[0] = 0;  /* return 0 */
        biR->size = 1;
        return biR;
    }

    do
    {
        *x++ = *y++;
    } while (--i > 0);

    biR->size -= num_shifts;
    return biR;
}

/**
 * Take each component and shift it up (in terms of components) 
 */
static bigint *comp_left_shift(bigint *biR, int num_shifts)
{
    int i = biR->size-1;
    comp *x, *y;

    check(biR);

    if (num_shifts <= 0)
    {
        return biR;
    }

    more_comps(biR, biR->size + num_shifts);

    x = &biR->comps[i+num_shifts];
    y = &biR->comps[i];

    do
    {
        *x-- = *y--;
    } while (i--);

    memset(biR->comps, 0, num_shifts*COMP_BYTE_SIZE); /* zero LS comps */
    return biR;
}
#endif

/**
 * @brief Allow a binary sequence to be imported as a bigint.
 * @param ctx [in]  The bigint session context.
 * @param data [in] The data to be converted.
 * @param size [in] The number of bytes of data.
 * @return A bigint representing this data.
 */
bigint *bi_import(BI_CTX *ctx, const uint8_t *data, int size)
{
    bigint *biR = alloc(ctx, (size+COMP_BYTE_SIZE-1)/COMP_BYTE_SIZE);
    int i, j = 0, offset = 0;

    memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE);

    for (i = size-1; i >= 0; i--)
    {
        biR->comps[offset] += data[i] << (j*8);

        if (++j == COMP_BYTE_SIZE)
        {
            j = 0;
            offset ++;
        }
    }

    return trim(biR);
}

#ifdef CONFIG_SSL_FULL_MODE
/**
 * @brief The testharness uses this code to import text hex-streams and 
 * convert them into bigints.
 * @param ctx [in]  The bigint session context.
 * @param data [in] A string consisting of hex characters. The characters must
 * be in upper case.
 * @return A bigint representing this data.
 */
bigint *bi_str_import(BI_CTX *ctx, const char *data)
{
    int size = strlen(data);
    bigint *biR = alloc(ctx, (size+COMP_NUM_NIBBLES-1)/COMP_NUM_NIBBLES);
    int i, j = 0, offset = 0;
    memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE);

    for (i = size-1; i >= 0; i--)
    {
        int num = (data[i] <= '9') ? (data[i] - '0') : (data[i] - 'A' + 10);
        biR->comps[offset] += num << (j*4);

        if (++j == COMP_NUM_NIBBLES)
        {
            j = 0;
            offset ++;
        }
    }

    return biR;
}

void bi_print(const char *label, bigint *x)
{
    int i, j;

    if (x == NULL)
    {
        printf("%s: (null)\n", label);
        return;
    }

    printf("%s: (size %d)\n", label, x->size);
    for (i = x->size-1; i >= 0; i--)
    {
        for (j = COMP_NUM_NIBBLES-1; j >= 0; j--)
        {
            comp mask = 0x0f << (j*4);
            comp num = (x->comps[i] & mask) >> (j*4);
            putc((num <= 9) ? (num + '0') : (num + 'A' - 10), stdout);
        }
    }  

    printf("\n");
}
#endif

/**
 * @brief Take a bigint and convert it into a byte sequence. 
 *
 * This is useful after a decrypt operation.
 * @param ctx [in]  The bigint session context.
 * @param x [in]  The bigint to be converted.
 * @param data [out] The converted data as a byte stream.
 * @param size [in] The maximum size of the byte stream. Unused bytes will be
 * zeroed.
 */
void bi_export(BI_CTX *ctx, bigint *x, uint8_t *data, int size)
{
    int i, j, k = size-1;

    check(x);
    memset(data, 0, size);  /* ensure all leading 0's are cleared */

    for (i = 0; i < x->size; i++)
    {
        for (j = 0; j < COMP_BYTE_SIZE; j++)
        {
            comp mask = 0xff << (j*8);
            int num = (x->comps[i] & mask) >> (j*8);
            data[k--] = num;

            if (k < 0)
            {
                break;
            }
        }
    }

    bi_free(ctx, x);
}

/**
 * @brief Pre-calculate some of the expensive steps in reduction. 
 *
 * This function should only be called once (normally when a session starts).
 * When the session is over, bi_free_mod() should be called. bi_mod_power()
 * relies on this function being called.
 * @param ctx [in]  The bigint session context.
 * @param bim [in]  The bigint modulus that will be used.
 * @param mod_offset [in] There are three moduluii that can be stored - the
 * standard modulus, and its two primes p and q. This offset refers to which
 * modulus we are referring to.
 * @see bi_free_mod(), bi_mod_power().
 */
void bi_set_mod(BI_CTX *ctx, bigint *bim, int mod_offset)
{
    int k = bim->size;
    comp d = (comp)((long_comp)COMP_RADIX/(bim->comps[k-1]+1));
#ifdef CONFIG_BIGINT_MONTGOMERY
    bigint *R, *R2;
#endif

    ctx->bi_mod[mod_offset] = bim;
    bi_permanent(ctx->bi_mod[mod_offset]);
    ctx->bi_normalised_mod[mod_offset] = bi_int_multiply(ctx, bim, d);
    bi_permanent(ctx->bi_normalised_mod[mod_offset]);

#if defined(CONFIG_BIGINT_MONTGOMERY)
    /* set montgomery variables */
    R = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k-1);     /* R */
    R2 = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k*2-1);  /* R^2 */
    ctx->bi_RR_mod_m[mod_offset] = bi_mod(ctx, R2);             /* R^2 mod m */
    ctx->bi_R_mod_m[mod_offset] = bi_mod(ctx, R);               /* R mod m */

    bi_permanent(ctx->bi_RR_mod_m[mod_offset]);
    bi_permanent(ctx->bi_R_mod_m[mod_offset]);

    ctx->N0_dash[mod_offset] = modular_inverse(ctx->bi_mod[mod_offset]);

#elif defined (CONFIG_BIGINT_BARRETT)
    ctx->bi_mu[mod_offset] = 
        bi_divide(ctx, comp_left_shift(
            bi_clone(ctx, ctx->bi_radix), k*2-1), ctx->bi_mod[mod_offset], 0);
    bi_permanent(ctx->bi_mu[mod_offset]);
#endif
}

/**
 * @brief Used when cleaning various bigints at the end of a session.
 * @param ctx [in]  The bigint session context.
 * @param mod_offset [in] The offset to use.
 * @see bi_set_mod().
 */
void bi_free_mod(BI_CTX *ctx, int mod_offset)
{
    bi_depermanent(ctx->bi_mod[mod_offset]);
    bi_free(ctx, ctx->bi_mod[mod_offset]);
#if defined (CONFIG_BIGINT_MONTGOMERY)
    bi_depermanent(ctx->bi_RR_mod_m[mod_offset]);
    bi_depermanent(ctx->bi_R_mod_m[mod_offset]);
    bi_free(ctx, ctx->bi_RR_mod_m[mod_offset]);
    bi_free(ctx, ctx->bi_R_mod_m[mod_offset]);
#elif defined(CONFIG_BIGINT_BARRETT)
    bi_depermanent(ctx->bi_mu[mod_offset]); 
    bi_free(ctx, ctx->bi_mu[mod_offset]);
#endif
    bi_depermanent(ctx->bi_normalised_mod[mod_offset]); 
    bi_free(ctx, ctx->bi_normalised_mod[mod_offset]);
}

/** 
 * Perform a standard multiplication between two bigints.
 */
static bigint *regular_multiply(BI_CTX *ctx, bigint *bia, bigint *bib)
{
    int i, j, i_plus_j;
    int n = bia->size; 
    int t = bib->size;
    bigint *biR = alloc(ctx, n + t);
    comp *sr = biR->comps;
    comp *sa = bia->comps;
    comp *sb = bib->comps;

    check(bia);
    check(bib);

    /* clear things to start with */
    memset(biR->comps, 0, ((n+t)*COMP_BYTE_SIZE));
    i = 0;

    do 
    {
        comp carry = 0;
        comp b = *sb++;
        i_plus_j = i;
        j = 0;

        do
        {
            long_comp tmp = sr[i_plus_j] + (long_comp)sa[j]*b + carry;
            sr[i_plus_j++] = (comp)tmp;              /* downsize */
            carry = (comp)(tmp >> COMP_BIT_SIZE);
        } while (++j < n);

        sr[i_plus_j] = carry;
    } while (++i < t);

    bi_free(ctx, bia);
    bi_free(ctx, bib);
    return trim(biR);
}

#ifdef CONFIG_BIGINT_KARATSUBA
/*
 * Karatsuba improves on regular multiplication due to only 3 multiplications 
 * being done instead of 4. The additional additions/subtractions are O(N) 
 * rather than O(N^2) and so for big numbers it saves on a few operations 
 */
static bigint *karatsuba(BI_CTX *ctx, bigint *bia, bigint *bib, int is_square)
{
    bigint *x0, *x1;
    bigint *p0, *p1, *p2;
    int m;

    if (is_square)
    {
        m = (bia->size + 1)/2;
    }
    else
    {
        m = (max(bia->size, bib->size) + 1)/2;
    }

    x0 = bi_clone(ctx, bia);
    x0->size = m;
    x1 = bi_clone(ctx, bia);
    comp_right_shift(x1, m);
    bi_free(ctx, bia);

    /* work out the 3 partial products */
    if (is_square)
    {
        p0 = bi_square(ctx, bi_copy(x0));
        p2 = bi_square(ctx, bi_copy(x1));
        p1 = bi_square(ctx, bi_add(ctx, x0, x1));
    }
    else /* normal multiply */
    {
        bigint *y0, *y1;
        y0 = bi_clone(ctx, bib);
        y0->size = m;
        y1 = bi_clone(ctx, bib);
        comp_right_shift(y1, m);
        bi_free(ctx, bib);

        p0 = bi_multiply(ctx, bi_copy(x0), bi_copy(y0));
        p2 = bi_multiply(ctx, bi_copy(x1), bi_copy(y1));
        p1 = bi_multiply(ctx, bi_add(ctx, x0, x1), bi_add(ctx, y0, y1));
    }

    p1 = bi_subtract(ctx, 
            bi_subtract(ctx, p1, bi_copy(p2), NULL), bi_copy(p0), NULL);

    comp_left_shift(p1, m);
    comp_left_shift(p2, 2*m);
    return bi_add(ctx, p1, bi_add(ctx, p0, p2));
}
#endif

/**
 * @brief Perform a multiplication operation between two bigints.
 * @param ctx [in]  The bigint session context.
 * @param bia [in]  A bigint.
 * @param bib [in]  Another bigint.
 * @return The result of the multiplication.
 */
bigint *bi_multiply(BI_CTX *ctx, bigint *bia, bigint *bib)
{
    check(bia);
    check(bib);

#ifdef CONFIG_BIGINT_KARATSUBA
    if (min(bia->size, bib->size) < MUL_KARATSUBA_THRESH)
    {
        return regular_multiply(ctx, bia, bib);
    }

    return karatsuba(ctx, bia, bib, 0);
#else
    return regular_multiply(ctx, bia, bib);
#endif
}

#ifdef CONFIG_BIGINT_SQUARE
/*
 * Perform the actual square operion. It takes into account overflow.
 */
static bigint *regular_square(BI_CTX *ctx, bigint *bi)
{
    int t = bi->size;
    int i = 0, j;
    bigint *biR = alloc(ctx, t*2);
    comp *w = biR->comps;
    comp *x = bi->comps;
    comp carry;

    memset(w, 0, biR->size*COMP_BYTE_SIZE);

    do
    {
        long_comp tmp = w[2*i] + (long_comp)x[i]*x[i];
        comp u = 0;
        w[2*i] = (comp)tmp;
        carry = (comp)(tmp >> COMP_BIT_SIZE);

        for (j = i+1; j < t; j++)
        {
            long_comp xx = (long_comp)x[i]*x[j];
            long_comp xx2 = 2*xx;
            long_comp blob = (long_comp)w[i+j]+carry;

            if (u)                  /* previous overflow */
            {
                blob += COMP_RADIX;
            }


            u = 0;
            tmp = xx2 + blob;

            /* check for overflow */
            if ((COMP_MAX-xx) < xx  || (COMP_MAX-xx2) < blob)
            {
                u = 1;
            }

            w[i+j] = (comp)tmp;
            carry = (comp)(tmp >> COMP_BIT_SIZE);
        }

        w[i+t] += carry;

        if (u)
        {
            w[i+t+1] = 1;   /* add carry */
        }
    } while (++i < t);

    bi_free(ctx, bi);
    return trim(biR);
}

/**
 * @brief Perform a square operation on a bigint.
 * @param ctx [in]  The bigint session context.
 * @param bia [in]  A bigint.
 * @return The result of the multiplication.
 */
bigint *bi_square(BI_CTX *ctx, bigint *bia)
{
    check(bia);

#ifdef CONFIG_BIGINT_KARATSUBA
    if (bia->size < SQU_KARATSUBA_THRESH) 
    {
        return regular_square(ctx, bia);
    }

    return karatsuba(ctx, bia, NULL, 1);
#else
    return regular_square(ctx, bia);
#endif
}
#endif

/**
 * @brief Compare two bigints.
 * @param bia [in]  A bigint.
 * @param bib [in]  Another bigint.
 * @return -1 if smaller, 1 if larger and 0 if equal.
 */
int bi_compare(bigint *bia, bigint *bib)
{
    int r, i;

    check(bia);
    check(bib);

    if (bia->size > bib->size)
        r = 1;
    else if (bia->size < bib->size)
        r = -1;
    else
    {
        comp *a = bia->comps; 
        comp *b = bib->comps; 

        /* Same number of components.  Compare starting from the high end
         * and working down. */
        r = 0;
        i = bia->size - 1;

        do 
        {
            if (a[i] > b[i])
            { 
                r = 1;
                break; 
            }
            else if (a[i] < b[i])
            { 
                r = -1;
                break; 
            }
        } while (--i >= 0);
    }

    return r;
}

/*
 * Allocate and zero more components.  Does not consume bi. 
 */
static void more_comps(bigint *bi, int n)
{
    if (n > bi->max_comps)
    {
        bi->max_comps = max(bi->max_comps * 2, n);
        bi->comps = (comp*)realloc(bi->comps, bi->max_comps * COMP_BYTE_SIZE);
    }

    if (n > bi->size)
    {
        memset(&bi->comps[bi->size], 0, (n-bi->size)*COMP_BYTE_SIZE);
    }

    bi->size = n;
}

/*
 * Make a new empty bigint. It may just use an old one if one is available.
 * Otherwise get one off the heap.
 */
static bigint *alloc(BI_CTX *ctx, int size)
{
    bigint *biR;

    /* Can we recycle an old bigint? */
    if (ctx->free_list != NULL)
    {
        biR = ctx->free_list;
        ctx->free_list = biR->next;
        ctx->free_count--;

        if (biR->refs != 0)
        {
#ifdef CONFIG_SSL_FULL_MODE
            printf("alloc: refs was not 0\n");
#endif
            abort();    /* create a stack trace from a core dump */
        }

        more_comps(biR, size);
    }
    else
    {
        /* No free bigints available - create a new one. */
        biR = (bigint *)malloc(sizeof(bigint));
        biR->comps = (comp*)malloc(size * COMP_BYTE_SIZE);
        biR->max_comps = size;  /* give some space to spare */
    }

    biR->size = size;
    biR->refs = 1;
    biR->next = NULL;
    ctx->active_count++;
    return biR;
}

/*
 * Work out the highest '1' bit in an exponent. Used when doing sliding-window
 * exponentiation.
 */
static int find_max_exp_index(bigint *biexp)
{
    int i = COMP_BIT_SIZE-1;
    comp shift = COMP_RADIX/2;
    comp test = biexp->comps[biexp->size-1];    /* assume no leading zeroes */

    check(biexp);

    do
    {
        if (test & shift)
        {
            return i+(biexp->size-1)*COMP_BIT_SIZE;
        }

        shift >>= 1;
    } while (--i != 0);

    return -1;      /* error - must have been a leading 0 */
}

/*
 * Is a particular bit is an exponent 1 or 0? Used when doing sliding-window
 * exponentiation.
 */
static int exp_bit_is_one(bigint *biexp, int offset)
{
    comp test = biexp->comps[offset / COMP_BIT_SIZE];
    int num_shifts = offset % COMP_BIT_SIZE;
    comp shift = 1;
    int i;

    check(biexp);

    for (i = 0; i < num_shifts; i++)
    {
        shift <<= 1;
    }

    return test & shift;
}

#ifdef CONFIG_BIGINT_CHECK_ON
/*
 * Perform a sanity check on bi.
 */
static void check(const bigint *bi)
{
    if (bi->refs <= 0)
    {
        printf("check: zero or negative refs in bigint\n");
        abort();
    }

    if (bi->next != NULL)
    {
        printf("check: attempt to use a bigint from "
                "the free list\n");
        abort();
    }
}
#endif

/*
 * Delete any leading 0's (and allow for 0).
 */
static bigint *trim(bigint *bi)
{
    check(bi);

    while (bi->comps[bi->size-1] == 0 && bi->size > 1)
    {
        bi->size--;
    }

    return bi;
}

#if defined(CONFIG_BIGINT_MONTGOMERY)
/**
 * @brief Perform a single montgomery reduction.
 * @param ctx [in]  The bigint session context.
 * @param bixy [in]  A bigint.
 * @return The result of the montgomery reduction.
 */
bigint *bi_mont(BI_CTX *ctx, bigint *bixy)
{
    int i = 0, n;
    uint8_t mod_offset = ctx->mod_offset;
    bigint *bim = ctx->bi_mod[mod_offset];
    comp mod_inv = ctx->N0_dash[mod_offset];

    check(bixy);

    if (ctx->use_classical)     /* just use classical instead */
    {
        return bi_mod(ctx, bixy);
    }

    n = bim->size;

    do
    {
        bixy = bi_add(ctx, bixy, comp_left_shift(
                    bi_int_multiply(ctx, bim, bixy->comps[i]*mod_inv), i));
    } while (++i < n);

    comp_right_shift(bixy, n);

    if (bi_compare(bixy, bim) >= 0)
    {
        bixy = bi_subtract(ctx, bixy, bim, NULL);
    }

    return bixy;
}

#elif defined(CONFIG_BIGINT_BARRETT)
/*
 * Stomp on the most significant components to give the illusion of a "mod base
 * radix" operation 
 */
static bigint *comp_mod(bigint *bi, int mod)
{
    check(bi);

    if (bi->size > mod)
    {
        bi->size = mod;
    }

    return bi;
}

/*
 * Barrett reduction has no need for some parts of the product, so ignore bits
 * of the multiply. This routine gives Barrett its big performance
 * improvements over Classical/Montgomery reduction methods. 
 */
static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib, 
        int inner_partial, int outer_partial)
{
    int i = 0, j, n = bia->size, t = bib->size;
    bigint *biR;
    comp carry;
    comp *sr, *sa, *sb;

    check(bia);
    check(bib);

    biR = alloc(ctx, n + t);
    sa = bia->comps;
    sb = bib->comps;
    sr = biR->comps;

    if (inner_partial)
    {
        memset(sr, 0, inner_partial*COMP_BYTE_SIZE); 
    }
    else    /* outer partial */
    {
        if (n < outer_partial || t < outer_partial) /* should we bother? */
        {
            bi_free(ctx, bia);
            bi_free(ctx, bib);
            biR->comps[0] = 0;      /* return 0 */
            biR->size = 1;
            return biR;
        }

        memset(&sr[outer_partial], 0, (n+t-outer_partial)*COMP_BYTE_SIZE);
    }

    do 
    {
        comp *a = sa;
        comp b = *sb++;
        long_comp tmp;
        int i_plus_j = i;
        carry = 0;
        j = n;

        if (outer_partial && i_plus_j < outer_partial)
        {
            i_plus_j = outer_partial;
            a = &sa[outer_partial-i];
            j = n-(outer_partial-i);
        }

        do
        {
            if (inner_partial && i_plus_j >= inner_partial) 
            {
                break;
            }

            tmp = sr[i_plus_j] + ((long_comp)*a++)*b + carry;
            sr[i_plus_j++] = (comp)tmp;              /* downsize */
            carry = (comp)(tmp >> COMP_BIT_SIZE);
        } while (--j != 0);

        sr[i_plus_j] = carry;
    } while (++i < t);

    bi_free(ctx, bia);
    bi_free(ctx, bib);
    return trim(biR);
}

/**
 * @brief Perform a single Barrett reduction.
 * @param ctx [in]  The bigint session context.
 * @param bi [in]  A bigint.
 * @return The result of the Barrett reduction.
 */
bigint *bi_barrett(BI_CTX *ctx, bigint *bi)
{
    bigint *q1, *q2, *q3, *r1, *r2, *r;
    uint8_t mod_offset = ctx->mod_offset;
    bigint *bim = ctx->bi_mod[mod_offset];
    int k = bim->size;

    check(bi);
    check(bim);

    /* use Classical method instead  - Barrett cannot help here */
    if (bi->size > k*2)
    {
        return bi_mod(ctx, bi);
    }

    q1 = comp_right_shift(bi_clone(ctx, bi), k-1);

    /* do outer partial multiply */
    q2 = partial_multiply(ctx, q1, ctx->bi_mu[mod_offset], 0, k-1); 
    q3 = comp_right_shift(q2, k+1);
    r1 = comp_mod(bi, k+1);

    /* do inner partial multiply */
    r2 = comp_mod(partial_multiply(ctx, q3, bim, k+1, 0), k+1);
    r = bi_subtract(ctx, r1, r2, NULL);

    /* if (r >= m) r = r - m; */
    if (bi_compare(r, bim) >= 0)
    {
        r = bi_subtract(ctx, r, bim, NULL);
    }

    return r;
}
#endif /* CONFIG_BIGINT_BARRETT */

#ifdef CONFIG_BIGINT_SLIDING_WINDOW
/*
 * Work out g1, g3, g5, g7... etc for the sliding-window algorithm 
 */
static void precompute_slide_window(BI_CTX *ctx, int window, bigint *g1)
{
    int k = 1, i;
    bigint *g2;

    for (i = 0; i < window-1; i++)   /* compute 2^(window-1) */
    {
        k <<= 1;
    }

    ctx->g = (bigint **)malloc(k*sizeof(bigint *));
    ctx->g[0] = bi_clone(ctx, g1);
    bi_permanent(ctx->g[0]);
    g2 = bi_residue(ctx, bi_square(ctx, ctx->g[0]));   /* g^2 */

    for (i = 1; i < k; i++)
    {
        ctx->g[i] = bi_residue(ctx, bi_multiply(ctx, ctx->g[i-1], bi_copy(g2)));
        bi_permanent(ctx->g[i]);
    }

    bi_free(ctx, g2);
    ctx->window = k;
}
#endif

/**
 * @brief Perform a modular exponentiation.
 *
 * This function requires bi_set_mod() to have been called previously. This is 
 * one of the optimisations used for performance.
 * @param ctx [in]  The bigint session context.
 * @param bi  [in]  The bigint on which to perform the mod power operation.
 * @param biexp [in] The bigint exponent.
 * @return The result of the mod exponentiation operation
 * @see bi_set_mod().
 */
bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp)
{
    int i = find_max_exp_index(biexp), j, window_size = 1;
    bigint *biR = int_to_bi(ctx, 1);

#if defined(CONFIG_BIGINT_MONTGOMERY)
    uint8_t mod_offset = ctx->mod_offset;
    if (!ctx->use_classical)
    {
        /* preconvert */
        bi = bi_mont(ctx, 
                bi_multiply(ctx, bi, ctx->bi_RR_mod_m[mod_offset]));    /* x' */
        bi_free(ctx, biR);
        biR = ctx->bi_R_mod_m[mod_offset];                              /* A */
    }
#endif

    check(bi);
    check(biexp);

#ifdef CONFIG_BIGINT_SLIDING_WINDOW
    for (j = i; j > 32; j /= 5) /* work out an optimum size */
        window_size++;

    /* work out the slide constants */
    precompute_slide_window(ctx, window_size, bi);
#else   /* just one constant */
    ctx->g = (bigint **)malloc(sizeof(bigint *));
    ctx->g[0] = bi_clone(ctx, bi);
    ctx->window = 1;
    bi_permanent(ctx->g[0]);
#endif

    /* if sliding-window is off, then only one bit will be done at a time and
     * will reduce to standard left-to-right exponentiation */
    do
    {
        if (exp_bit_is_one(biexp, i))
        {
            int l = i-window_size+1;
            int part_exp = 0;

            if (l < 0)  /* LSB of exponent will always be 1 */
                l = 0;
            else
            {
                while (exp_bit_is_one(biexp, l) == 0)
                    l++;    /* go back up */
            }

            /* build up the section of the exponent */
            for (j = i; j >= l; j--)
            {
                biR = bi_residue(ctx, bi_square(ctx, biR));
                if (exp_bit_is_one(biexp, j))
                    part_exp++;

                if (j != l)
                    part_exp <<= 1;
            }

            part_exp = (part_exp-1)/2;  /* adjust for array */
            biR = bi_residue(ctx, bi_multiply(ctx, biR, ctx->g[part_exp]));
            i = l-1;
        }
        else    /* square it */
        {
            biR = bi_residue(ctx, bi_square(ctx, biR));
            i--;
        }
    } while (i >= 0);
     
    /* cleanup */
    for (i = 0; i < ctx->window; i++)
    {
        bi_depermanent(ctx->g[i]);
        bi_free(ctx, ctx->g[i]);
    }

    free(ctx->g);
    bi_free(ctx, bi);
    bi_free(ctx, biexp);
#if defined CONFIG_BIGINT_MONTGOMERY
    return ctx->use_classical ? biR : bi_mont(ctx, biR); /* convert back */
#else /* CONFIG_BIGINT_CLASSICAL or CONFIG_BIGINT_BARRETT */
    return biR;
#endif
}

#ifdef CONFIG_SSL_CERT_VERIFICATION
/**
 * @brief Perform a modular exponentiation using a temporary modulus.
 *
 * We need this function to check the signatures of certificates. The modulus
 * of this function is temporary as it's just used for authentication.
 * @param ctx [in]  The bigint session context.
 * @param bi  [in]  The bigint to perform the exp/mod.
 * @param bim [in]  The temporary modulus.
 * @param biexp [in] The bigint exponent.
 * @return The result of the mod exponentiation operation
 * @see bi_set_mod().
 */
bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp)
{
    bigint *biR, *tmp_biR;

    /* Set up a temporary bigint context and transfer what we need between
     * them. We need to do this since we want to keep the original modulus
     * which is already in this context. This operation is only called when
     * doing peer verification, and so is not expensive :-) */
    BI_CTX *tmp_ctx = bi_initialize();
    bi_set_mod(tmp_ctx, bi_clone(tmp_ctx, bim), BIGINT_M_OFFSET);
    tmp_biR = bi_mod_power(tmp_ctx, 
                bi_clone(tmp_ctx, bi), 
                bi_clone(tmp_ctx, biexp));
    biR = bi_clone(ctx, tmp_biR);
    bi_free(tmp_ctx, tmp_biR);
    bi_free_mod(tmp_ctx, BIGINT_M_OFFSET);
    bi_terminate(tmp_ctx);

    bi_free(ctx, bi);
    bi_free(ctx, bim);
    bi_free(ctx, biexp);
    return biR;
}
#endif

#ifdef CONFIG_BIGINT_CRT
/**
 * @brief Use the Chinese Remainder Theorem to quickly perform RSA decrypts.
 *
 * @param ctx [in]  The bigint session context.
 * @param bi  [in]  The bigint to perform the exp/mod.
 * @param dP [in] CRT's dP bigint
 * @param dQ [in] CRT's dQ bigint
 * @param p [in] CRT's p bigint
 * @param q [in] CRT's q bigint
 * @param qInv [in] CRT's qInv bigint
 * @return The result of the CRT operation
 */
bigint *bi_crt(BI_CTX *ctx, bigint *bi,
        bigint *dP, bigint *dQ,
        bigint *p, bigint *q, bigint *qInv)
{
    bigint *m1, *m2, *h;

    /* Montgomery has a condition the 0 < x, y < m and these products violate
     * that condition. So disable Montgomery when using CRT */
#if defined(CONFIG_BIGINT_MONTGOMERY)
    ctx->use_classical = 1;
#endif
    ctx->mod_offset = BIGINT_P_OFFSET;
    m1 = bi_mod_power(ctx, bi_copy(bi), dP);

    ctx->mod_offset = BIGINT_Q_OFFSET;
    m2 = bi_mod_power(ctx, bi, dQ);

    h = bi_subtract(ctx, bi_add(ctx, m1, p), bi_copy(m2), NULL);
    h = bi_multiply(ctx, h, qInv);
    ctx->mod_offset = BIGINT_P_OFFSET;
    h = bi_residue(ctx, h);
#if defined(CONFIG_BIGINT_MONTGOMERY)
    ctx->use_classical = 0;         /* reset for any further operation */
#endif
    return bi_add(ctx, m2, bi_multiply(ctx, q, h));
}
#endif
/** @} */