1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <arpa/inet.h>
#include <fcntl.h>
#include <netinet/icmp6.h>
#include <netinet/ip_icmp.h>
#include <ctime>
#include <utility>
#include <vector>
#ifdef __linux__
#include <linux/errqueue.h>
#include <linux/filter.h>
#endif // __linux__
#include <netinet/in.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include "absl/strings/str_format.h"
#ifndef SIOCGSTAMP
#include <linux/sockios.h>
#endif
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/syscalls/linux/ip_socket_test_util.h"
#include "test/syscalls/linux/unix_domain_socket_test_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/posix_error.h"
#include "test/util/socket_util.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
// Fixture for tests parameterized by the address family to use (AF_INET and
// AF_INET6) when creating sockets.
class UdpSocketTest
: public ::testing::TestWithParam<gvisor::testing::AddressFamily> {
protected:
// Creates two sockets that will be used by test cases.
void SetUp() override;
// Binds the socket bind_ to the loopback and updates bind_addr_.
PosixError BindLoopback();
// Binds the socket bind_ to Any and updates bind_addr_.
PosixError BindAny();
// Binds given socket to address addr and updates.
PosixError BindSocket(int socket, struct sockaddr* addr);
// Return initialized Any address to port 0.
struct sockaddr_storage InetAnyAddr();
// Return initialized Loopback address to port 0.
struct sockaddr_storage InetLoopbackAddr();
// Disconnects socket sockfd.
void Disconnect(int sockfd);
// Get family for the test.
int GetFamily();
// Socket used by Bind methods
FileDescriptor bind_;
// Second socket used for tests.
FileDescriptor sock_;
// Address for bind_ socket.
struct sockaddr* bind_addr_;
// Initialized to the length based on GetFamily().
socklen_t addrlen_;
// Storage for bind_addr_.
struct sockaddr_storage bind_addr_storage_;
private:
// Helper to initialize addrlen_ for the test case.
socklen_t GetAddrLength();
};
// Gets a pointer to the port component of the given address.
uint16_t* Port(struct sockaddr_storage* addr) {
switch (addr->ss_family) {
case AF_INET: {
auto sin = reinterpret_cast<struct sockaddr_in*>(addr);
return &sin->sin_port;
}
case AF_INET6: {
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(addr);
return &sin6->sin6_port;
}
}
return nullptr;
}
// Sets addr port to "port".
void SetPort(struct sockaddr_storage* addr, uint16_t port) {
switch (addr->ss_family) {
case AF_INET: {
auto sin = reinterpret_cast<struct sockaddr_in*>(addr);
sin->sin_port = port;
break;
}
case AF_INET6: {
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(addr);
sin6->sin6_port = port;
break;
}
}
}
void UdpSocketTest::SetUp() {
addrlen_ = GetAddrLength();
bind_ =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
memset(&bind_addr_storage_, 0, sizeof(bind_addr_storage_));
bind_addr_ = AsSockAddr(&bind_addr_storage_);
sock_ =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
}
int UdpSocketTest::GetFamily() {
if (GetParam() == AddressFamily::kIpv4) {
return AF_INET;
}
return AF_INET6;
}
PosixError UdpSocketTest::BindLoopback() {
bind_addr_storage_ = InetLoopbackAddr();
struct sockaddr* bind_addr_ = AsSockAddr(&bind_addr_storage_);
return BindSocket(bind_.get(), bind_addr_);
}
PosixError UdpSocketTest::BindAny() {
bind_addr_storage_ = InetAnyAddr();
struct sockaddr* bind_addr_ = AsSockAddr(&bind_addr_storage_);
return BindSocket(bind_.get(), bind_addr_);
}
PosixError UdpSocketTest::BindSocket(int socket, struct sockaddr* addr) {
socklen_t len = sizeof(bind_addr_storage_);
// Bind, then check that we get the right address.
RETURN_ERROR_IF_SYSCALL_FAIL(bind(socket, addr, addrlen_));
RETURN_ERROR_IF_SYSCALL_FAIL(getsockname(socket, addr, &len));
if (addrlen_ != len) {
return PosixError(
EINVAL,
absl::StrFormat("getsockname len: %u expected: %u", len, addrlen_));
}
return PosixError(0);
}
socklen_t UdpSocketTest::GetAddrLength() {
struct sockaddr_storage addr;
if (GetFamily() == AF_INET) {
auto sin = reinterpret_cast<struct sockaddr_in*>(&addr);
return sizeof(*sin);
}
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr);
return sizeof(*sin6);
}
sockaddr_storage UdpSocketTest::InetAnyAddr() {
struct sockaddr_storage addr;
memset(&addr, 0, sizeof(addr));
AsSockAddr(&addr)->sa_family = GetFamily();
if (GetFamily() == AF_INET) {
auto sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_addr.s_addr = htonl(INADDR_ANY);
sin->sin_port = htons(0);
return addr;
}
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr);
sin6->sin6_addr = IN6ADDR_ANY_INIT;
sin6->sin6_port = htons(0);
return addr;
}
sockaddr_storage UdpSocketTest::InetLoopbackAddr() {
struct sockaddr_storage addr;
memset(&addr, 0, sizeof(addr));
AsSockAddr(&addr)->sa_family = GetFamily();
if (GetFamily() == AF_INET) {
auto sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
sin->sin_port = htons(0);
return addr;
}
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr);
sin6->sin6_addr = in6addr_loopback;
sin6->sin6_port = htons(0);
return addr;
}
void UdpSocketTest::Disconnect(int sockfd) {
sockaddr_storage addr_storage = InetAnyAddr();
sockaddr* addr = AsSockAddr(&addr_storage);
socklen_t addrlen = sizeof(addr_storage);
addr->sa_family = AF_UNSPEC;
ASSERT_THAT(connect(sockfd, addr, addrlen), SyscallSucceeds());
// Check that after disconnect the socket is bound to the ANY address.
EXPECT_THAT(getsockname(sockfd, addr, &addrlen), SyscallSucceeds());
if (GetParam() == AddressFamily::kIpv4) {
auto addr_out = reinterpret_cast<struct sockaddr_in*>(addr);
EXPECT_EQ(addrlen, sizeof(*addr_out));
EXPECT_EQ(addr_out->sin_addr.s_addr, htonl(INADDR_ANY));
} else {
auto addr_out = reinterpret_cast<struct sockaddr_in6*>(addr);
EXPECT_EQ(addrlen, sizeof(*addr_out));
struct in6_addr loopback = IN6ADDR_ANY_INIT;
EXPECT_EQ(memcmp(&addr_out->sin6_addr, &loopback, sizeof(in6_addr)), 0);
}
}
TEST_P(UdpSocketTest, Creation) {
FileDescriptor sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
EXPECT_THAT(close(sock.release()), SyscallSucceeds());
sock = ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, 0));
EXPECT_THAT(close(sock.release()), SyscallSucceeds());
ASSERT_THAT(socket(GetFamily(), SOCK_STREAM, IPPROTO_UDP), SyscallFails());
}
TEST_P(UdpSocketTest, Getsockname) {
// Check that we're not bound.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(bind_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
struct sockaddr_storage any = InetAnyAddr();
EXPECT_EQ(memcmp(&addr, AsSockAddr(&any), addrlen_), 0);
ASSERT_NO_ERRNO(BindLoopback());
EXPECT_THAT(getsockname(bind_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(&addr, bind_addr_, addrlen_), 0);
}
TEST_P(UdpSocketTest, Getpeername) {
ASSERT_NO_ERRNO(BindLoopback());
// Check that we're not connected.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallFailsWithErrno(ENOTCONN));
// Connect, then check that we get the right address.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(&addr, bind_addr_, addrlen_), 0);
}
TEST_P(UdpSocketTest, SendNotConnected) {
ASSERT_NO_ERRNO(BindLoopback());
// Do send & write, they must fail.
char buf[512];
EXPECT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallFailsWithErrno(EDESTADDRREQ));
EXPECT_THAT(write(sock_.get(), buf, sizeof(buf)),
SyscallFailsWithErrno(EDESTADDRREQ));
// Use sendto.
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Check that we're bound now.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_NE(*Port(&addr), 0);
}
TEST_P(UdpSocketTest, ConnectBinds) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect the socket.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Check that we're bound now.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_NE(*Port(&addr), 0);
}
TEST_P(UdpSocketTest, ReceiveNotBound) {
char buf[512];
EXPECT_THAT(recv(sock_.get(), buf, sizeof(buf), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST_P(UdpSocketTest, Bind) {
ASSERT_NO_ERRNO(BindLoopback());
// Try to bind again.
EXPECT_THAT(bind(bind_.get(), bind_addr_, addrlen_),
SyscallFailsWithErrno(EINVAL));
// Check that we're still bound to the original address.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(bind_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(&addr, bind_addr_, addrlen_), 0);
}
TEST_P(UdpSocketTest, BindInUse) {
ASSERT_NO_ERRNO(BindLoopback());
// Try to bind again.
EXPECT_THAT(bind(sock_.get(), bind_addr_, addrlen_),
SyscallFailsWithErrno(EADDRINUSE));
}
TEST_P(UdpSocketTest, ConnectWriteToInvalidPort) {
// Discover a free unused port by creating a new UDP socket, binding it
// recording the just bound port and closing it. This is not guaranteed as it
// can still race with other port UDP sockets trying to bind a port at the
// same time.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
socklen_t addrlen = sizeof(addr_storage);
struct sockaddr* addr = AsSockAddr(&addr_storage);
FileDescriptor s =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
ASSERT_THAT(bind(s.get(), addr, addrlen), SyscallSucceeds());
ASSERT_THAT(getsockname(s.get(), addr, &addrlen), SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_NE(*Port(&addr_storage), 0);
ASSERT_THAT(close(s.release()), SyscallSucceeds());
// Now connect to the port that we just released. This should generate an
// ECONNREFUSED error.
ASSERT_THAT(connect(sock_.get(), addr, addrlen_), SyscallSucceeds());
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
// Send from sock_ to an unbound port.
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, addr, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Now verify that we got an ICMP error back of ECONNREFUSED.
int err;
socklen_t optlen = sizeof(err);
ASSERT_THAT(getsockopt(sock_.get(), SOL_SOCKET, SO_ERROR, &err, &optlen),
SyscallSucceeds());
ASSERT_EQ(err, ECONNREFUSED);
ASSERT_EQ(optlen, sizeof(err));
}
TEST_P(UdpSocketTest, ConnectSimultaneousWriteToInvalidPort) {
// Discover a free unused port by creating a new UDP socket, binding it
// recording the just bound port and closing it. This is not guaranteed as it
// can still race with other port UDP sockets trying to bind a port at the
// same time.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
socklen_t addrlen = sizeof(addr_storage);
struct sockaddr* addr = AsSockAddr(&addr_storage);
FileDescriptor s =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
ASSERT_THAT(bind(s.get(), addr, addrlen), SyscallSucceeds());
ASSERT_THAT(getsockname(s.get(), addr, &addrlen), SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_NE(*Port(&addr_storage), 0);
ASSERT_THAT(close(s.release()), SyscallSucceeds());
// Now connect to the port that we just released.
ScopedThread t([&] {
ASSERT_THAT(connect(sock_.get(), addr, addrlen_), SyscallSucceeds());
});
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
// Send from sock_ to an unbound port.
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, addr, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
t.Join();
}
TEST_P(UdpSocketTest, ReceiveAfterConnect) {
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Send from sock_ to bind_
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data.
char received[sizeof(buf)];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
}
TEST_P(UdpSocketTest, ReceiveAfterDisconnect) {
ASSERT_NO_ERRNO(BindLoopback());
for (int i = 0; i < 2; i++) {
// Connet sock_ to bound address.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
// Send from sock to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(
sendto(bind_.get(), buf, sizeof(buf), 0, AsSockAddr(&addr), addrlen),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data.
char received[sizeof(buf)];
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
// Disconnect sock_.
struct sockaddr unspec = {};
unspec.sa_family = AF_UNSPEC;
ASSERT_THAT(connect(sock_.get(), &unspec, sizeof(unspec.sa_family)),
SyscallSucceeds());
}
}
TEST_P(UdpSocketTest, Connect) {
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Check that we're connected to the right peer.
struct sockaddr_storage peer;
socklen_t peerlen = sizeof(peer);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&peer), &peerlen),
SyscallSucceeds());
EXPECT_EQ(peerlen, addrlen_);
EXPECT_EQ(memcmp(&peer, bind_addr_, addrlen_), 0);
// Try to bind after connect.
struct sockaddr_storage any = InetAnyAddr();
EXPECT_THAT(bind(sock_.get(), AsSockAddr(&any), addrlen_),
SyscallFailsWithErrno(EINVAL));
struct sockaddr_storage bind2_storage = InetLoopbackAddr();
struct sockaddr* bind2_addr = AsSockAddr(&bind2_storage);
FileDescriptor bind2 =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
ASSERT_NO_ERRNO(BindSocket(bind2.get(), bind2_addr));
// Try to connect again.
EXPECT_THAT(connect(sock_.get(), bind2_addr, addrlen_), SyscallSucceeds());
// Check that peer name changed.
peerlen = sizeof(peer);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&peer), &peerlen),
SyscallSucceeds());
EXPECT_EQ(peerlen, addrlen_);
EXPECT_EQ(memcmp(&peer, bind2_addr, addrlen_), 0);
}
TEST_P(UdpSocketTest, ConnectAnyZero) {
// TODO(138658473): Enable when we can connect to port 0 with gVisor.
SKIP_IF(IsRunningOnGvisor());
struct sockaddr_storage any = InetAnyAddr();
EXPECT_THAT(connect(sock_.get(), AsSockAddr(&any), addrlen_),
SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallFailsWithErrno(ENOTCONN));
}
TEST_P(UdpSocketTest, ConnectAnyWithPort) {
ASSERT_NO_ERRNO(BindAny());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
}
TEST_P(UdpSocketTest, DisconnectAfterConnectAny) {
// TODO(138658473): Enable when we can connect to port 0 with gVisor.
SKIP_IF(IsRunningOnGvisor());
struct sockaddr_storage any = InetAnyAddr();
EXPECT_THAT(connect(sock_.get(), AsSockAddr(&any), addrlen_),
SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallFailsWithErrno(ENOTCONN));
Disconnect(sock_.get());
}
TEST_P(UdpSocketTest, DisconnectAfterConnectAnyWithPort) {
ASSERT_NO_ERRNO(BindAny());
EXPECT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(*Port(&bind_addr_storage_), *Port(&addr));
Disconnect(sock_.get());
}
TEST_P(UdpSocketTest, DisconnectAfterBind) {
ASSERT_NO_ERRNO(BindLoopback());
// Bind to the next port above bind_.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_NO_ERRNO(BindSocket(sock_.get(), addr));
// Connect the socket.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct sockaddr_storage unspec = {};
unspec.ss_family = AF_UNSPEC;
EXPECT_THAT(
connect(sock_.get(), AsSockAddr(&unspec), sizeof(unspec.ss_family)),
SyscallSucceeds());
// Check that we're still bound.
socklen_t addrlen = sizeof(unspec);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&unspec), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(addr, &unspec, addrlen_), 0);
addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), addr, &addrlen),
SyscallFailsWithErrno(ENOTCONN));
}
TEST_P(UdpSocketTest, BindToAnyConnnectToLocalhost) {
ASSERT_NO_ERRNO(BindAny());
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
socklen_t addrlen = sizeof(addr);
// Connect the socket.
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
EXPECT_THAT(getsockname(bind_.get(), addr, &addrlen), SyscallSucceeds());
// If the socket is bound to ANY and connected to a loopback address,
// getsockname() has to return the loopback address.
if (GetParam() == AddressFamily::kIpv4) {
auto addr_out = reinterpret_cast<struct sockaddr_in*>(addr);
EXPECT_EQ(addrlen, sizeof(*addr_out));
EXPECT_EQ(addr_out->sin_addr.s_addr, htonl(INADDR_LOOPBACK));
} else {
auto addr_out = reinterpret_cast<struct sockaddr_in6*>(addr);
struct in6_addr loopback = IN6ADDR_LOOPBACK_INIT;
EXPECT_EQ(addrlen, sizeof(*addr_out));
EXPECT_EQ(memcmp(&addr_out->sin6_addr, &loopback, sizeof(in6_addr)), 0);
}
}
TEST_P(UdpSocketTest, DisconnectAfterBindToAny) {
ASSERT_NO_ERRNO(BindLoopback());
struct sockaddr_storage any_storage = InetAnyAddr();
struct sockaddr* any = AsSockAddr(&any_storage);
SetPort(&any_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_NO_ERRNO(BindSocket(sock_.get(), any));
// Connect the socket.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
Disconnect(sock_.get());
// Check that we're still bound.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(&addr, any, addrlen), 0);
addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallFailsWithErrno(ENOTCONN));
}
TEST_P(UdpSocketTest, Disconnect) {
ASSERT_NO_ERRNO(BindLoopback());
struct sockaddr_storage any_storage = InetAnyAddr();
struct sockaddr* any = AsSockAddr(&any_storage);
SetPort(&any_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_NO_ERRNO(BindSocket(sock_.get(), any));
for (int i = 0; i < 2; i++) {
// Try to connect again.
EXPECT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Check that we're connected to the right peer.
struct sockaddr_storage peer;
socklen_t peerlen = sizeof(peer);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&peer), &peerlen),
SyscallSucceeds());
EXPECT_EQ(peerlen, addrlen_);
EXPECT_EQ(memcmp(&peer, bind_addr_, addrlen_), 0);
// Try to disconnect.
struct sockaddr_storage addr = {};
addr.ss_family = AF_UNSPEC;
EXPECT_THAT(connect(sock_.get(), AsSockAddr(&addr), sizeof(addr.ss_family)),
SyscallSucceeds());
peerlen = sizeof(peer);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&peer), &peerlen),
SyscallFailsWithErrno(ENOTCONN));
// Check that we're still bound.
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(*Port(&addr), *Port(&any_storage));
}
}
TEST_P(UdpSocketTest, ConnectBadAddress) {
struct sockaddr addr = {};
addr.sa_family = GetFamily();
ASSERT_THAT(connect(sock_.get(), &addr, sizeof(addr.sa_family)),
SyscallFailsWithErrno(EINVAL));
}
TEST_P(UdpSocketTest, SendToAddressOtherThanConnected) {
ASSERT_NO_ERRNO(BindLoopback());
struct sockaddr_storage addr_storage = InetAnyAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Send to a different destination than we're connected to.
char buf[512];
EXPECT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, addr, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
}
TEST_P(UdpSocketTest, ConnectAndSendNoReceiver) {
ASSERT_NO_ERRNO(BindLoopback());
// Close the socket to release the port so that we get an ICMP error.
ASSERT_THAT(close(bind_.release()), SyscallSucceeds());
// Connect to loopback:bind_addr_ which should *hopefully* not be bound by an
// UDP socket. There is no easy way to ensure that the UDP port is not bound
// by another conncurrently running test. *This is potentially flaky*.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
char buf[512];
EXPECT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallSucceedsWithValue(sizeof(buf)));
constexpr int kTimeout = 1000;
// Poll to make sure we get the ICMP error back before issuing more writes.
struct pollfd pfd = {sock_.get(), POLLERR, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, kTimeout), SyscallSucceedsWithValue(1));
// Next write should fail with ECONNREFUSED due to the ICMP error generated in
// response to the previous write.
ASSERT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallFailsWithErrno(ECONNREFUSED));
// The next write should succeed again since the last write call would have
// retrieved and cleared the socket error.
ASSERT_THAT(send(sock_.get(), buf, sizeof(buf), 0), SyscallSucceeds());
// Poll to make sure we get the ICMP error back before issuing more writes.
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, kTimeout), SyscallSucceedsWithValue(1));
// Next write should fail with ECONNREFUSED due to the ICMP error generated in
// response to the previous write.
ASSERT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallFailsWithErrno(ECONNREFUSED));
}
#ifdef __linux__
TEST_P(UdpSocketTest, RecvErrorConnRefused) {
// We will simulate an ICMP error and verify that we do receive that error via
// recvmsg(MSG_ERRQUEUE).
ASSERT_NO_ERRNO(BindLoopback());
// Close the socket to release the port so that we get an ICMP error.
ASSERT_THAT(close(bind_.release()), SyscallSucceeds());
// Set IP_RECVERR socket option to enable error queueing.
int v = kSockOptOn;
socklen_t optlen = sizeof(v);
int opt_level = SOL_IP;
int opt_type = IP_RECVERR;
if (GetParam() != AddressFamily::kIpv4) {
opt_level = SOL_IPV6;
opt_type = IPV6_RECVERR;
}
ASSERT_THAT(setsockopt(sock_.get(), opt_level, opt_type, &v, optlen),
SyscallSucceeds());
// Connect to loopback:bind_addr_ which should *hopefully* not be bound by an
// UDP socket. There is no easy way to ensure that the UDP port is not bound
// by another conncurrently running test. *This is potentially flaky*.
const int kBufLen = 300;
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
char buf[kBufLen];
RandomizeBuffer(buf, sizeof(buf));
// Send from sock_ to an unbound port. This should cause ECONNREFUSED.
EXPECT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallSucceedsWithValue(sizeof(buf)));
// Dequeue error using recvmsg(MSG_ERRQUEUE).
char got[kBufLen];
struct iovec iov;
iov.iov_base = reinterpret_cast<void*>(got);
iov.iov_len = kBufLen;
size_t control_buf_len = CMSG_SPACE(sizeof(sock_extended_err) + addrlen_);
std::vector<char> control_buf(control_buf_len);
struct sockaddr_storage remote;
memset(&remote, 0, sizeof(remote));
struct msghdr msg = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
msg.msg_control = control_buf.data();
msg.msg_controllen = control_buf_len;
msg.msg_name = reinterpret_cast<void*>(&remote);
msg.msg_namelen = addrlen_;
ASSERT_THAT(recvmsg(sock_.get(), &msg, MSG_ERRQUEUE),
SyscallSucceedsWithValue(kBufLen));
// Check the contents of msg.
EXPECT_EQ(memcmp(got, buf, sizeof(buf)), 0); // iovec check
// TODO(b/176251997): The next check fails on the gvisor platform due to the
// kernel bug.
if (!IsRunningWithHostinet() || GvisorPlatform() == Platform::kPtrace ||
GvisorPlatform() == Platform::kKVM ||
GvisorPlatform() == Platform::kNative)
EXPECT_NE(msg.msg_flags & MSG_ERRQUEUE, 0);
EXPECT_EQ(memcmp(&remote, bind_addr_, addrlen_), 0);
// Check the contents of the control message.
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
ASSERT_NE(cmsg, nullptr);
EXPECT_EQ(CMSG_NXTHDR(&msg, cmsg), nullptr);
EXPECT_EQ(cmsg->cmsg_level, opt_level);
EXPECT_EQ(cmsg->cmsg_type, opt_type);
// Check the contents of socket error.
struct sock_extended_err* sock_err =
(struct sock_extended_err*)CMSG_DATA(cmsg);
EXPECT_EQ(sock_err->ee_errno, ECONNREFUSED);
if (GetParam() == AddressFamily::kIpv4) {
EXPECT_EQ(sock_err->ee_origin, SO_EE_ORIGIN_ICMP);
EXPECT_EQ(sock_err->ee_type, ICMP_DEST_UNREACH);
EXPECT_EQ(sock_err->ee_code, ICMP_PORT_UNREACH);
} else {
EXPECT_EQ(sock_err->ee_origin, SO_EE_ORIGIN_ICMP6);
EXPECT_EQ(sock_err->ee_type, ICMP6_DST_UNREACH);
EXPECT_EQ(sock_err->ee_code, ICMP6_DST_UNREACH_NOPORT);
}
// Now verify that the socket error was cleared by recvmsg(MSG_ERRQUEUE).
int err;
optlen = sizeof(err);
ASSERT_THAT(getsockopt(sock_.get(), SOL_SOCKET, SO_ERROR, &err, &optlen),
SyscallSucceeds());
ASSERT_EQ(err, 0);
ASSERT_EQ(optlen, sizeof(err));
}
#endif // __linux__
TEST_P(UdpSocketTest, ZerolengthWriteAllowed) {
// TODO(gvisor.dev/issue/1202): Hostinet does not support zero length writes.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_+1.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
char buf[3];
// Send zero length packet from bind_ to sock_.
ASSERT_THAT(write(bind_.get(), buf, 0), SyscallSucceedsWithValue(0));
struct pollfd pfd = {sock_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout*/ 1000),
SyscallSucceedsWithValue(1));
// Receive the packet.
char received[3];
EXPECT_THAT(read(sock_.get(), received, sizeof(received)),
SyscallSucceedsWithValue(0));
}
TEST_P(UdpSocketTest, ZerolengthWriteAllowedNonBlockRead) {
// TODO(gvisor.dev/issue/1202): Hostinet does not support zero length writes.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_port+1.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
// Set sock to non-blocking.
int opts = 0;
ASSERT_THAT(opts = fcntl(sock_.get(), F_GETFL), SyscallSucceeds());
ASSERT_THAT(fcntl(sock_.get(), F_SETFL, opts | O_NONBLOCK),
SyscallSucceeds());
char buf[3];
// Send zero length packet from bind_ to sock_.
ASSERT_THAT(write(bind_.get(), buf, 0), SyscallSucceedsWithValue(0));
struct pollfd pfd = {sock_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// Receive the packet.
char received[3];
EXPECT_THAT(read(sock_.get(), received, sizeof(received)),
SyscallSucceedsWithValue(0));
EXPECT_THAT(read(sock_.get(), received, sizeof(received)),
SyscallFailsWithErrno(EAGAIN));
}
TEST_P(UdpSocketTest, SendAndReceiveNotConnected) {
ASSERT_NO_ERRNO(BindLoopback());
// Send some data to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data.
char received[sizeof(buf)];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
}
TEST_P(UdpSocketTest, SendAndReceiveConnected) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_port+1.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
// Send some data from sock to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data.
char received[sizeof(buf)];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
}
TEST_P(UdpSocketTest, ReceiveFromNotConnected) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_port+2.
struct sockaddr_storage addr2_storage = InetLoopbackAddr();
struct sockaddr* addr2 = AsSockAddr(&addr2_storage);
SetPort(&addr2_storage, *Port(&bind_addr_storage_) + 2);
ASSERT_THAT(bind(sock_.get(), addr2, addrlen_), SyscallSucceeds());
// Send some data from sock to bind_.
char buf[512];
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Check that the data isn't received because it was sent from a different
// address than we're connected.
EXPECT_THAT(recv(sock_.get(), buf, sizeof(buf), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST_P(UdpSocketTest, ReceiveBeforeConnect) {
ASSERT_NO_ERRNO(BindLoopback());
// Bind sock to loopback:bind_addr_port+2.
struct sockaddr_storage addr2_storage = InetLoopbackAddr();
struct sockaddr* addr2 = AsSockAddr(&addr2_storage);
SetPort(&addr2_storage, *Port(&bind_addr_storage_) + 2);
ASSERT_THAT(bind(sock_.get(), addr2, addrlen_), SyscallSucceeds());
// Send some data from sock to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Receive the data. It works because it was sent before the connect.
char received[sizeof(buf)];
EXPECT_THAT(
RecvTimeout(bind_.get(), received, sizeof(received), 1 /*timeout*/),
IsPosixErrorOkAndHolds(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
// Send again. This time it should not be received.
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(recv(bind_.get(), buf, sizeof(buf), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST_P(UdpSocketTest, ReceiveFrom) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_port+1.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
// Send some data from sock to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data and sender address.
char received[sizeof(buf)];
struct sockaddr_storage addr2;
socklen_t addr2len = sizeof(addr2);
EXPECT_THAT(recvfrom(bind_.get(), received, sizeof(received), 0,
AsSockAddr(&addr2), &addr2len),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
EXPECT_EQ(addr2len, addrlen_);
EXPECT_EQ(memcmp(addr, &addr2, addrlen_), 0);
}
TEST_P(UdpSocketTest, Listen) {
ASSERT_THAT(listen(sock_.get(), SOMAXCONN),
SyscallFailsWithErrno(EOPNOTSUPP));
}
TEST_P(UdpSocketTest, Accept) {
ASSERT_THAT(accept(sock_.get(), nullptr, nullptr),
SyscallFailsWithErrno(EOPNOTSUPP));
}
// This test validates that a read shutdown with pending data allows the read
// to proceed with the data before returning EAGAIN.
TEST_P(UdpSocketTest, ReadShutdownNonblockPendingData) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind to loopback:bind_addr_port+1 and connect to bind_addr_.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Verify that we get EWOULDBLOCK when there is nothing to read.
char received[512];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
const char* buf = "abc";
EXPECT_THAT(write(sock_.get(), buf, 3), SyscallSucceedsWithValue(3));
int opts = 0;
ASSERT_THAT(opts = fcntl(bind_.get(), F_GETFL), SyscallSucceeds());
ASSERT_THAT(fcntl(bind_.get(), F_SETFL, opts | O_NONBLOCK),
SyscallSucceeds());
ASSERT_THAT(opts = fcntl(bind_.get(), F_GETFL), SyscallSucceeds());
ASSERT_NE(opts & O_NONBLOCK, 0);
EXPECT_THAT(shutdown(bind_.get(), SHUT_RD), SyscallSucceeds());
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// We should get the data even though read has been shutdown.
EXPECT_THAT(RecvTimeout(bind_.get(), received, 2 /*buf_size*/, 1 /*timeout*/),
IsPosixErrorOkAndHolds(2));
// Because we read less than the entire packet length, since it's a packet
// based socket any subsequent reads should return EWOULDBLOCK.
EXPECT_THAT(recv(bind_.get(), received, 1, 0),
SyscallFailsWithErrno(EWOULDBLOCK));
}
// This test is validating that even after a socket is shutdown if it's
// reconnected it will reset the shutdown state.
TEST_P(UdpSocketTest, ReadShutdownSameSocketResetsShutdownState) {
char received[512];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
EXPECT_THAT(shutdown(bind_.get(), SHUT_RD), SyscallFailsWithErrno(ENOTCONN));
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
// Connect the socket, then try to shutdown again.
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST_P(UdpSocketTest, ReadShutdown) {
// TODO(gvisor.dev/issue/1202): Calling recv() after shutdown without
// MSG_DONTWAIT blocks indefinitely.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
char received[512];
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
EXPECT_THAT(shutdown(sock_.get(), SHUT_RD), SyscallFailsWithErrno(ENOTCONN));
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
// Connect the socket, then try to shutdown again.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
EXPECT_THAT(shutdown(sock_.get(), SHUT_RD), SyscallSucceeds());
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(0));
}
TEST_P(UdpSocketTest, ReadShutdownDifferentThread) {
// TODO(gvisor.dev/issue/1202): Calling recv() after shutdown without
// MSG_DONTWAIT blocks indefinitely.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
char received[512];
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
// Connect the socket, then shutdown from another thread.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
ScopedThread t([&] {
absl::SleepFor(absl::Milliseconds(200));
EXPECT_THAT(shutdown(sock_.get(), SHUT_RD), SyscallSucceeds());
});
EXPECT_THAT(RetryEINTR(recv)(sock_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(0));
t.Join();
EXPECT_THAT(RetryEINTR(recv)(sock_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(0));
}
TEST_P(UdpSocketTest, WriteShutdown) {
ASSERT_NO_ERRNO(BindLoopback());
EXPECT_THAT(shutdown(sock_.get(), SHUT_WR), SyscallFailsWithErrno(ENOTCONN));
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
EXPECT_THAT(shutdown(sock_.get(), SHUT_WR), SyscallSucceeds());
}
TEST_P(UdpSocketTest, SynchronousReceive) {
ASSERT_NO_ERRNO(BindLoopback());
// Send some data to bind_ from another thread.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
// Receive the data prior to actually starting the other thread.
char received[512];
EXPECT_THAT(
RetryEINTR(recv)(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
// Start the thread.
ScopedThread t([&] {
absl::SleepFor(absl::Milliseconds(200));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, this->bind_addr_,
this->addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
});
EXPECT_THAT(RetryEINTR(recv)(bind_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(512));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
}
TEST_P(UdpSocketTest, BoundaryPreserved_SendRecv) {
ASSERT_NO_ERRNO(BindLoopback());
// Send 3 packets from sock to bind_.
constexpr int psize = 100;
char buf[3 * psize];
RandomizeBuffer(buf, sizeof(buf));
for (int i = 0; i < 3; ++i) {
ASSERT_THAT(
sendto(sock_.get(), buf + i * psize, psize, 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(psize));
}
// Receive the data as 3 separate packets.
char received[6 * psize];
for (int i = 0; i < 3; ++i) {
EXPECT_THAT(recv(bind_.get(), received + i * psize, 3 * psize, 0),
SyscallSucceedsWithValue(psize));
}
EXPECT_EQ(memcmp(buf, received, 3 * psize), 0);
}
TEST_P(UdpSocketTest, BoundaryPreserved_WritevReadv) {
ASSERT_NO_ERRNO(BindLoopback());
// Direct writes from sock to bind_.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Send 2 packets from sock to bind_, where each packet's data consists of
// 2 discontiguous iovecs.
constexpr size_t kPieceSize = 100;
char buf[4 * kPieceSize];
RandomizeBuffer(buf, sizeof(buf));
for (int i = 0; i < 2; i++) {
struct iovec iov[2];
for (int j = 0; j < 2; j++) {
iov[j].iov_base = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(buf) + (i + 2 * j) * kPieceSize);
iov[j].iov_len = kPieceSize;
}
ASSERT_THAT(writev(sock_.get(), iov, 2),
SyscallSucceedsWithValue(2 * kPieceSize));
}
// Receive the data as 2 separate packets.
char received[6 * kPieceSize];
for (int i = 0; i < 2; i++) {
struct iovec iov[3];
for (int j = 0; j < 3; j++) {
iov[j].iov_base = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(received) + (i + 2 * j) * kPieceSize);
iov[j].iov_len = kPieceSize;
}
ASSERT_THAT(readv(bind_.get(), iov, 3),
SyscallSucceedsWithValue(2 * kPieceSize));
}
EXPECT_EQ(memcmp(buf, received, 4 * kPieceSize), 0);
}
TEST_P(UdpSocketTest, BoundaryPreserved_SendMsgRecvMsg) {
ASSERT_NO_ERRNO(BindLoopback());
// Send 2 packets from sock to bind_, where each packet's data consists of
// 2 discontiguous iovecs.
constexpr size_t kPieceSize = 100;
char buf[4 * kPieceSize];
RandomizeBuffer(buf, sizeof(buf));
for (int i = 0; i < 2; i++) {
struct iovec iov[2];
for (int j = 0; j < 2; j++) {
iov[j].iov_base = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(buf) + (i + 2 * j) * kPieceSize);
iov[j].iov_len = kPieceSize;
}
struct msghdr msg = {};
msg.msg_name = bind_addr_;
msg.msg_namelen = addrlen_;
msg.msg_iov = iov;
msg.msg_iovlen = 2;
ASSERT_THAT(sendmsg(sock_.get(), &msg, 0),
SyscallSucceedsWithValue(2 * kPieceSize));
}
// Receive the data as 2 separate packets.
char received[6 * kPieceSize];
for (int i = 0; i < 2; i++) {
struct iovec iov[3];
for (int j = 0; j < 3; j++) {
iov[j].iov_base = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(received) + (i + 2 * j) * kPieceSize);
iov[j].iov_len = kPieceSize;
}
struct msghdr msg = {};
msg.msg_iov = iov;
msg.msg_iovlen = 3;
ASSERT_THAT(recvmsg(bind_.get(), &msg, 0),
SyscallSucceedsWithValue(2 * kPieceSize));
}
EXPECT_EQ(memcmp(buf, received, 4 * kPieceSize), 0);
}
TEST_P(UdpSocketTest, FIONREADShutdown) {
ASSERT_NO_ERRNO(BindLoopback());
int n = -1;
EXPECT_THAT(ioctl(sock_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
// A UDP socket must be connected before it can be shutdown.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(sock_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
EXPECT_THAT(shutdown(sock_.get(), SHUT_RD), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(sock_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
}
TEST_P(UdpSocketTest, FIONREADWriteShutdown) {
int n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
ASSERT_NO_ERRNO(BindLoopback());
// A UDP socket must be connected before it can be shutdown.
ASSERT_THAT(connect(bind_.get(), bind_addr_, addrlen_), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
const char str[] = "abc";
ASSERT_THAT(send(bind_.get(), str, sizeof(str), 0),
SyscallSucceedsWithValue(sizeof(str)));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, sizeof(str));
EXPECT_THAT(shutdown(bind_.get(), SHUT_RD), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, sizeof(str));
}
// NOTE: Do not use `FIONREAD` as test name because it will be replaced by the
// corresponding macro and become `0x541B`.
TEST_P(UdpSocketTest, Fionread) {
ASSERT_NO_ERRNO(BindLoopback());
// Check that the bound socket with an empty buffer reports an empty first
// packet.
int n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
// Send 3 packets from sock to bind_.
constexpr int psize = 100;
char buf[3 * psize];
RandomizeBuffer(buf, sizeof(buf));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
for (int i = 0; i < 3; ++i) {
ASSERT_THAT(
sendto(sock_.get(), buf + i * psize, psize, 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(psize));
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// Check that regardless of how many packets are in the queue, the size
// reported is that of a single packet.
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, psize);
}
}
TEST_P(UdpSocketTest, FIONREADZeroLengthPacket) {
ASSERT_NO_ERRNO(BindLoopback());
// Check that the bound socket with an empty buffer reports an empty first
// packet.
int n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
// Send 3 packets from sock to bind_.
constexpr int psize = 100;
char buf[3 * psize];
RandomizeBuffer(buf, sizeof(buf));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
for (int i = 0; i < 3; ++i) {
ASSERT_THAT(
sendto(sock_.get(), buf + i * psize, 0, 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(0));
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// Check that regardless of how many packets are in the queue, the size
// reported is that of a single packet.
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
}
}
TEST_P(UdpSocketTest, FIONREADZeroLengthWriteShutdown) {
int n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
ASSERT_NO_ERRNO(BindLoopback());
// A UDP socket must be connected before it can be shutdown.
ASSERT_THAT(connect(bind_.get(), bind_addr_, addrlen_), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
const char str[] = "abc";
ASSERT_THAT(send(bind_.get(), str, 0, 0), SyscallSucceedsWithValue(0));
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
EXPECT_THAT(shutdown(bind_.get(), SHUT_RD), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
}
TEST_P(UdpSocketTest, SoNoCheckOffByDefault) {
// TODO(gvisor.dev/issue/1202): SO_NO_CHECK socket option not supported by
// hostinet.
SKIP_IF(IsRunningWithHostinet());
int v = -1;
socklen_t optlen = sizeof(v);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, &optlen),
SyscallSucceeds());
ASSERT_EQ(v, kSockOptOff);
ASSERT_EQ(optlen, sizeof(v));
}
TEST_P(UdpSocketTest, SoNoCheck) {
// TODO(gvisor.dev/issue/1202): SO_NO_CHECK socket option not supported by
// hostinet.
SKIP_IF(IsRunningWithHostinet());
int v = kSockOptOn;
socklen_t optlen = sizeof(v);
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, optlen),
SyscallSucceeds());
v = -1;
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, &optlen),
SyscallSucceeds());
ASSERT_EQ(v, kSockOptOn);
ASSERT_EQ(optlen, sizeof(v));
v = kSockOptOff;
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, optlen),
SyscallSucceeds());
v = -1;
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, &optlen),
SyscallSucceeds());
ASSERT_EQ(v, kSockOptOff);
ASSERT_EQ(optlen, sizeof(v));
}
#ifdef __linux__
TEST_P(UdpSocketTest, ErrorQueue) {
char cmsgbuf[CMSG_SPACE(sizeof(sock_extended_err))];
msghdr msg;
memset(&msg, 0, sizeof(msg));
iovec iov;
memset(&iov, 0, sizeof(iov));
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = cmsgbuf;
msg.msg_controllen = sizeof(cmsgbuf);
// recv*(MSG_ERRQUEUE) never blocks, even without MSG_DONTWAIT.
EXPECT_THAT(RetryEINTR(recvmsg)(bind_.get(), &msg, MSG_ERRQUEUE),
SyscallFailsWithErrno(EAGAIN));
}
#endif // __linux__
TEST_P(UdpSocketTest, SoTimestampOffByDefault) {
int v = -1;
socklen_t optlen = sizeof(v);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_TIMESTAMP, &v, &optlen),
SyscallSucceeds());
ASSERT_EQ(v, kSockOptOff);
ASSERT_EQ(optlen, sizeof(v));
}
TEST_P(UdpSocketTest, SoTimestamp) {
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
int v = 1;
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_TIMESTAMP, &v, sizeof(v)),
SyscallSucceeds());
char buf[3];
// Send zero length packet from sock to bind_.
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
char cmsgbuf[CMSG_SPACE(sizeof(struct timeval))];
msghdr msg;
memset(&msg, 0, sizeof(msg));
iovec iov;
memset(&iov, 0, sizeof(iov));
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = cmsgbuf;
msg.msg_controllen = sizeof(cmsgbuf);
ASSERT_THAT(RetryEINTR(recvmsg)(bind_.get(), &msg, 0),
SyscallSucceedsWithValue(0));
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
ASSERT_NE(cmsg, nullptr);
ASSERT_EQ(cmsg->cmsg_level, SOL_SOCKET);
ASSERT_EQ(cmsg->cmsg_type, SO_TIMESTAMP);
ASSERT_EQ(cmsg->cmsg_len, CMSG_LEN(sizeof(struct timeval)));
struct timeval tv = {};
memcpy(&tv, CMSG_DATA(cmsg), sizeof(struct timeval));
ASSERT_TRUE(tv.tv_sec != 0 || tv.tv_usec != 0);
// TODO(gvisor.dev/issue/1202): ioctl(SIOCGSTAMP) is not supported by
// hostinet.
if (!IsRunningWithHostinet()) {
// There should be nothing to get via ioctl.
ASSERT_THAT(ioctl(bind_.get(), SIOCGSTAMP, &tv),
SyscallFailsWithErrno(ENOENT));
}
}
TEST_P(UdpSocketTest, WriteShutdownNotConnected) {
EXPECT_THAT(shutdown(bind_.get(), SHUT_WR), SyscallFailsWithErrno(ENOTCONN));
}
TEST_P(UdpSocketTest, TimestampIoctl) {
// TODO(gvisor.dev/issue/1202): ioctl() is not supported by hostinet.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
char buf[3];
// Send packet from sock to bind_.
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// There should be no control messages.
char recv_buf[sizeof(buf)];
ASSERT_NO_FATAL_FAILURE(RecvNoCmsg(bind_.get(), recv_buf, sizeof(recv_buf)));
// A nonzero timeval should be available via ioctl.
struct timeval tv = {};
ASSERT_THAT(ioctl(bind_.get(), SIOCGSTAMP, &tv), SyscallSucceeds());
ASSERT_TRUE(tv.tv_sec != 0 || tv.tv_usec != 0);
}
TEST_P(UdpSocketTest, TimestampIoctlNothingRead) {
// TODO(gvisor.dev/issue/1202): ioctl() is not supported by hostinet.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct timeval tv = {};
ASSERT_THAT(ioctl(sock_.get(), SIOCGSTAMP, &tv),
SyscallFailsWithErrno(ENOENT));
}
// Test that the timestamp accessed via SIOCGSTAMP is still accessible after
// SO_TIMESTAMP is enabled and used to retrieve a timestamp.
TEST_P(UdpSocketTest, TimestampIoctlPersistence) {
// TODO(gvisor.dev/issue/1202): ioctl() and SO_TIMESTAMP socket option are not
// supported by hostinet.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
char buf[3];
// Send packet from sock to bind_.
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, 0),
SyscallSucceedsWithValue(0));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// There should be no control messages.
char recv_buf[sizeof(buf)];
ASSERT_NO_FATAL_FAILURE(RecvNoCmsg(bind_.get(), recv_buf, sizeof(recv_buf)));
// A nonzero timeval should be available via ioctl.
struct timeval tv = {};
ASSERT_THAT(ioctl(bind_.get(), SIOCGSTAMP, &tv), SyscallSucceeds());
ASSERT_TRUE(tv.tv_sec != 0 || tv.tv_usec != 0);
// Enable SO_TIMESTAMP and send a message.
int v = 1;
EXPECT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_TIMESTAMP, &v, sizeof(v)),
SyscallSucceeds());
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, 0),
SyscallSucceedsWithValue(0));
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// There should be a message for SO_TIMESTAMP.
char cmsgbuf[CMSG_SPACE(sizeof(struct timeval))];
msghdr msg = {};
iovec iov = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = cmsgbuf;
msg.msg_controllen = sizeof(cmsgbuf);
ASSERT_THAT(RetryEINTR(recvmsg)(bind_.get(), &msg, 0),
SyscallSucceedsWithValue(0));
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
ASSERT_NE(cmsg, nullptr);
// The ioctl should return the exact same values as before.
struct timeval tv2 = {};
ASSERT_THAT(ioctl(bind_.get(), SIOCGSTAMP, &tv2), SyscallSucceeds());
ASSERT_EQ(tv.tv_sec, tv2.tv_sec);
ASSERT_EQ(tv.tv_usec, tv2.tv_usec);
}
// TOS and TCLASS values may be different but IPv6 sockets with IPv4-mapped-IPv6
// addresses use TOS (IPv4), not TCLASS (IPv6).
TEST_P(UdpSocketTest, DifferentTOSAndTClass) {
const int kFamily = GetFamily();
constexpr int kToS = IPTOS_LOWDELAY;
constexpr int kTClass = IPTOS_THROUGHPUT;
ASSERT_NE(kToS, kTClass);
if (kFamily == AF_INET6) {
ASSERT_THAT(setsockopt(sock_.get(), SOL_IPV6, IPV6_TCLASS, &kTClass,
sizeof(kTClass)),
SyscallSucceeds());
// Marking an IPv6 socket as IPv6 only should not affect the ability to
// configure IPv4 socket options as the V6ONLY flag may later be disabled so
// that applications may use the socket to send/receive IPv4 packets.
constexpr int on = 1;
ASSERT_THAT(setsockopt(sock_.get(), SOL_IPV6, IPV6_V6ONLY, &on, sizeof(on)),
SyscallSucceeds());
}
ASSERT_THAT(setsockopt(sock_.get(), SOL_IP, IP_TOS, &kToS, sizeof(kToS)),
SyscallSucceeds());
if (kFamily == AF_INET6) {
int got_tclass;
socklen_t got_tclass_len = sizeof(got_tclass);
ASSERT_THAT(getsockopt(sock_.get(), SOL_IPV6, IPV6_TCLASS, &got_tclass,
&got_tclass_len),
SyscallSucceeds());
ASSERT_EQ(got_tclass_len, sizeof(got_tclass));
EXPECT_EQ(got_tclass, kTClass);
}
{
int got_tos;
socklen_t got_tos_len = sizeof(got_tos);
ASSERT_THAT(getsockopt(sock_.get(), SOL_IP, IP_TOS, &got_tos, &got_tos_len),
SyscallSucceeds());
ASSERT_EQ(got_tos_len, sizeof(got_tos));
EXPECT_EQ(got_tos, kToS);
}
auto test_send = [this](sockaddr_storage addr,
std::function<void(const cmsghdr*)> cb) {
FileDescriptor bind = ASSERT_NO_ERRNO_AND_VALUE(
Socket(addr.ss_family, SOCK_DGRAM, IPPROTO_UDP));
ASSERT_NO_ERRNO(BindSocket(bind.get(), reinterpret_cast<sockaddr*>(&addr)));
ASSERT_THAT(setsockopt(bind.get(), SOL_IP, IP_RECVTOS, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
if (addr.ss_family == AF_INET6) {
ASSERT_THAT(setsockopt(bind.get(), SOL_IPV6, IPV6_RECVTCLASS, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
}
char sent_data[1024];
iovec sent_iov = {
.iov_base = sent_data,
.iov_len = sizeof(sent_data),
};
msghdr sent_msg = {
.msg_name = &addr,
.msg_namelen = sizeof(addr),
.msg_iov = &sent_iov,
.msg_iovlen = 1,
};
ASSERT_THAT(RetryEINTR(sendmsg)(sock_.get(), &sent_msg, 0),
SyscallSucceedsWithValue(sizeof(sent_data)));
char received_data[sizeof(sent_data) + 1];
iovec received_iov = {
.iov_base = received_data,
.iov_len = sizeof(received_data),
};
std::vector<char> received_cmsgbuf(CMSG_SPACE(sizeof(int8_t)));
msghdr received_msg = {
.msg_iov = &received_iov,
.msg_iovlen = 1,
.msg_control = received_cmsgbuf.data(),
.msg_controllen = static_cast<socklen_t>(received_cmsgbuf.size()),
};
ASSERT_THAT(RetryEINTR(recvmsg)(bind.get(), &received_msg, 0),
SyscallSucceedsWithValue(sizeof(sent_data)));
cmsghdr* cmsg = CMSG_FIRSTHDR(&received_msg);
ASSERT_NE(cmsg, nullptr);
ASSERT_NO_FATAL_FAILURE(cb(cmsg));
EXPECT_EQ(CMSG_NXTHDR(&received_msg, cmsg), nullptr);
};
if (kFamily == AF_INET6) {
SCOPED_TRACE(
"Send IPv4 loopback packet using IPv6 socket via IPv4-mapped-IPv6");
constexpr int off = 0;
ASSERT_THAT(
setsockopt(sock_.get(), SOL_IPV6, IPV6_V6ONLY, &off, sizeof(off)),
SyscallSucceeds());
// Send a packet and make sure that the ToS value in the IPv4 header is
// the configured IPv4 ToS Value and not the IPv6 Traffic Class value even
// though we use an IPv6 socket to send an IPv4 packet.
ASSERT_NO_FATAL_FAILURE(
test_send(V4MappedLoopback().addr, [kToS](const cmsghdr* cmsg) {
EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(sizeof(int8_t)));
EXPECT_EQ(cmsg->cmsg_level, SOL_IP);
EXPECT_EQ(cmsg->cmsg_type, IP_TOS);
int8_t received;
memcpy(&received, CMSG_DATA(cmsg), sizeof(received));
EXPECT_EQ(received, kToS);
}));
}
{
SCOPED_TRACE("Send loopback packet");
ASSERT_NO_FATAL_FAILURE(test_send(
InetLoopbackAddr(), [kFamily, kTClass, kToS](const cmsghdr* cmsg) {
switch (kFamily) {
case AF_INET: {
EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(sizeof(int8_t)));
EXPECT_EQ(cmsg->cmsg_level, SOL_IP);
EXPECT_EQ(cmsg->cmsg_type, IP_TOS);
int8_t received;
memcpy(&received, CMSG_DATA(cmsg), sizeof(received));
EXPECT_EQ(received, kToS);
} break;
case AF_INET6: {
EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(sizeof(int32_t)));
EXPECT_EQ(cmsg->cmsg_level, SOL_IPV6);
EXPECT_EQ(cmsg->cmsg_type, IPV6_TCLASS);
int32_t received;
memcpy(&received, CMSG_DATA(cmsg), sizeof(received));
EXPECT_EQ(received, kTClass);
} break;
}
}));
}
}
// Test that a socket with IP_TOS or IPV6_TCLASS set will set the TOS byte on
// outgoing packets, and that a receiving socket with IP_RECVTOS or
// IPV6_RECVTCLASS will create the corresponding control message.
TEST_P(UdpSocketTest, SetAndReceiveTOS) {
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Allow socket to receive control message.
int recv_level = SOL_IP;
int recv_type = IP_RECVTOS;
if (GetParam() != AddressFamily::kIpv4) {
recv_level = SOL_IPV6;
recv_type = IPV6_RECVTCLASS;
}
ASSERT_THAT(setsockopt(bind_.get(), recv_level, recv_type, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Set socket TOS.
int sent_level = recv_level;
int sent_type = IP_TOS;
if (sent_level == SOL_IPV6) {
sent_type = IPV6_TCLASS;
}
int sent_tos = IPTOS_LOWDELAY; // Choose some TOS value.
ASSERT_THAT(setsockopt(sock_.get(), sent_level, sent_type, &sent_tos,
sizeof(sent_tos)),
SyscallSucceeds());
// Prepare message to send.
constexpr size_t kDataLength = 1024;
struct msghdr sent_msg = {};
struct iovec sent_iov = {};
char sent_data[kDataLength];
sent_iov.iov_base = &sent_data[0];
sent_iov.iov_len = kDataLength;
sent_msg.msg_iov = &sent_iov;
sent_msg.msg_iovlen = 1;
ASSERT_THAT(RetryEINTR(sendmsg)(sock_.get(), &sent_msg, 0),
SyscallSucceedsWithValue(kDataLength));
// Receive message.
struct msghdr received_msg = {};
struct iovec received_iov = {};
char received_data[kDataLength];
received_iov.iov_base = &received_data[0];
received_iov.iov_len = kDataLength;
received_msg.msg_iov = &received_iov;
received_msg.msg_iovlen = 1;
size_t cmsg_data_len = sizeof(int8_t);
if (sent_type == IPV6_TCLASS) {
cmsg_data_len = sizeof(int);
}
std::vector<char> received_cmsgbuf(CMSG_SPACE(cmsg_data_len));
received_msg.msg_control = &received_cmsgbuf[0];
received_msg.msg_controllen = received_cmsgbuf.size();
ASSERT_THAT(RetryEINTR(recvmsg)(bind_.get(), &received_msg, 0),
SyscallSucceedsWithValue(kDataLength));
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&received_msg);
ASSERT_NE(cmsg, nullptr);
EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(cmsg_data_len));
EXPECT_EQ(cmsg->cmsg_level, sent_level);
EXPECT_EQ(cmsg->cmsg_type, sent_type);
int8_t received_tos = 0;
memcpy(&received_tos, CMSG_DATA(cmsg), sizeof(received_tos));
EXPECT_EQ(received_tos, sent_tos);
}
// Test that sendmsg with IP_TOS and IPV6_TCLASS control messages will set the
// TOS byte on outgoing packets, and that a receiving socket with IP_RECVTOS or
// IPV6_RECVTCLASS will create the corresponding control message.
TEST_P(UdpSocketTest, SendAndReceiveTOS) {
// TODO(b/146661005): Setting TOS via cmsg not supported for netstack.
SKIP_IF(IsRunningOnGvisor() && !IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Allow socket to receive control message.
int recv_level = SOL_IP;
int recv_type = IP_RECVTOS;
if (GetParam() != AddressFamily::kIpv4) {
recv_level = SOL_IPV6;
recv_type = IPV6_RECVTCLASS;
}
int recv_opt = kSockOptOn;
ASSERT_THAT(setsockopt(bind_.get(), recv_level, recv_type, &recv_opt,
sizeof(recv_opt)),
SyscallSucceeds());
// Prepare message to send.
constexpr size_t kDataLength = 1024;
int sent_level = recv_level;
int sent_type = IP_TOS;
int sent_tos = IPTOS_LOWDELAY; // Choose some TOS value.
struct msghdr sent_msg = {};
struct iovec sent_iov = {};
char sent_data[kDataLength];
sent_iov.iov_base = &sent_data[0];
sent_iov.iov_len = kDataLength;
sent_msg.msg_iov = &sent_iov;
sent_msg.msg_iovlen = 1;
size_t cmsg_data_len = sizeof(int8_t);
if (sent_level == SOL_IPV6) {
sent_type = IPV6_TCLASS;
cmsg_data_len = sizeof(int);
}
std::vector<char> sent_cmsgbuf(CMSG_SPACE(cmsg_data_len));
sent_msg.msg_control = &sent_cmsgbuf[0];
sent_msg.msg_controllen = CMSG_LEN(cmsg_data_len);
// Manually add control message.
struct cmsghdr* sent_cmsg = CMSG_FIRSTHDR(&sent_msg);
sent_cmsg->cmsg_len = CMSG_LEN(cmsg_data_len);
sent_cmsg->cmsg_level = sent_level;
sent_cmsg->cmsg_type = sent_type;
*(int8_t*)CMSG_DATA(sent_cmsg) = sent_tos;
ASSERT_THAT(RetryEINTR(sendmsg)(sock_.get(), &sent_msg, 0),
SyscallSucceedsWithValue(kDataLength));
// Receive message.
struct msghdr received_msg = {};
struct iovec received_iov = {};
char received_data[kDataLength];
received_iov.iov_base = &received_data[0];
received_iov.iov_len = kDataLength;
received_msg.msg_iov = &received_iov;
received_msg.msg_iovlen = 1;
std::vector<char> received_cmsgbuf(CMSG_SPACE(cmsg_data_len));
received_msg.msg_control = &received_cmsgbuf[0];
received_msg.msg_controllen = CMSG_LEN(cmsg_data_len);
ASSERT_THAT(RetryEINTR(recvmsg)(bind_.get(), &received_msg, 0),
SyscallSucceedsWithValue(kDataLength));
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&received_msg);
ASSERT_NE(cmsg, nullptr);
EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(cmsg_data_len));
EXPECT_EQ(cmsg->cmsg_level, sent_level);
EXPECT_EQ(cmsg->cmsg_type, sent_type);
int8_t received_tos = 0;
memcpy(&received_tos, CMSG_DATA(cmsg), sizeof(received_tos));
EXPECT_EQ(received_tos, sent_tos);
}
TEST_P(UdpSocketTest, RecvBufLimitsEmptyRcvBuf) {
// Discover minimum buffer size by setting it to zero.
constexpr int kRcvBufSz = 0;
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &kRcvBufSz,
sizeof(kRcvBufSz)),
SyscallSucceeds());
int min = 0;
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
// Bind bind_ to loopback.
ASSERT_NO_ERRNO(BindLoopback());
{
// Send data of size min and verify that it's received.
std::vector<char> buf(min);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
std::vector<char> received(buf.size());
EXPECT_THAT(RecvTimeout(bind_.get(), received.data(), received.size(),
1 /*timeout*/),
IsPosixErrorOkAndHolds(received.size()));
}
{
// Send data of size min + 1 and verify that its received. Both linux and
// Netstack accept a dgram that exceeds rcvBuf limits if the receive buffer
// is currently empty.
std::vector<char> buf(min + 1);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
std::vector<char> received(buf.size());
ASSERT_THAT(RecvTimeout(bind_.get(), received.data(), received.size(),
1 /*timeout*/),
IsPosixErrorOkAndHolds(received.size()));
}
}
// Test that receive buffer limits are enforced.
TEST_P(UdpSocketTest, RecvBufLimits) {
// Bind s_ to loopback.
ASSERT_NO_ERRNO(BindLoopback());
int min = 0;
{
// Discover minimum buffer size by trying to set it to zero.
constexpr int kRcvBufSz = 0;
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &kRcvBufSz,
sizeof(kRcvBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
}
// Now set the limit to min * 2.
int new_rcv_buf_sz = min * 2;
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &new_rcv_buf_sz,
sizeof(new_rcv_buf_sz)),
SyscallSucceeds());
int rcv_buf_sz = 0;
{
socklen_t rcv_buf_len = sizeof(rcv_buf_sz);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &rcv_buf_sz,
&rcv_buf_len),
SyscallSucceeds());
}
{
std::vector<char> buf(min);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
int sent = 4;
if (IsRunningOnGvisor() && !IsRunningWithHostinet()) {
// Linux seems to drop the 4th packet even though technically it should
// fit in the receive buffer.
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
sent++;
}
for (int i = 0; i < sent - 1; i++) {
// Receive the data.
std::vector<char> received(buf.size());
EXPECT_THAT(RecvTimeout(bind_.get(), received.data(), received.size(),
1 /*timeout*/),
IsPosixErrorOkAndHolds(received.size()));
EXPECT_EQ(memcmp(buf.data(), received.data(), buf.size()), 0);
}
// The last receive should fail with EAGAIN as the last packet should have
// been dropped due to lack of space in the receive buffer.
std::vector<char> received(buf.size());
EXPECT_THAT(
recv(bind_.get(), received.data(), received.size(), MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
}
#ifdef __linux__
// TODO(gvisor.dev/2746): Support SO_ATTACH_FILTER/SO_DETACH_FILTER.
// gVisor currently silently ignores attaching a filter.
TEST_P(UdpSocketTest, SetSocketDetachFilter) {
// Program generated using sudo tcpdump -i lo udp and port 1234 -dd
struct sock_filter code[] = {
{0x28, 0, 0, 0x0000000c}, {0x15, 0, 6, 0x000086dd},
{0x30, 0, 0, 0x00000014}, {0x15, 0, 15, 0x00000011},
{0x28, 0, 0, 0x00000036}, {0x15, 12, 0, 0x000004d2},
{0x28, 0, 0, 0x00000038}, {0x15, 10, 11, 0x000004d2},
{0x15, 0, 10, 0x00000800}, {0x30, 0, 0, 0x00000017},
{0x15, 0, 8, 0x00000011}, {0x28, 0, 0, 0x00000014},
{0x45, 6, 0, 0x00001fff}, {0xb1, 0, 0, 0x0000000e},
{0x48, 0, 0, 0x0000000e}, {0x15, 2, 0, 0x000004d2},
{0x48, 0, 0, 0x00000010}, {0x15, 0, 1, 0x000004d2},
{0x6, 0, 0, 0x00040000}, {0x6, 0, 0, 0x00000000},
};
struct sock_fprog bpf = {
.len = ABSL_ARRAYSIZE(code),
.filter = code,
};
ASSERT_THAT(
setsockopt(sock_.get(), SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf)),
SyscallSucceeds());
constexpr int val = 0;
ASSERT_THAT(
setsockopt(sock_.get(), SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val)),
SyscallSucceeds());
}
#endif // __linux__
TEST_P(UdpSocketTest, SetSocketDetachFilterNoInstalledFilter) {
// TODO(gvisor.dev/2746): Support SO_ATTACH_FILTER/SO_DETACH_FILTER.
SKIP_IF(IsRunningOnGvisor());
constexpr int val = 0;
ASSERT_THAT(
setsockopt(sock_.get(), SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val)),
SyscallFailsWithErrno(ENOENT));
}
TEST_P(UdpSocketTest, GetSocketDetachFilter) {
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(
getsockopt(sock_.get(), SOL_SOCKET, SO_DETACH_FILTER, &val, &val_len),
SyscallFailsWithErrno(ENOPROTOOPT));
}
TEST_P(UdpSocketTest, SendToZeroPort) {
char buf[8];
struct sockaddr_storage addr = InetLoopbackAddr();
// Sending to an invalid port should fail.
SetPort(&addr, 0);
EXPECT_THAT(
sendto(sock_.get(), buf, sizeof(buf), 0, AsSockAddr(&addr), sizeof(addr)),
SyscallFailsWithErrno(EINVAL));
SetPort(&addr, 1234);
EXPECT_THAT(
sendto(sock_.get(), buf, sizeof(buf), 0, AsSockAddr(&addr), sizeof(addr)),
SyscallSucceedsWithValue(sizeof(buf)));
}
TEST_P(UdpSocketTest, ConnectToZeroPortUnbound) {
struct sockaddr_storage addr = InetLoopbackAddr();
SetPort(&addr, 0);
ASSERT_THAT(connect(sock_.get(), AsSockAddr(&addr), addrlen_),
SyscallSucceeds());
}
TEST_P(UdpSocketTest, ConnectToZeroPortBound) {
struct sockaddr_storage addr = InetLoopbackAddr();
ASSERT_NO_ERRNO(BindSocket(sock_.get(), AsSockAddr(&addr)));
SetPort(&addr, 0);
ASSERT_THAT(connect(sock_.get(), AsSockAddr(&addr), addrlen_),
SyscallSucceeds());
socklen_t len = sizeof(sockaddr_storage);
ASSERT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &len),
SyscallSucceeds());
ASSERT_EQ(len, addrlen_);
}
TEST_P(UdpSocketTest, ConnectToZeroPortConnected) {
struct sockaddr_storage addr = InetLoopbackAddr();
ASSERT_NO_ERRNO(BindSocket(sock_.get(), AsSockAddr(&addr)));
// Connect to an address with non-zero port should succeed.
ASSERT_THAT(connect(sock_.get(), AsSockAddr(&addr), addrlen_),
SyscallSucceeds());
sockaddr_storage peername;
socklen_t peerlen = sizeof(peername);
ASSERT_THAT(getpeername(sock_.get(), AsSockAddr(&peername), &peerlen),
SyscallSucceeds());
ASSERT_EQ(peerlen, addrlen_);
ASSERT_EQ(memcmp(&peername, &addr, addrlen_), 0);
// However connect() to an address with port 0 will make the following
// getpeername() fail.
SetPort(&addr, 0);
ASSERT_THAT(connect(sock_.get(), AsSockAddr(&addr), addrlen_),
SyscallSucceeds());
ASSERT_THAT(getpeername(sock_.get(), AsSockAddr(&peername), &peerlen),
SyscallFailsWithErrno(ENOTCONN));
}
INSTANTIATE_TEST_SUITE_P(AllInetTests, UdpSocketTest,
::testing::Values(AddressFamily::kIpv4,
AddressFamily::kIpv6,
AddressFamily::kDualStack));
TEST(UdpInet6SocketTest, ConnectInet4Sockaddr) {
// glibc getaddrinfo expects the invariant expressed by this test to be held.
const sockaddr_in connect_sockaddr = {
.sin_family = AF_INET, .sin_addr = {.s_addr = htonl(INADDR_LOOPBACK)}};
auto sock_ =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP));
ASSERT_THAT(
connect(sock_.get(),
reinterpret_cast<const struct sockaddr*>(&connect_sockaddr),
sizeof(sockaddr_in)),
SyscallSucceeds());
sockaddr_storage sockname;
socklen_t len = sizeof(sockaddr_storage);
ASSERT_THAT(getsockname(sock_.get(), AsSockAddr(&sockname), &len),
SyscallSucceeds());
ASSERT_EQ(sockname.ss_family, AF_INET6);
ASSERT_EQ(len, sizeof(sockaddr_in6));
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(&sockname);
char addr_buf[INET6_ADDRSTRLEN];
const char* addr;
ASSERT_NE(addr = inet_ntop(sockname.ss_family, &sockname, addr_buf,
sizeof(addr_buf)),
nullptr);
ASSERT_TRUE(IN6_IS_ADDR_V4MAPPED(sin6->sin6_addr.s6_addr)) << addr;
}
} // namespace
} // namespace testing
} // namespace gvisor
|