1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package checklocks
import (
"fmt"
"go/token"
"go/types"
"strings"
"sync/atomic"
"golang.org/x/tools/go/ssa"
)
// lockState tracks the locking state and aliases.
type lockState struct {
// lockedMutexes is used to track which mutexes in a given struct are
// currently locked. Note that most of the heavy lifting is done by
// valueAsString below, which maps to specific structure fields, etc.
//
// The value indicates whether this is an exclusive lock.
lockedMutexes map[string]bool
// stored stores values that have been stored in memory, bound to
// FreeVars or passed as Parameterse.
stored map[ssa.Value]ssa.Value
// used is a temporary map, used only for valueAsString. It prevents
// multiple use of the same memory location.
used map[ssa.Value]struct{}
// defers are the stack of defers that have been pushed.
defers []*ssa.Defer
// refs indicates the number of references on this structure. If it's
// greater than one, we will do copy-on-write.
refs *int32
}
// newLockState makes a new lockState.
func newLockState() *lockState {
refs := int32(1) // Not shared.
return &lockState{
lockedMutexes: make(map[string]bool),
used: make(map[ssa.Value]struct{}),
stored: make(map[ssa.Value]ssa.Value),
defers: make([]*ssa.Defer, 0),
refs: &refs,
}
}
// fork forks the locking state. When a lockState is forked, any modifications
// will cause maps to be copied.
func (l *lockState) fork() *lockState {
if l == nil {
return newLockState()
}
atomic.AddInt32(l.refs, 1)
return &lockState{
lockedMutexes: l.lockedMutexes,
used: make(map[ssa.Value]struct{}),
stored: l.stored,
defers: l.defers,
refs: l.refs,
}
}
// modify indicates that this state will be modified.
func (l *lockState) modify() {
if atomic.LoadInt32(l.refs) > 1 {
// Copy the lockedMutexes.
lm := make(map[string]bool)
for k, v := range l.lockedMutexes {
lm[k] = v
}
l.lockedMutexes = lm
// Copy the stored values.
s := make(map[ssa.Value]ssa.Value)
for k, v := range l.stored {
s[k] = v
}
l.stored = s
// Reset the used values.
l.used = make(map[ssa.Value]struct{})
// Copy the defers.
ds := make([]*ssa.Defer, len(l.defers))
copy(ds, l.defers)
l.defers = ds
// Drop our reference.
atomic.AddInt32(l.refs, -1)
newRefs := int32(1) // Not shared.
l.refs = &newRefs
}
}
// isHeld indicates whether the field is held is not.
func (l *lockState) isHeld(rv resolvedValue, exclusiveRequired bool) (string, bool) {
if !rv.valid {
return rv.valueAsString(l), false
}
s := rv.valueAsString(l)
isExclusive, ok := l.lockedMutexes[s]
if !ok {
return s, false
}
// Accept a weaker lock if exclusiveRequired is false.
if exclusiveRequired && !isExclusive {
return s, false
}
return s, true
}
// lockField locks the given field.
//
// If false is returned, the field was already locked.
func (l *lockState) lockField(rv resolvedValue, exclusive bool) (string, bool) {
if !rv.valid {
return rv.valueAsString(l), false
}
s := rv.valueAsString(l)
if _, ok := l.lockedMutexes[s]; ok {
return s, false
}
l.modify()
l.lockedMutexes[s] = exclusive
return s, true
}
// unlockField unlocks the given field.
//
// If false is returned, the field was not locked.
func (l *lockState) unlockField(rv resolvedValue, exclusive bool) (string, bool) {
if !rv.valid {
return rv.valueAsString(l), false
}
s := rv.valueAsString(l)
wasExclusive, ok := l.lockedMutexes[s]
if !ok {
return s, false
}
if wasExclusive != exclusive {
return s, false
}
l.modify()
delete(l.lockedMutexes, s)
return s, true
}
// downgradeField downgrades the given field.
//
// If false was returned, the field was not downgraded.
func (l *lockState) downgradeField(rv resolvedValue) (string, bool) {
if !rv.valid {
return rv.valueAsString(l), false
}
s := rv.valueAsString(l)
wasExclusive, ok := l.lockedMutexes[s]
if !ok {
return s, false
}
if !wasExclusive {
return s, false
}
l.modify()
l.lockedMutexes[s] = false // Downgraded.
return s, true
}
// store records an alias.
func (l *lockState) store(addr ssa.Value, v ssa.Value) {
l.modify()
l.stored[addr] = v
}
// isSubset indicates other holds all the locks held by l.
func (l *lockState) isSubset(other *lockState) bool {
for k, isExclusive := range l.lockedMutexes {
otherExclusive, otherOk := other.lockedMutexes[k]
if !otherOk {
return false
}
// Accept weaker locks as a subset.
if isExclusive && !otherExclusive {
return false
}
}
return true
}
// count indicates the number of locks held.
func (l *lockState) count() int {
return len(l.lockedMutexes)
}
// isCompatible returns true if the states are compatible.
func (l *lockState) isCompatible(other *lockState) bool {
return l.isSubset(other) && other.isSubset(l)
}
// elemType is a type that implements the Elem function.
type elemType interface {
Elem() types.Type
}
// valueAsString returns a string for a given value.
//
// This decomposes the value into the simplest possible representation in terms
// of parameters, free variables and globals. During resolution, stored values
// may be transferred, as well as bound free variables.
//
// Nil may not be passed here.
func (l *lockState) valueAsString(v ssa.Value) string {
switch x := v.(type) {
case *ssa.Parameter:
// Was this provided as a paramter for a local anonymous
// function invocation?
v, ok := l.stored[x]
if ok {
return l.valueAsString(v)
}
return fmt.Sprintf("{param:%s}", x.Name())
case *ssa.Global:
return fmt.Sprintf("{global:%s}", x.Name())
case *ssa.FreeVar:
// Attempt to resolve this, in case we are being invoked in a
// scope where all the variables are bound.
v, ok := l.stored[x]
if ok {
// The FreeVar is typically bound to a location, so we
// check what's been stored there. Note that the second
// may map to the same FreeVar, which we can check.
stored, ok := l.stored[v]
if ok {
return l.valueAsString(stored)
}
}
return fmt.Sprintf("{freevar:%s}", x.Name())
case *ssa.Convert:
// Just disregard conversion.
return l.valueAsString(x.X)
case *ssa.ChangeType:
// Ditto, disregard.
return l.valueAsString(x.X)
case *ssa.UnOp:
if x.Op != token.MUL {
break
}
// Is this loading a free variable? If yes, then this can be
// resolved in the original isAlias function.
if fv, ok := x.X.(*ssa.FreeVar); ok {
return l.valueAsString(fv)
}
// Should be try to resolve via a memory address? This needs to
// be done since a memory location can hold its own value.
if _, ok := l.used[x.X]; !ok {
// Check if we know what the accessed location holds.
// This is used to disambiguate memory locations.
v, ok := l.stored[x.X]
if ok {
l.used[x.X] = struct{}{}
defer func() { delete(l.used, x.X) }()
return l.valueAsString(v)
}
}
// x.X.Type is pointer. We must construct this type
// dynamically, since the ssa.Value could be synthetic.
return fmt.Sprintf("*(%s)", l.valueAsString(x.X))
case *ssa.Field:
structType, ok := resolveStruct(x.X.Type())
if !ok {
// This should not happen.
panic(fmt.Sprintf("structType not available for struct: %#v", x.X))
}
fieldObj := structType.Field(x.Field)
return fmt.Sprintf("%s.%s", l.valueAsString(x.X), fieldObj.Name())
case *ssa.FieldAddr:
structType, ok := resolveStruct(x.X.Type())
if !ok {
// This should not happen.
panic(fmt.Sprintf("structType not available for struct: %#v", x.X))
}
fieldObj := structType.Field(x.Field)
return fmt.Sprintf("&(%s.%s)", l.valueAsString(x.X), fieldObj.Name())
case *ssa.Index:
return fmt.Sprintf("%s[%s]", l.valueAsString(x.X), l.valueAsString(x.Index))
case *ssa.IndexAddr:
return fmt.Sprintf("&(%s[%s])", l.valueAsString(x.X), l.valueAsString(x.Index))
case *ssa.Lookup:
return fmt.Sprintf("%s[%s]", l.valueAsString(x.X), l.valueAsString(x.Index))
case *ssa.Extract:
return fmt.Sprintf("%s[%d]", l.valueAsString(x.Tuple), x.Index)
}
// In the case of any other type (e.g. this may be an alloc, a return
// value, etc.), just return the literal pointer value to the Value.
// This will be unique within the ssa graph, and so if two values are
// equal, they are from the same type.
return fmt.Sprintf("{%T:%p}", v, v)
}
// String returns the full lock state.
func (l *lockState) String() string {
if l.count() == 0 {
return "no locks held"
}
keys := make([]string, 0, len(l.lockedMutexes))
for k, exclusive := range l.lockedMutexes {
// Include the exclusive status of each lock.
keys = append(keys, fmt.Sprintf("%s %s", k, exclusiveStr(exclusive)))
}
return strings.Join(keys, ",")
}
// pushDefer pushes a defer onto the stack.
func (l *lockState) pushDefer(d *ssa.Defer) {
l.modify()
l.defers = append(l.defers, d)
}
// popDefer pops a defer from the stack.
func (l *lockState) popDefer() *ssa.Defer {
// Does not technically modify the underlying slice.
count := len(l.defers)
if count == 0 {
return nil
}
d := l.defers[count-1]
l.defers = l.defers[:count-1]
return d
}
|