1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package bigquery defines a BigQuery schema for benchmarks.
//
// This package contains a schema for BigQuery and methods for publishing
// benchmark data into tables.
package bigquery
import (
"context"
"fmt"
"strings"
"time"
bq "cloud.google.com/go/bigquery"
)
// Benchmark is the top level structure of recorded benchmark data. BigQuery
// will infer the schema from this.
type Benchmark struct {
Name string `bq:"name"`
Timestamp time.Time `bq:"timestamp"`
Official bool `bq:"official"`
Metric []*Metric `bq:"metric"`
Metadata *Metadata `bq:"metadata"`
}
// Metric holds the actual metric data and unit information for this benchmark.
type Metric struct {
Name string `bq:"name"`
Unit string `bq:"unit"`
Sample float64 `bq:"sample"`
}
// Metadata about this benchmark.
type Metadata struct {
CL string `bq:"changelist"`
IterationID string `bq:"iteration_id"`
PendingCL string `bq:"pending_cl"`
Workflow string `bq:"workflow"`
Platform string `bq:"platform"`
Gofer string `bq:"gofer"`
}
// InitBigQuery initializes a BigQuery dataset/table in the project. If the dataset/table already exists, it is not duplicated.
func InitBigQuery(ctx context.Context, projectID, datasetID, tableID string) error {
client, err := bq.NewClient(ctx, projectID)
if err != nil {
return fmt.Errorf("failed to initialize client on project %s: %v", projectID, err)
}
defer client.Close()
dataset := client.Dataset(datasetID)
if err := dataset.Create(ctx, nil); err != nil && !checkDuplicateError(err) {
return fmt.Errorf("failed to create dataset: %s: %v", datasetID, err)
}
table := dataset.Table(tableID)
schema, err := bq.InferSchema(Benchmark{})
if err != nil {
return fmt.Errorf("failed to infer schema: %v", err)
}
if err := table.Create(ctx, &bq.TableMetadata{Schema: schema}); err != nil && !checkDuplicateError(err) {
return fmt.Errorf("failed to create table: %s: %v", tableID, err)
}
return nil
}
// AddMetric adds a metric to an existing Benchmark.
func (bm *Benchmark) AddMetric(metricName, unit string, sample float64) {
m := &Metric{
Name: metricName,
Unit: unit,
Sample: sample,
}
bm.Metric = append(bm.Metric, m)
}
// NewBenchmark initializes a new benchmark.
func NewBenchmark(name string, official bool) *Benchmark {
return &Benchmark{
Name: name,
Timestamp: time.Now().UTC(),
Official: official,
Metric: make([]*Metric, 0),
}
}
// SendBenchmarks sends the slice of benchmarks to the BigQuery dataset/table.
func SendBenchmarks(ctx context.Context, benchmarks []*Benchmark, projectID, datasetID, tableID string) error {
client, err := bq.NewClient(ctx, projectID)
if err != nil {
return fmt.Errorf("Failed to initialize client on project: %s: %v", projectID, err)
}
defer client.Close()
uploader := client.Dataset(datasetID).Table(tableID).Uploader()
if err = uploader.Put(ctx, benchmarks); err != nil {
return fmt.Errorf("failed to upload benchmarks to proejct %s, table %s.%s: %v", projectID, datasetID, tableID, err)
}
return nil
}
// BigQuery will error "409" for duplicate tables and datasets.
func checkDuplicateError(err error) bool {
return strings.Contains(err.Error(), "googleapi: Error 409: Already Exists")
}
|