/* * Copyright (c) 2007, Cameron Rich * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the axTLS project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * @defgroup bigint_api Big Integer API * @brief The bigint implementation as used by the axTLS project. * * The bigint library is for RSA encryption/decryption as well as signing. * This code tries to minimise use of malloc/free by maintaining a small * cache. A bigint context may maintain state by being made "permanent". * It be be later released with a bi_depermanent() and bi_free() call. * * It supports the following reduction techniques: * - Classical * - Barrett * - Montgomery * * It also implements the following: * - Karatsuba multiplication * - Squaring * - Sliding window exponentiation * - Chinese Remainder Theorem (implemented in rsa.c). * * All the algorithms used are pretty standard, and designed for different * data bus sizes. Negative numbers are not dealt with at all, so a subtraction * may need to be tested for negativity. * * This library steals some ideas from Jef Poskanzer * <http://cs.marlboro.edu/term/cs-fall02/algorithms/crypto/RSA/bigint> * and GMP <http://www.swox.com/gmp>. It gets most of its implementation * detail from "The Handbook of Applied Cryptography" * <http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf> * @{ */ #include <stdlib.h> #include <limits.h> #include <string.h> #include <stdio.h> #include <time.h> #include "bigint.h" #define V1 v->comps[v->size-1] /**< v1 for division */ #define V2 v->comps[v->size-2] /**< v2 for division */ #define U(j) tmp_u->comps[tmp_u->size-j-1] /**< uj for division */ #define Q(j) quotient->comps[quotient->size-j-1] /**< qj for division */ static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bi, comp i); static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom); static bigint *alloc(BI_CTX *ctx, int size); static bigint *trim(bigint *bi); static void more_comps(bigint *bi, int n); #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \ defined(CONFIG_BIGINT_MONTGOMERY) static bigint *comp_right_shift(bigint *biR, int num_shifts); static bigint *comp_left_shift(bigint *biR, int num_shifts); #endif #ifdef CONFIG_BIGINT_CHECK_ON static void check(const bigint *bi); #else #define check(A) /**< disappears in normal production mode */ #endif /** * @brief Start a new bigint context. * @return A bigint context. */ BI_CTX *bi_initialize(void) { /* calloc() sets everything to zero */ BI_CTX *ctx = (BI_CTX *)calloc(1, sizeof(BI_CTX)); /* the radix */ ctx->bi_radix = alloc(ctx, 2); ctx->bi_radix->comps[0] = 0; ctx->bi_radix->comps[1] = 1; bi_permanent(ctx->bi_radix); return ctx; } /** * @brief Close the bigint context and free any resources. * * Free up any used memory - a check is done if all objects were not * properly freed. * @param ctx [in] The bigint session context. */ void bi_terminate(BI_CTX *ctx) { bi_depermanent(ctx->bi_radix); bi_free(ctx, ctx->bi_radix); if (ctx->active_count != 0) { #ifdef CONFIG_SSL_FULL_MODE printf("bi_terminate: there were %d un-freed bigints\n", ctx->active_count); #endif abort(); } bi_clear_cache(ctx); free(ctx); } /** *@brief Clear the memory cache. */ void bi_clear_cache(BI_CTX *ctx) { bigint *p, *pn; if (ctx->free_list == NULL) return; for (p = ctx->free_list; p != NULL; p = pn) { pn = p->next; free(p->comps); free(p); } ctx->free_count = 0; ctx->free_list = NULL; } /** * @brief Increment the number of references to this object. * It does not do a full copy. * @param bi [in] The bigint to copy. * @return A reference to the same bigint. */ bigint *bi_copy(bigint *bi) { check(bi); if (bi->refs != PERMANENT) bi->refs++; return bi; } /** * @brief Simply make a bigint object "unfreeable" if bi_free() is called on it. * * For this object to be freed, bi_depermanent() must be called. * @param bi [in] The bigint to be made permanent. */ void bi_permanent(bigint *bi) { check(bi); if (bi->refs != 1) { #ifdef CONFIG_SSL_FULL_MODE printf("bi_permanent: refs was not 1\n"); #endif abort(); } bi->refs = PERMANENT; } /** * @brief Take a permanent object and make it eligible for freedom. * @param bi [in] The bigint to be made back to temporary. */ void bi_depermanent(bigint *bi) { check(bi); if (bi->refs != PERMANENT) { #ifdef CONFIG_SSL_FULL_MODE printf("bi_depermanent: bigint was not permanent\n"); #endif abort(); } bi->refs = 1; } /** * @brief Free a bigint object so it can be used again. * * The memory itself it not actually freed, just tagged as being available * @param ctx [in] The bigint session context. * @param bi [in] The bigint to be freed. */ void bi_free(BI_CTX *ctx, bigint *bi) { check(bi); if (bi->refs == PERMANENT) { return; } if (--bi->refs > 0) { return; } bi->next = ctx->free_list; ctx->free_list = bi; ctx->free_count++; if (--ctx->active_count < 0) { #ifdef CONFIG_SSL_FULL_MODE printf("bi_free: active_count went negative " "- double-freed bigint?\n"); #endif abort(); } } /** * @brief Convert an (unsigned) integer into a bigint. * @param ctx [in] The bigint session context. * @param i [in] The (unsigned) integer to be converted. * */ bigint *int_to_bi(BI_CTX *ctx, comp i) { bigint *biR = alloc(ctx, 1); biR->comps[0] = i; return biR; } /** * @brief Do a full copy of the bigint object. * @param ctx [in] The bigint session context. * @param bi [in] The bigint object to be copied. */ bigint *bi_clone(BI_CTX *ctx, const bigint *bi) { bigint *biR = alloc(ctx, bi->size); check(bi); memcpy(biR->comps, bi->comps, bi->size*COMP_BYTE_SIZE); return biR; } /** * @brief Perform an addition operation between two bigints. * @param ctx [in] The bigint session context. * @param bia [in] A bigint. * @param bib [in] Another bigint. * @return The result of the addition. */ bigint *bi_add(BI_CTX *ctx, bigint *bia, bigint *bib) { int n; comp carry = 0; comp *pa, *pb; check(bia); check(bib); n = max(bia->size, bib->size); more_comps(bia, n+1); more_comps(bib, n); pa = bia->comps; pb = bib->comps; do { comp sl, rl, cy1; sl = *pa + *pb++; rl = sl + carry; cy1 = sl < *pa; carry = cy1 | (rl < sl); *pa++ = rl; } while (--n != 0); *pa = carry; /* do overflow */ bi_free(ctx, bib); return trim(bia); } /** * @brief Perform a subtraction operation between two bigints. * @param ctx [in] The bigint session context. * @param bia [in] A bigint. * @param bib [in] Another bigint. * @param is_negative [out] If defined, indicates that the result was negative. * is_negative may be null. * @return The result of the subtraction. The result is always positive. */ bigint *bi_subtract(BI_CTX *ctx, bigint *bia, bigint *bib, int *is_negative) { int n = bia->size; comp *pa, *pb, carry = 0; check(bia); check(bib); more_comps(bib, n); pa = bia->comps; pb = bib->comps; do { comp sl, rl, cy1; sl = *pa - *pb++; rl = sl - carry; cy1 = sl > *pa; carry = cy1 | (rl > sl); *pa++ = rl; } while (--n != 0); if (is_negative) /* indicate a negative result */ { *is_negative = carry; } bi_free(ctx, trim(bib)); /* put bib back to the way it was */ return trim(bia); } /** * Perform a multiply between a bigint an an (unsigned) integer */ static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bia, comp b) { int j = 0, n = bia->size; bigint *biR = alloc(ctx, n + 1); comp carry = 0; comp *r = biR->comps; comp *a = bia->comps; check(bia); /* clear things to start with */ memset(r, 0, ((n+1)*COMP_BYTE_SIZE)); do { long_comp tmp = *r + (long_comp)a[j]*b + carry; *r++ = (comp)tmp; /* downsize */ carry = (comp)(tmp >> COMP_BIT_SIZE); } while (++j < n); *r = carry; bi_free(ctx, bia); return trim(biR); } /** * @brief Does both division and modulo calculations. * * Used extensively when doing classical reduction. * @param ctx [in] The bigint session context. * @param u [in] A bigint which is the numerator. * @param v [in] Either the denominator or the modulus depending on the mode. * @param is_mod [n] Determines if this is a normal division (0) or a reduction * (1). * @return The result of the division/reduction. */ bigint *bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod) { int n = v->size, m = u->size-n; int j = 0, orig_u_size = u->size; uint8_t mod_offset = ctx->mod_offset; comp d; bigint *quotient, *tmp_u; comp q_dash; check(u); check(v); /* if doing reduction and we are < mod, then return mod */ if (is_mod && bi_compare(v, u) > 0) { bi_free(ctx, v); return u; } quotient = alloc(ctx, m+1); tmp_u = alloc(ctx, n+1); v = trim(v); /* make sure we have no leading 0's */ d = (comp)((long_comp)COMP_RADIX/(V1+1)); /* clear things to start with */ memset(quotient->comps, 0, ((quotient->size)*COMP_BYTE_SIZE)); /* normalise */ if (d > 1) { u = bi_int_multiply(ctx, u, d); if (is_mod) { v = ctx->bi_normalised_mod[mod_offset]; } else { v = bi_int_multiply(ctx, v, d); } } if (orig_u_size == u->size) /* new digit position u0 */ { more_comps(u, orig_u_size + 1); } do { /* get a temporary short version of u */ memcpy(tmp_u->comps, &u->comps[u->size-n-1-j], (n+1)*COMP_BYTE_SIZE); /* calculate q' */ if (U(0) == V1) { q_dash = COMP_RADIX-1; } else { q_dash = (comp)(((long_comp)U(0)*COMP_RADIX + U(1))/V1); } if (v->size > 1 && V2) { /* we are implementing the following: if (V2*q_dash > (((U(0)*COMP_RADIX + U(1) - q_dash*V1)*COMP_RADIX) + U(2))) ... */ comp inner = (comp)((long_comp)COMP_RADIX*U(0) + U(1) - (long_comp)q_dash*V1); if ((long_comp)V2*q_dash > (long_comp)inner*COMP_RADIX + U(2)) { q_dash--; } } /* multiply and subtract */ if (q_dash) { int is_negative; tmp_u = bi_subtract(ctx, tmp_u, bi_int_multiply(ctx, bi_copy(v), q_dash), &is_negative); more_comps(tmp_u, n+1); Q(j) = q_dash; /* add back */ if (is_negative) { Q(j)--; tmp_u = bi_add(ctx, tmp_u, bi_copy(v)); /* lop off the carry */ tmp_u->size--; v->size--; } } else { Q(j) = 0; } /* copy back to u */ memcpy(&u->comps[u->size-n-1-j], tmp_u->comps, (n+1)*COMP_BYTE_SIZE); } while (++j <= m); bi_free(ctx, tmp_u); bi_free(ctx, v); if (is_mod) /* get the remainder */ { bi_free(ctx, quotient); return bi_int_divide(ctx, trim(u), d); } else /* get the quotient */ { bi_free(ctx, u); return trim(quotient); } } /* * Perform an integer divide on a bigint. */ static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom) { int i = biR->size - 1; long_comp r = 0; check(biR); do { r = (r<<COMP_BIT_SIZE) + biR->comps[i]; biR->comps[i] = (comp)(r / denom); r %= denom; } while (--i >= 0); return trim(biR); } #ifdef CONFIG_BIGINT_MONTGOMERY /** * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1, * where B^-1(B-1) mod N=1. Actually, only the least significant part of * N' is needed, hence the definition N0'=N' mod b. We reproduce below the * simple algorithm from an article by Dusse and Kaliski to efficiently * find N0' from N0 and b */ static comp modular_inverse(bigint *bim) { int i; comp t = 1; comp two_2_i_minus_1 = 2; /* 2^(i-1) */ long_comp two_2_i = 4; /* 2^i */ comp N = bim->comps[0]; for (i = 2; i <= COMP_BIT_SIZE; i++) { if ((long_comp)N*t%two_2_i >= two_2_i_minus_1) { t += two_2_i_minus_1; } two_2_i_minus_1 <<= 1; two_2_i <<= 1; } return (comp)(COMP_RADIX-t); } #endif #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \ defined(CONFIG_BIGINT_MONTGOMERY) /** * Take each component and shift down (in terms of components) */ static bigint *comp_right_shift(bigint *biR, int num_shifts) { int i = biR->size-num_shifts; comp *x = biR->comps; comp *y = &biR->comps[num_shifts]; check(biR); if (i <= 0) /* have we completely right shifted? */ { biR->comps[0] = 0; /* return 0 */ biR->size = 1; return biR; } do { *x++ = *y++; } while (--i > 0); biR->size -= num_shifts; return biR; } /** * Take each component and shift it up (in terms of components) */ static bigint *comp_left_shift(bigint *biR, int num_shifts) { int i = biR->size-1; comp *x, *y; check(biR); if (num_shifts <= 0) { return biR; } more_comps(biR, biR->size + num_shifts); x = &biR->comps[i+num_shifts]; y = &biR->comps[i]; do { *x-- = *y--; } while (i--); memset(biR->comps, 0, num_shifts*COMP_BYTE_SIZE); /* zero LS comps */ return biR; } #endif /** * @brief Allow a binary sequence to be imported as a bigint. * @param ctx [in] The bigint session context. * @param data [in] The data to be converted. * @param size [in] The number of bytes of data. * @return A bigint representing this data. */ bigint *bi_import(BI_CTX *ctx, const uint8_t *data, int size) { bigint *biR = alloc(ctx, (size+COMP_BYTE_SIZE-1)/COMP_BYTE_SIZE); int i, j = 0, offset = 0; memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE); for (i = size-1; i >= 0; i--) { biR->comps[offset] += data[i] << (j*8); if (++j == COMP_BYTE_SIZE) { j = 0; offset ++; } } return trim(biR); } #ifdef CONFIG_SSL_FULL_MODE /** * @brief The testharness uses this code to import text hex-streams and * convert them into bigints. * @param ctx [in] The bigint session context. * @param data [in] A string consisting of hex characters. The characters must * be in upper case. * @return A bigint representing this data. */ bigint *bi_str_import(BI_CTX *ctx, const char *data) { int size = strlen(data); bigint *biR = alloc(ctx, (size+COMP_NUM_NIBBLES-1)/COMP_NUM_NIBBLES); int i, j = 0, offset = 0; memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE); for (i = size-1; i >= 0; i--) { int num = (data[i] <= '9') ? (data[i] - '0') : (data[i] - 'A' + 10); biR->comps[offset] += num << (j*4); if (++j == COMP_NUM_NIBBLES) { j = 0; offset ++; } } return biR; } void bi_print(const char *label, bigint *x) { int i, j; if (x == NULL) { printf("%s: (null)\n", label); return; } printf("%s: (size %d)\n", label, x->size); for (i = x->size-1; i >= 0; i--) { for (j = COMP_NUM_NIBBLES-1; j >= 0; j--) { comp mask = 0x0f << (j*4); comp num = (x->comps[i] & mask) >> (j*4); putc((num <= 9) ? (num + '0') : (num + 'A' - 10), stdout); } } printf("\n"); } #endif /** * @brief Take a bigint and convert it into a byte sequence. * * This is useful after a decrypt operation. * @param ctx [in] The bigint session context. * @param x [in] The bigint to be converted. * @param data [out] The converted data as a byte stream. * @param size [in] The maximum size of the byte stream. Unused bytes will be * zeroed. */ void bi_export(BI_CTX *ctx, bigint *x, uint8_t *data, int size) { int i, j, k = size-1; check(x); memset(data, 0, size); /* ensure all leading 0's are cleared */ for (i = 0; i < x->size; i++) { for (j = 0; j < COMP_BYTE_SIZE; j++) { comp mask = 0xff << (j*8); int num = (x->comps[i] & mask) >> (j*8); data[k--] = num; if (k < 0) { break; } } } bi_free(ctx, x); } /** * @brief Pre-calculate some of the expensive steps in reduction. * * This function should only be called once (normally when a session starts). * When the session is over, bi_free_mod() should be called. bi_mod_power() * relies on this function being called. * @param ctx [in] The bigint session context. * @param bim [in] The bigint modulus that will be used. * @param mod_offset [in] There are three moduluii that can be stored - the * standard modulus, and its two primes p and q. This offset refers to which * modulus we are referring to. * @see bi_free_mod(), bi_mod_power(). */ void bi_set_mod(BI_CTX *ctx, bigint *bim, int mod_offset) { int k = bim->size; comp d = (comp)((long_comp)COMP_RADIX/(bim->comps[k-1]+1)); #ifdef CONFIG_BIGINT_MONTGOMERY bigint *R, *R2; #endif ctx->bi_mod[mod_offset] = bim; bi_permanent(ctx->bi_mod[mod_offset]); ctx->bi_normalised_mod[mod_offset] = bi_int_multiply(ctx, bim, d); bi_permanent(ctx->bi_normalised_mod[mod_offset]); #if defined(CONFIG_BIGINT_MONTGOMERY) /* set montgomery variables */ R = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k-1); /* R */ R2 = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k*2-1); /* R^2 */ ctx->bi_RR_mod_m[mod_offset] = bi_mod(ctx, R2); /* R^2 mod m */ ctx->bi_R_mod_m[mod_offset] = bi_mod(ctx, R); /* R mod m */ bi_permanent(ctx->bi_RR_mod_m[mod_offset]); bi_permanent(ctx->bi_R_mod_m[mod_offset]); ctx->N0_dash[mod_offset] = modular_inverse(ctx->bi_mod[mod_offset]); #elif defined (CONFIG_BIGINT_BARRETT) ctx->bi_mu[mod_offset] = bi_divide(ctx, comp_left_shift( bi_clone(ctx, ctx->bi_radix), k*2-1), ctx->bi_mod[mod_offset], 0); bi_permanent(ctx->bi_mu[mod_offset]); #endif } /** * @brief Used when cleaning various bigints at the end of a session. * @param ctx [in] The bigint session context. * @param mod_offset [in] The offset to use. * @see bi_set_mod(). */ void bi_free_mod(BI_CTX *ctx, int mod_offset) { bi_depermanent(ctx->bi_mod[mod_offset]); bi_free(ctx, ctx->bi_mod[mod_offset]); #if defined (CONFIG_BIGINT_MONTGOMERY) bi_depermanent(ctx->bi_RR_mod_m[mod_offset]); bi_depermanent(ctx->bi_R_mod_m[mod_offset]); bi_free(ctx, ctx->bi_RR_mod_m[mod_offset]); bi_free(ctx, ctx->bi_R_mod_m[mod_offset]); #elif defined(CONFIG_BIGINT_BARRETT) bi_depermanent(ctx->bi_mu[mod_offset]); bi_free(ctx, ctx->bi_mu[mod_offset]); #endif bi_depermanent(ctx->bi_normalised_mod[mod_offset]); bi_free(ctx, ctx->bi_normalised_mod[mod_offset]); } /** * Perform a standard multiplication between two bigints. */ static bigint *regular_multiply(BI_CTX *ctx, bigint *bia, bigint *bib) { int i, j, i_plus_j; int n = bia->size; int t = bib->size; bigint *biR = alloc(ctx, n + t); comp *sr = biR->comps; comp *sa = bia->comps; comp *sb = bib->comps; check(bia); check(bib); /* clear things to start with */ memset(biR->comps, 0, ((n+t)*COMP_BYTE_SIZE)); i = 0; do { comp carry = 0; comp b = *sb++; i_plus_j = i; j = 0; do { long_comp tmp = sr[i_plus_j] + (long_comp)sa[j]*b + carry; sr[i_plus_j++] = (comp)tmp; /* downsize */ carry = (comp)(tmp >> COMP_BIT_SIZE); } while (++j < n); sr[i_plus_j] = carry; } while (++i < t); bi_free(ctx, bia); bi_free(ctx, bib); return trim(biR); } #ifdef CONFIG_BIGINT_KARATSUBA /* * Karatsuba improves on regular multiplication due to only 3 multiplications * being done instead of 4. The additional additions/subtractions are O(N) * rather than O(N^2) and so for big numbers it saves on a few operations */ static bigint *karatsuba(BI_CTX *ctx, bigint *bia, bigint *bib, int is_square) { bigint *x0, *x1; bigint *p0, *p1, *p2; int m; if (is_square) { m = (bia->size + 1)/2; } else { m = (max(bia->size, bib->size) + 1)/2; } x0 = bi_clone(ctx, bia); x0->size = m; x1 = bi_clone(ctx, bia); comp_right_shift(x1, m); bi_free(ctx, bia); /* work out the 3 partial products */ if (is_square) { p0 = bi_square(ctx, bi_copy(x0)); p2 = bi_square(ctx, bi_copy(x1)); p1 = bi_square(ctx, bi_add(ctx, x0, x1)); } else /* normal multiply */ { bigint *y0, *y1; y0 = bi_clone(ctx, bib); y0->size = m; y1 = bi_clone(ctx, bib); comp_right_shift(y1, m); bi_free(ctx, bib); p0 = bi_multiply(ctx, bi_copy(x0), bi_copy(y0)); p2 = bi_multiply(ctx, bi_copy(x1), bi_copy(y1)); p1 = bi_multiply(ctx, bi_add(ctx, x0, x1), bi_add(ctx, y0, y1)); } p1 = bi_subtract(ctx, bi_subtract(ctx, p1, bi_copy(p2), NULL), bi_copy(p0), NULL); comp_left_shift(p1, m); comp_left_shift(p2, 2*m); return bi_add(ctx, p1, bi_add(ctx, p0, p2)); } #endif /** * @brief Perform a multiplication operation between two bigints. * @param ctx [in] The bigint session context. * @param bia [in] A bigint. * @param bib [in] Another bigint. * @return The result of the multiplication. */ bigint *bi_multiply(BI_CTX *ctx, bigint *bia, bigint *bib) { check(bia); check(bib); #ifdef CONFIG_BIGINT_KARATSUBA if (min(bia->size, bib->size) < MUL_KARATSUBA_THRESH) { return regular_multiply(ctx, bia, bib); } return karatsuba(ctx, bia, bib, 0); #else return regular_multiply(ctx, bia, bib); #endif } #ifdef CONFIG_BIGINT_SQUARE /* * Perform the actual square operion. It takes into account overflow. */ static bigint *regular_square(BI_CTX *ctx, bigint *bi) { int t = bi->size; int i = 0, j; bigint *biR = alloc(ctx, t*2); comp *w = biR->comps; comp *x = bi->comps; comp carry; memset(w, 0, biR->size*COMP_BYTE_SIZE); do { long_comp tmp = w[2*i] + (long_comp)x[i]*x[i]; comp u = 0; w[2*i] = (comp)tmp; carry = (comp)(tmp >> COMP_BIT_SIZE); for (j = i+1; j < t; j++) { long_comp xx = (long_comp)x[i]*x[j]; long_comp xx2 = 2*xx; long_comp blob = (long_comp)w[i+j]+carry; if (u) /* previous overflow */ { blob += COMP_RADIX; } u = 0; tmp = xx2 + blob; /* check for overflow */ if ((COMP_MAX-xx) < xx || (COMP_MAX-xx2) < blob) { u = 1; } w[i+j] = (comp)tmp; carry = (comp)(tmp >> COMP_BIT_SIZE); } w[i+t] += carry; if (u) { w[i+t+1] = 1; /* add carry */ } } while (++i < t); bi_free(ctx, bi); return trim(biR); } /** * @brief Perform a square operation on a bigint. * @param ctx [in] The bigint session context. * @param bia [in] A bigint. * @return The result of the multiplication. */ bigint *bi_square(BI_CTX *ctx, bigint *bia) { check(bia); #ifdef CONFIG_BIGINT_KARATSUBA if (bia->size < SQU_KARATSUBA_THRESH) { return regular_square(ctx, bia); } return karatsuba(ctx, bia, NULL, 1); #else return regular_square(ctx, bia); #endif } #endif /** * @brief Compare two bigints. * @param bia [in] A bigint. * @param bib [in] Another bigint. * @return -1 if smaller, 1 if larger and 0 if equal. */ int bi_compare(bigint *bia, bigint *bib) { int r, i; check(bia); check(bib); if (bia->size > bib->size) r = 1; else if (bia->size < bib->size) r = -1; else { comp *a = bia->comps; comp *b = bib->comps; /* Same number of components. Compare starting from the high end * and working down. */ r = 0; i = bia->size - 1; do { if (a[i] > b[i]) { r = 1; break; } else if (a[i] < b[i]) { r = -1; break; } } while (--i >= 0); } return r; } /* * Allocate and zero more components. Does not consume bi. */ static void more_comps(bigint *bi, int n) { if (n > bi->max_comps) { bi->max_comps = max(bi->max_comps * 2, n); bi->comps = (comp*)realloc(bi->comps, bi->max_comps * COMP_BYTE_SIZE); } if (n > bi->size) { memset(&bi->comps[bi->size], 0, (n-bi->size)*COMP_BYTE_SIZE); } bi->size = n; } /* * Make a new empty bigint. It may just use an old one if one is available. * Otherwise get one off the heap. */ static bigint *alloc(BI_CTX *ctx, int size) { bigint *biR; /* Can we recycle an old bigint? */ if (ctx->free_list != NULL) { biR = ctx->free_list; ctx->free_list = biR->next; ctx->free_count--; if (biR->refs != 0) { #ifdef CONFIG_SSL_FULL_MODE printf("alloc: refs was not 0\n"); #endif abort(); /* create a stack trace from a core dump */ } more_comps(biR, size); } else { /* No free bigints available - create a new one. */ biR = (bigint *)malloc(sizeof(bigint)); biR->comps = (comp*)malloc(size * COMP_BYTE_SIZE); biR->max_comps = size; /* give some space to spare */ } biR->size = size; biR->refs = 1; biR->next = NULL; ctx->active_count++; return biR; } /* * Work out the highest '1' bit in an exponent. Used when doing sliding-window * exponentiation. */ static int find_max_exp_index(bigint *biexp) { int i = COMP_BIT_SIZE-1; comp shift = COMP_RADIX/2; comp test = biexp->comps[biexp->size-1]; /* assume no leading zeroes */ check(biexp); do { if (test & shift) { return i+(biexp->size-1)*COMP_BIT_SIZE; } shift >>= 1; } while (--i != 0); return -1; /* error - must have been a leading 0 */ } /* * Is a particular bit is an exponent 1 or 0? Used when doing sliding-window * exponentiation. */ static int exp_bit_is_one(bigint *biexp, int offset) { comp test = biexp->comps[offset / COMP_BIT_SIZE]; int num_shifts = offset % COMP_BIT_SIZE; comp shift = 1; int i; check(biexp); for (i = 0; i < num_shifts; i++) { shift <<= 1; } return test & shift; } #ifdef CONFIG_BIGINT_CHECK_ON /* * Perform a sanity check on bi. */ static void check(const bigint *bi) { if (bi->refs <= 0) { printf("check: zero or negative refs in bigint\n"); abort(); } if (bi->next != NULL) { printf("check: attempt to use a bigint from " "the free list\n"); abort(); } } #endif /* * Delete any leading 0's (and allow for 0). */ static bigint *trim(bigint *bi) { check(bi); while (bi->comps[bi->size-1] == 0 && bi->size > 1) { bi->size--; } return bi; } #if defined(CONFIG_BIGINT_MONTGOMERY) /** * @brief Perform a single montgomery reduction. * @param ctx [in] The bigint session context. * @param bixy [in] A bigint. * @return The result of the montgomery reduction. */ bigint *bi_mont(BI_CTX *ctx, bigint *bixy) { int i = 0, n; uint8_t mod_offset = ctx->mod_offset; bigint *bim = ctx->bi_mod[mod_offset]; comp mod_inv = ctx->N0_dash[mod_offset]; check(bixy); if (ctx->use_classical) /* just use classical instead */ { return bi_mod(ctx, bixy); } n = bim->size; do { bixy = bi_add(ctx, bixy, comp_left_shift( bi_int_multiply(ctx, bim, bixy->comps[i]*mod_inv), i)); } while (++i < n); comp_right_shift(bixy, n); if (bi_compare(bixy, bim) >= 0) { bixy = bi_subtract(ctx, bixy, bim, NULL); } return bixy; } #elif defined(CONFIG_BIGINT_BARRETT) /* * Stomp on the most significant components to give the illusion of a "mod base * radix" operation */ static bigint *comp_mod(bigint *bi, int mod) { check(bi); if (bi->size > mod) { bi->size = mod; } return bi; } /* * Barrett reduction has no need for some parts of the product, so ignore bits * of the multiply. This routine gives Barrett its big performance * improvements over Classical/Montgomery reduction methods. */ static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib, int inner_partial, int outer_partial) { int i = 0, j, n = bia->size, t = bib->size; bigint *biR; comp carry; comp *sr, *sa, *sb; check(bia); check(bib); biR = alloc(ctx, n + t); sa = bia->comps; sb = bib->comps; sr = biR->comps; if (inner_partial) { memset(sr, 0, inner_partial*COMP_BYTE_SIZE); } else /* outer partial */ { if (n < outer_partial || t < outer_partial) /* should we bother? */ { bi_free(ctx, bia); bi_free(ctx, bib); biR->comps[0] = 0; /* return 0 */ biR->size = 1; return biR; } memset(&sr[outer_partial], 0, (n+t-outer_partial)*COMP_BYTE_SIZE); } do { comp *a = sa; comp b = *sb++; long_comp tmp; int i_plus_j = i; carry = 0; j = n; if (outer_partial && i_plus_j < outer_partial) { i_plus_j = outer_partial; a = &sa[outer_partial-i]; j = n-(outer_partial-i); } do { if (inner_partial && i_plus_j >= inner_partial) { break; } tmp = sr[i_plus_j] + ((long_comp)*a++)*b + carry; sr[i_plus_j++] = (comp)tmp; /* downsize */ carry = (comp)(tmp >> COMP_BIT_SIZE); } while (--j != 0); sr[i_plus_j] = carry; } while (++i < t); bi_free(ctx, bia); bi_free(ctx, bib); return trim(biR); } /** * @brief Perform a single Barrett reduction. * @param ctx [in] The bigint session context. * @param bi [in] A bigint. * @return The result of the Barrett reduction. */ bigint *bi_barrett(BI_CTX *ctx, bigint *bi) { bigint *q1, *q2, *q3, *r1, *r2, *r; uint8_t mod_offset = ctx->mod_offset; bigint *bim = ctx->bi_mod[mod_offset]; int k = bim->size; check(bi); check(bim); /* use Classical method instead - Barrett cannot help here */ if (bi->size > k*2) { return bi_mod(ctx, bi); } q1 = comp_right_shift(bi_clone(ctx, bi), k-1); /* do outer partial multiply */ q2 = partial_multiply(ctx, q1, ctx->bi_mu[mod_offset], 0, k-1); q3 = comp_right_shift(q2, k+1); r1 = comp_mod(bi, k+1); /* do inner partial multiply */ r2 = comp_mod(partial_multiply(ctx, q3, bim, k+1, 0), k+1); r = bi_subtract(ctx, r1, r2, NULL); /* if (r >= m) r = r - m; */ if (bi_compare(r, bim) >= 0) { r = bi_subtract(ctx, r, bim, NULL); } return r; } #endif /* CONFIG_BIGINT_BARRETT */ #ifdef CONFIG_BIGINT_SLIDING_WINDOW /* * Work out g1, g3, g5, g7... etc for the sliding-window algorithm */ static void precompute_slide_window(BI_CTX *ctx, int window, bigint *g1) { int k = 1, i; bigint *g2; for (i = 0; i < window-1; i++) /* compute 2^(window-1) */ { k <<= 1; } ctx->g = (bigint **)malloc(k*sizeof(bigint *)); ctx->g[0] = bi_clone(ctx, g1); bi_permanent(ctx->g[0]); g2 = bi_residue(ctx, bi_square(ctx, ctx->g[0])); /* g^2 */ for (i = 1; i < k; i++) { ctx->g[i] = bi_residue(ctx, bi_multiply(ctx, ctx->g[i-1], bi_copy(g2))); bi_permanent(ctx->g[i]); } bi_free(ctx, g2); ctx->window = k; } #endif /** * @brief Perform a modular exponentiation. * * This function requires bi_set_mod() to have been called previously. This is * one of the optimisations used for performance. * @param ctx [in] The bigint session context. * @param bi [in] The bigint on which to perform the mod power operation. * @param biexp [in] The bigint exponent. * @return The result of the mod exponentiation operation * @see bi_set_mod(). */ bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp) { int i = find_max_exp_index(biexp), j, window_size = 1; bigint *biR = int_to_bi(ctx, 1); #if defined(CONFIG_BIGINT_MONTGOMERY) uint8_t mod_offset = ctx->mod_offset; if (!ctx->use_classical) { /* preconvert */ bi = bi_mont(ctx, bi_multiply(ctx, bi, ctx->bi_RR_mod_m[mod_offset])); /* x' */ bi_free(ctx, biR); biR = ctx->bi_R_mod_m[mod_offset]; /* A */ } #endif check(bi); check(biexp); #ifdef CONFIG_BIGINT_SLIDING_WINDOW for (j = i; j > 32; j /= 5) /* work out an optimum size */ window_size++; /* work out the slide constants */ precompute_slide_window(ctx, window_size, bi); #else /* just one constant */ ctx->g = (bigint **)malloc(sizeof(bigint *)); ctx->g[0] = bi_clone(ctx, bi); ctx->window = 1; bi_permanent(ctx->g[0]); #endif /* if sliding-window is off, then only one bit will be done at a time and * will reduce to standard left-to-right exponentiation */ do { if (exp_bit_is_one(biexp, i)) { int l = i-window_size+1; int part_exp = 0; if (l < 0) /* LSB of exponent will always be 1 */ l = 0; else { while (exp_bit_is_one(biexp, l) == 0) l++; /* go back up */ } /* build up the section of the exponent */ for (j = i; j >= l; j--) { biR = bi_residue(ctx, bi_square(ctx, biR)); if (exp_bit_is_one(biexp, j)) part_exp++; if (j != l) part_exp <<= 1; } part_exp = (part_exp-1)/2; /* adjust for array */ biR = bi_residue(ctx, bi_multiply(ctx, biR, ctx->g[part_exp])); i = l-1; } else /* square it */ { biR = bi_residue(ctx, bi_square(ctx, biR)); i--; } } while (i >= 0); /* cleanup */ for (i = 0; i < ctx->window; i++) { bi_depermanent(ctx->g[i]); bi_free(ctx, ctx->g[i]); } free(ctx->g); bi_free(ctx, bi); bi_free(ctx, biexp); #if defined CONFIG_BIGINT_MONTGOMERY return ctx->use_classical ? biR : bi_mont(ctx, biR); /* convert back */ #else /* CONFIG_BIGINT_CLASSICAL or CONFIG_BIGINT_BARRETT */ return biR; #endif } #ifdef CONFIG_SSL_CERT_VERIFICATION /** * @brief Perform a modular exponentiation using a temporary modulus. * * We need this function to check the signatures of certificates. The modulus * of this function is temporary as it's just used for authentication. * @param ctx [in] The bigint session context. * @param bi [in] The bigint to perform the exp/mod. * @param bim [in] The temporary modulus. * @param biexp [in] The bigint exponent. * @return The result of the mod exponentiation operation * @see bi_set_mod(). */ bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp) { bigint *biR, *tmp_biR; /* Set up a temporary bigint context and transfer what we need between * them. We need to do this since we want to keep the original modulus * which is already in this context. This operation is only called when * doing peer verification, and so is not expensive :-) */ BI_CTX *tmp_ctx = bi_initialize(); bi_set_mod(tmp_ctx, bi_clone(tmp_ctx, bim), BIGINT_M_OFFSET); tmp_biR = bi_mod_power(tmp_ctx, bi_clone(tmp_ctx, bi), bi_clone(tmp_ctx, biexp)); biR = bi_clone(ctx, tmp_biR); bi_free(tmp_ctx, tmp_biR); bi_free_mod(tmp_ctx, BIGINT_M_OFFSET); bi_terminate(tmp_ctx); bi_free(ctx, bi); bi_free(ctx, bim); bi_free(ctx, biexp); return biR; } #endif #ifdef CONFIG_BIGINT_CRT /** * @brief Use the Chinese Remainder Theorem to quickly perform RSA decrypts. * * @param ctx [in] The bigint session context. * @param bi [in] The bigint to perform the exp/mod. * @param dP [in] CRT's dP bigint * @param dQ [in] CRT's dQ bigint * @param p [in] CRT's p bigint * @param q [in] CRT's q bigint * @param qInv [in] CRT's qInv bigint * @return The result of the CRT operation */ bigint *bi_crt(BI_CTX *ctx, bigint *bi, bigint *dP, bigint *dQ, bigint *p, bigint *q, bigint *qInv) { bigint *m1, *m2, *h; /* Montgomery has a condition the 0 < x, y < m and these products violate * that condition. So disable Montgomery when using CRT */ #if defined(CONFIG_BIGINT_MONTGOMERY) ctx->use_classical = 1; #endif ctx->mod_offset = BIGINT_P_OFFSET; m1 = bi_mod_power(ctx, bi_copy(bi), dP); ctx->mod_offset = BIGINT_Q_OFFSET; m2 = bi_mod_power(ctx, bi, dQ); h = bi_subtract(ctx, bi_add(ctx, m1, p), bi_copy(m2), NULL); h = bi_multiply(ctx, h, qInv); ctx->mod_offset = BIGINT_P_OFFSET; h = bi_residue(ctx, h); #if defined(CONFIG_BIGINT_MONTGOMERY) ctx->use_classical = 0; /* reset for any further operation */ #endif return bi_add(ctx, m2, bi_multiply(ctx, q, h)); } #endif /** @} */