1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Stateify provides a simple way to generate Load/Save methods based on
// existing types and struct tags.
package main
import (
"flag"
"fmt"
"go/ast"
"go/parser"
"go/token"
"os"
"path/filepath"
"reflect"
"strings"
"sync"
"gvisor.dev/gvisor/tools/constraintutil"
)
var (
fullPkg = flag.String("fullpkg", "", "fully qualified output package")
imports = flag.String("imports", "", "extra imports for the output file")
output = flag.String("output", "", "output file")
statePkg = flag.String("statepkg", "", "state import package; defaults to empty")
)
// resolveTypeName returns a qualified type name.
func resolveTypeName(typ ast.Expr) (field string, qualified string) {
for done := false; !done; {
// Resolve star expressions.
switch rs := typ.(type) {
case *ast.StarExpr:
qualified += "*"
typ = rs.X
case *ast.ArrayType:
if rs.Len == nil {
// Slice type declaration.
qualified += "[]"
} else {
// Array type declaration.
qualified += "[" + rs.Len.(*ast.BasicLit).Value + "]"
}
typ = rs.Elt
default:
// No more descent.
done = true
}
}
// Resolve a package selector.
sel, ok := typ.(*ast.SelectorExpr)
if ok {
qualified = qualified + sel.X.(*ast.Ident).Name + "."
typ = sel.Sel
}
// Figure out actual type name.
field = typ.(*ast.Ident).Name
qualified = qualified + field
return
}
// extractStateTag pulls the relevant state tag.
func extractStateTag(tag *ast.BasicLit) string {
if tag == nil {
return ""
}
if len(tag.Value) < 2 {
return ""
}
return reflect.StructTag(tag.Value[1 : len(tag.Value)-1]).Get("state")
}
// scanFunctions is a set of functions passed to scanFields.
type scanFunctions struct {
zerovalue func(name string)
normal func(name string)
wait func(name string)
value func(name, typName string)
}
// scanFields scans the fields of a struct.
//
// Each provided function will be applied to appropriately tagged fields, or
// skipped if nil.
//
// Fields tagged nosave are skipped.
func scanFields(ss *ast.StructType, prefix string, fn scanFunctions) {
if ss.Fields.List == nil {
// No fields.
return
}
// Scan all fields.
for _, field := range ss.Fields.List {
// Calculate the name.
name := ""
if field.Names != nil {
// It's a named field; override.
name = field.Names[0].Name
} else {
// Anonymous types can't be embedded, so we don't need
// to worry about providing a useful name here.
name, _ = resolveTypeName(field.Type)
}
// Skip _ fields.
if name == "_" {
continue
}
// Is this a anonymous struct? If yes, then continue the
// recursion with the given prefix. We don't pay attention to
// any tags on the top-level struct field.
tag := extractStateTag(field.Tag)
if anon, ok := field.Type.(*ast.StructType); ok && tag == "" {
scanFields(anon, name+".", fn)
continue
}
switch tag {
case "zerovalue":
if fn.zerovalue != nil {
fn.zerovalue(name)
}
case "":
if fn.normal != nil {
fn.normal(name)
}
case "wait":
if fn.wait != nil {
fn.wait(name)
}
case "manual", "nosave", "ignore":
// Do nothing.
default:
if strings.HasPrefix(tag, ".(") && strings.HasSuffix(tag, ")") {
if fn.value != nil {
fn.value(name, tag[2:len(tag)-1])
}
}
}
}
}
func camelCased(name string) string {
return strings.ToUpper(name[:1]) + name[1:]
}
func main() {
// Parse flags.
flag.Usage = func() {
fmt.Fprintf(os.Stderr, "Usage: %s [options]\n", os.Args[0])
flag.PrintDefaults()
}
flag.Parse()
if len(flag.Args()) == 0 {
flag.Usage()
os.Exit(1)
}
if *fullPkg == "" {
fmt.Fprintf(os.Stderr, "Error: package required.")
os.Exit(1)
}
// Open the output file.
var (
outputFile *os.File
err error
)
if *output == "" || *output == "-" {
outputFile = os.Stdout
} else {
outputFile, err = os.OpenFile(*output, os.O_CREATE|os.O_WRONLY|os.O_TRUNC, 0644)
if err != nil {
fmt.Fprintf(os.Stderr, "Error opening output %q: %v", *output, err)
}
defer outputFile.Close()
}
// Set the statePrefix for below, depending on the import.
statePrefix := ""
if *statePkg != "" {
parts := strings.Split(*statePkg, "/")
statePrefix = parts[len(parts)-1] + "."
}
// initCalls is dumped at the end.
var initCalls []string
// Common closures.
emitRegister := func(name string) {
initCalls = append(initCalls, fmt.Sprintf("%sRegister((*%s)(nil))", statePrefix, name))
}
// Automated warning.
fmt.Fprint(outputFile, "// automatically generated by stateify.\n\n")
// Emit build constraints.
bcexpr, err := constraintutil.CombineFromFiles(flag.Args())
if err != nil {
fmt.Fprintf(os.Stderr, "Failed to infer build constraints: %v", err)
os.Exit(1)
}
outputFile.WriteString(constraintutil.Lines(bcexpr))
// Emit the package name.
_, pkg := filepath.Split(*fullPkg)
fmt.Fprintf(outputFile, "package %s\n\n", pkg)
// Emit the imports lazily.
var once sync.Once
maybeEmitImports := func() {
once.Do(func() {
// Emit the imports.
fmt.Fprint(outputFile, "import (\n")
if *statePkg != "" {
fmt.Fprintf(outputFile, " \"%s\"\n", *statePkg)
}
if *imports != "" {
for _, i := range strings.Split(*imports, ",") {
fmt.Fprintf(outputFile, " \"%s\"\n", i)
}
}
fmt.Fprint(outputFile, ")\n\n")
})
}
files := make([]*ast.File, 0, len(flag.Args()))
// Parse the input files.
for _, filename := range flag.Args() {
// Parse the file.
fset := token.NewFileSet()
f, err := parser.ParseFile(fset, filename, nil, parser.ParseComments)
if err != nil {
// Not a valid input file?
fmt.Fprintf(os.Stderr, "Input %q can't be parsed: %v\n", filename, err)
os.Exit(1)
}
files = append(files, f)
}
type method struct {
typeName string
methodName string
}
// Search for and add all method to a set. We auto-detecting several
// different methods (and insert them if we don't find them, in order
// to ensure that expectations match reality).
//
// While we do this, figure out the right receiver name. If there are
// multiple distinct receivers, then we will just pick the last one.
simpleMethods := make(map[method]struct{})
receiverNames := make(map[string]string)
for _, f := range files {
// Go over all functions.
for _, decl := range f.Decls {
d, ok := decl.(*ast.FuncDecl)
if !ok {
continue
}
if d.Recv == nil || len(d.Recv.List) != 1 {
// Not a named method.
continue
}
// Save the method and the receiver.
name, _ := resolveTypeName(d.Recv.List[0].Type)
simpleMethods[method{
typeName: name,
methodName: d.Name.Name,
}] = struct{}{}
if len(d.Recv.List[0].Names) > 0 {
receiverNames[name] = d.Recv.List[0].Names[0].Name
}
}
}
for _, f := range files {
// Go over all named types.
for _, decl := range f.Decls {
d, ok := decl.(*ast.GenDecl)
if !ok || d.Tok != token.TYPE {
continue
}
// Only generate code for types marked "// +stateify
// savable" in one of the proceeding comment lines. If
// the line is marked "// +stateify type" then only
// generate type information and register the type.
if d.Doc == nil {
continue
}
var (
generateTypeInfo = false
generateSaverLoader = false
)
for _, l := range d.Doc.List {
if l.Text == "// +stateify savable" {
generateTypeInfo = true
generateSaverLoader = true
break
}
if l.Text == "// +stateify type" {
generateTypeInfo = true
}
}
if !generateTypeInfo && !generateSaverLoader {
continue
}
for _, gs := range d.Specs {
ts := gs.(*ast.TypeSpec)
recv, ok := receiverNames[ts.Name.Name]
if !ok {
// Maybe no methods were defined?
recv = strings.ToLower(ts.Name.Name[:1])
}
switch x := ts.Type.(type) {
case *ast.StructType:
maybeEmitImports()
// Record the slot for each field.
fieldCount := 0
fields := make(map[string]int)
emitField := func(name string) {
fmt.Fprintf(outputFile, " \"%s\",\n", name)
fields[name] = fieldCount
fieldCount++
}
emitFieldValue := func(name string, _ string) {
emitField(name)
}
emitLoadValue := func(name, typName string) {
fmt.Fprintf(outputFile, " stateSourceObject.LoadValue(%d, new(%s), func(y interface{}) { %s.load%s(y.(%s)) })\n", fields[name], typName, recv, camelCased(name), typName)
}
emitLoad := func(name string) {
fmt.Fprintf(outputFile, " stateSourceObject.Load(%d, &%s.%s)\n", fields[name], recv, name)
}
emitLoadWait := func(name string) {
fmt.Fprintf(outputFile, " stateSourceObject.LoadWait(%d, &%s.%s)\n", fields[name], recv, name)
}
emitSaveValue := func(name, typName string) {
// Emit typName to be more robust against code generation bugs,
// but instead of one line make two lines to silence ST1023
// finding (i.e. avoid nogo finding: "should omit type $typName
// from declaration; it will be inferred from the right-hand side")
fmt.Fprintf(outputFile, " var %sValue %s\n", name, typName)
fmt.Fprintf(outputFile, " %sValue = %s.save%s()\n", name, recv, camelCased(name))
fmt.Fprintf(outputFile, " stateSinkObject.SaveValue(%d, %sValue)\n", fields[name], name)
}
emitSave := func(name string) {
fmt.Fprintf(outputFile, " stateSinkObject.Save(%d, &%s.%s)\n", fields[name], recv, name)
}
emitZeroCheck := func(name string) {
fmt.Fprintf(outputFile, " if !%sIsZeroValue(&%s.%s) { %sFailf(\"%s is %%#v, expected zero\", &%s.%s) }\n", statePrefix, recv, name, statePrefix, name, recv, name)
}
// Generate the type name method.
fmt.Fprintf(outputFile, "func (%s *%s) StateTypeName() string {\n", recv, ts.Name.Name)
fmt.Fprintf(outputFile, " return \"%s.%s\"\n", *fullPkg, ts.Name.Name)
fmt.Fprintf(outputFile, "}\n\n")
// Generate the fields method.
fmt.Fprintf(outputFile, "func (%s *%s) StateFields() []string {\n", recv, ts.Name.Name)
fmt.Fprintf(outputFile, " return []string{\n")
scanFields(x, "", scanFunctions{
normal: emitField,
wait: emitField,
value: emitFieldValue,
})
fmt.Fprintf(outputFile, " }\n")
fmt.Fprintf(outputFile, "}\n\n")
// Define beforeSave if a definition was not found. This prevents
// the code from compiling if a custom beforeSave was defined in a
// file not provided to this binary and prevents inherited methods
// from being called multiple times by overriding them.
if _, ok := simpleMethods[method{
typeName: ts.Name.Name,
methodName: "beforeSave",
}]; !ok && generateSaverLoader {
fmt.Fprintf(outputFile, "func (%s *%s) beforeSave() {}\n\n", recv, ts.Name.Name)
}
// Generate the save method.
//
// N.B. For historical reasons, we perform the value saves first,
// and perform the value loads last. There should be no dependency
// on this specific behavior, but the ability to specify slots
// allows a manual implementation to be order-dependent.
if generateSaverLoader {
fmt.Fprintf(outputFile, "// +checklocksignore\n")
fmt.Fprintf(outputFile, "func (%s *%s) StateSave(stateSinkObject %sSink) {\n", recv, ts.Name.Name, statePrefix)
fmt.Fprintf(outputFile, " %s.beforeSave()\n", recv)
scanFields(x, "", scanFunctions{zerovalue: emitZeroCheck})
scanFields(x, "", scanFunctions{value: emitSaveValue})
scanFields(x, "", scanFunctions{normal: emitSave, wait: emitSave})
fmt.Fprintf(outputFile, "}\n\n")
}
// Define afterLoad if a definition was not found. We do this for
// the same reason that we do it for beforeSave.
_, hasAfterLoad := simpleMethods[method{
typeName: ts.Name.Name,
methodName: "afterLoad",
}]
if !hasAfterLoad && generateSaverLoader {
fmt.Fprintf(outputFile, "func (%s *%s) afterLoad() {}\n\n", recv, ts.Name.Name)
}
// Generate the load method.
//
// N.B. See the comment above for the save method.
if generateSaverLoader {
fmt.Fprintf(outputFile, "// +checklocksignore\n")
fmt.Fprintf(outputFile, "func (%s *%s) StateLoad(stateSourceObject %sSource) {\n", recv, ts.Name.Name, statePrefix)
scanFields(x, "", scanFunctions{normal: emitLoad, wait: emitLoadWait})
scanFields(x, "", scanFunctions{value: emitLoadValue})
if hasAfterLoad {
// The call to afterLoad is made conditionally, because when
// AfterLoad is called, the object encodes a dependency on
// referred objects (i.e. fields). This means that afterLoad
// will not be called until the other afterLoads are called.
fmt.Fprintf(outputFile, " stateSourceObject.AfterLoad(%s.afterLoad)\n", recv)
}
fmt.Fprintf(outputFile, "}\n\n")
}
// Add to our registration.
emitRegister(ts.Name.Name)
case *ast.Ident, *ast.SelectorExpr, *ast.ArrayType:
maybeEmitImports()
// Generate the info methods.
fmt.Fprintf(outputFile, "func (%s *%s) StateTypeName() string {\n", recv, ts.Name.Name)
fmt.Fprintf(outputFile, " return \"%s.%s\"\n", *fullPkg, ts.Name.Name)
fmt.Fprintf(outputFile, "}\n\n")
fmt.Fprintf(outputFile, "func (%s *%s) StateFields() []string {\n", recv, ts.Name.Name)
fmt.Fprintf(outputFile, " return nil\n")
fmt.Fprintf(outputFile, "}\n\n")
// See above.
emitRegister(ts.Name.Name)
}
}
}
}
if len(initCalls) > 0 {
// Emit the init() function.
fmt.Fprintf(outputFile, "func init() {\n")
for _, ic := range initCalls {
fmt.Fprintf(outputFile, " %s\n", ic)
}
fmt.Fprintf(outputFile, "}\n")
}
}
|