summaryrefslogtreecommitdiffhomepage
path: root/test/syscalls/linux/splice.cc
blob: c2369db54745d9b836d1b37e387a6da80ee4e8f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <fcntl.h>
#include <linux/unistd.h>
#include <sys/eventfd.h>
#include <sys/resource.h>
#include <sys/sendfile.h>
#include <sys/time.h>
#include <unistd.h>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/string_view.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/file_descriptor.h"
#include "test/util/signal_util.h"
#include "test/util/temp_path.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
#include "test/util/timer_util.h"

namespace gvisor {
namespace testing {

namespace {

TEST(SpliceTest, TwoRegularFiles) {
  // Create temp files.
  const TempPath in_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
  const TempPath out_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());

  // Open the input file as read only.
  const FileDescriptor in_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(in_file.path(), O_RDONLY));

  // Open the output file as write only.
  const FileDescriptor out_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(out_file.path(), O_WRONLY));

  // Verify that it is rejected as expected; regardless of offsets.
  loff_t in_offset = 0;
  loff_t out_offset = 0;
  EXPECT_THAT(splice(in_fd.get(), &in_offset, out_fd.get(), &out_offset, 1, 0),
              SyscallFailsWithErrno(EINVAL));
  EXPECT_THAT(splice(in_fd.get(), nullptr, out_fd.get(), &out_offset, 1, 0),
              SyscallFailsWithErrno(EINVAL));
  EXPECT_THAT(splice(in_fd.get(), &in_offset, out_fd.get(), nullptr, 1, 0),
              SyscallFailsWithErrno(EINVAL));
  EXPECT_THAT(splice(in_fd.get(), nullptr, out_fd.get(), nullptr, 1, 0),
              SyscallFailsWithErrno(EINVAL));
}

int memfd_create(const std::string& name, unsigned int flags) {
  return syscall(__NR_memfd_create, name.c_str(), flags);
}

TEST(SpliceTest, NegativeOffset) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Fill the pipe.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Open the output file as write only.
  int fd;
  EXPECT_THAT(fd = memfd_create("negative", 0), SyscallSucceeds());
  const FileDescriptor out_fd(fd);

  loff_t out_offset = 0xffffffffffffffffull;
  constexpr int kSize = 2;
  EXPECT_THAT(splice(rfd.get(), nullptr, out_fd.get(), &out_offset, kSize, 0),
              SyscallFailsWithErrno(EINVAL));
}

// Write offset + size overflows int64.
//
// This is a regression test for b/148041624.
TEST(SpliceTest, WriteOverflow) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Fill the pipe.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Open the output file.
  int fd;
  EXPECT_THAT(fd = memfd_create("overflow", 0), SyscallSucceeds());
  const FileDescriptor out_fd(fd);

  // out_offset + kSize overflows INT64_MAX.
  loff_t out_offset = 0x7ffffffffffffffeull;
  constexpr int kSize = 3;
  EXPECT_THAT(splice(rfd.get(), nullptr, out_fd.get(), &out_offset, kSize, 0),
              SyscallFailsWithErrno(EINVAL));
}

TEST(SpliceTest, SamePipe) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Fill the pipe.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Attempt to splice to itself.
  EXPECT_THAT(splice(rfd.get(), nullptr, wfd.get(), nullptr, kPageSize, 0),
              SyscallFailsWithErrno(EINVAL));
}

TEST(TeeTest, SamePipe) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Fill the pipe.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Attempt to tee to itself.
  EXPECT_THAT(tee(rfd.get(), wfd.get(), kPageSize, 0),
              SyscallFailsWithErrno(EINVAL));
}

TEST(TeeTest, RegularFile) {
  // Open some file.
  const TempPath in_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
  const FileDescriptor in_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(in_file.path(), O_RDWR));

  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Attempt to tee from the file.
  EXPECT_THAT(tee(in_fd.get(), wfd.get(), kPageSize, 0),
              SyscallFailsWithErrno(EINVAL));
  EXPECT_THAT(tee(rfd.get(), in_fd.get(), kPageSize, 0),
              SyscallFailsWithErrno(EINVAL));
}

TEST(SpliceTest, PipeOffsets) {
  // Create two new pipes.
  int first[2], second[2];
  ASSERT_THAT(pipe(first), SyscallSucceeds());
  const FileDescriptor rfd1(first[0]);
  const FileDescriptor wfd1(first[1]);
  ASSERT_THAT(pipe(second), SyscallSucceeds());
  const FileDescriptor rfd2(second[0]);
  const FileDescriptor wfd2(second[1]);

  // All pipe offsets should be rejected.
  loff_t in_offset = 0;
  loff_t out_offset = 0;
  EXPECT_THAT(splice(rfd1.get(), &in_offset, wfd2.get(), &out_offset, 1, 0),
              SyscallFailsWithErrno(ESPIPE));
  EXPECT_THAT(splice(rfd1.get(), nullptr, wfd2.get(), &out_offset, 1, 0),
              SyscallFailsWithErrno(ESPIPE));
  EXPECT_THAT(splice(rfd1.get(), &in_offset, wfd2.get(), nullptr, 1, 0),
              SyscallFailsWithErrno(ESPIPE));
}

// Event FDs may be used with splice without an offset.
TEST(SpliceTest, FromEventFD) {
  // Open the input eventfd with an initial value so that it is readable.
  constexpr uint64_t kEventFDValue = 1;
  int efd;
  ASSERT_THAT(efd = eventfd(kEventFDValue, 0), SyscallSucceeds());
  const FileDescriptor in_fd(efd);

  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Splice 8-byte eventfd value to pipe.
  constexpr int kEventFDSize = 8;
  EXPECT_THAT(splice(in_fd.get(), nullptr, wfd.get(), nullptr, kEventFDSize, 0),
              SyscallSucceedsWithValue(kEventFDSize));

  // Contents should be equal.
  std::vector<char> rbuf(kEventFDSize);
  ASSERT_THAT(read(rfd.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kEventFDSize));
  EXPECT_EQ(memcmp(rbuf.data(), &kEventFDValue, rbuf.size()), 0);
}

// Event FDs may not be used with splice with an offset.
TEST(SpliceTest, FromEventFDOffset) {
  int efd;
  ASSERT_THAT(efd = eventfd(0, 0), SyscallSucceeds());
  const FileDescriptor in_fd(efd);

  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Attempt to splice 8-byte eventfd value to pipe with offset.
  //
  // This is not allowed because eventfd doesn't support pread.
  constexpr int kEventFDSize = 8;
  loff_t in_off = 0;
  EXPECT_THAT(splice(in_fd.get(), &in_off, wfd.get(), nullptr, kEventFDSize, 0),
              SyscallFailsWithErrno(EINVAL));
}

// Event FDs may not be used with splice with an offset.
TEST(SpliceTest, ToEventFDOffset) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Fill with a value.
  constexpr int kEventFDSize = 8;
  std::vector<char> buf(kEventFDSize);
  buf[0] = 1;
  ASSERT_THAT(write(wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kEventFDSize));

  int efd;
  ASSERT_THAT(efd = eventfd(0, 0), SyscallSucceeds());
  const FileDescriptor out_fd(efd);

  // Attempt to splice 8-byte eventfd value to pipe with offset.
  //
  // This is not allowed because eventfd doesn't support pwrite.
  loff_t out_off = 0;
  EXPECT_THAT(
      splice(rfd.get(), nullptr, out_fd.get(), &out_off, kEventFDSize, 0),
      SyscallFailsWithErrno(EINVAL));
}

TEST(SpliceTest, ToPipe) {
  // Open the input file.
  const TempPath in_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
  const FileDescriptor in_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(in_file.path(), O_RDWR));

  // Fill with some random data.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(in_fd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));
  ASSERT_THAT(lseek(in_fd.get(), 0, SEEK_SET), SyscallSucceedsWithValue(0));

  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Splice to the pipe.
  EXPECT_THAT(splice(in_fd.get(), nullptr, wfd.get(), nullptr, kPageSize, 0),
              SyscallSucceedsWithValue(kPageSize));

  // Contents should be equal.
  std::vector<char> rbuf(kPageSize);
  ASSERT_THAT(read(rfd.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize));
  EXPECT_EQ(memcmp(rbuf.data(), buf.data(), buf.size()), 0);
}

TEST(SpliceTest, ToPipeEOF) {
  // Create and open an empty input file.
  const TempPath in_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
  const FileDescriptor in_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(in_file.path(), O_RDONLY));

  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Splice from the empty file to the pipe.
  EXPECT_THAT(splice(in_fd.get(), nullptr, wfd.get(), nullptr, 123, 0),
              SyscallSucceedsWithValue(0));
}

TEST(SpliceTest, ToPipeOffset) {
  // Open the input file.
  const TempPath in_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
  const FileDescriptor in_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(in_file.path(), O_RDWR));

  // Fill with some random data.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(in_fd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Splice to the pipe.
  loff_t in_offset = kPageSize / 2;
  EXPECT_THAT(
      splice(in_fd.get(), &in_offset, wfd.get(), nullptr, kPageSize / 2, 0),
      SyscallSucceedsWithValue(kPageSize / 2));

  // Contents should be equal to only the second part.
  std::vector<char> rbuf(kPageSize / 2);
  ASSERT_THAT(read(rfd.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize / 2));
  EXPECT_EQ(memcmp(rbuf.data(), buf.data() + (kPageSize / 2), rbuf.size()), 0);
}

TEST(SpliceTest, FromPipe) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Fill with some random data.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Open the output file.
  const TempPath out_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
  const FileDescriptor out_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(out_file.path(), O_RDWR));

  // Splice to the output file.
  EXPECT_THAT(splice(rfd.get(), nullptr, out_fd.get(), nullptr, kPageSize, 0),
              SyscallSucceedsWithValue(kPageSize));

  // The offset of the output should be equal to kPageSize. We assert that and
  // reset to zero so that we can read the contents and ensure they match.
  EXPECT_THAT(lseek(out_fd.get(), 0, SEEK_CUR),
              SyscallSucceedsWithValue(kPageSize));
  ASSERT_THAT(lseek(out_fd.get(), 0, SEEK_SET), SyscallSucceedsWithValue(0));

  // Contents should be equal.
  std::vector<char> rbuf(kPageSize);
  ASSERT_THAT(read(out_fd.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize));
  EXPECT_EQ(memcmp(rbuf.data(), buf.data(), buf.size()), 0);
}

TEST(SpliceTest, FromPipeMultiple) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  std::string buf = "abcABC123";
  ASSERT_THAT(write(wfd.get(), buf.c_str(), buf.size()),
              SyscallSucceedsWithValue(buf.size()));

  // Open the output file.
  const TempPath out_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
  const FileDescriptor out_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(out_file.path(), O_RDWR));

  // Splice from the pipe to the output file over several calls.
  EXPECT_THAT(splice(rfd.get(), nullptr, out_fd.get(), nullptr, 3, 0),
              SyscallSucceedsWithValue(3));
  EXPECT_THAT(splice(rfd.get(), nullptr, out_fd.get(), nullptr, 3, 0),
              SyscallSucceedsWithValue(3));
  EXPECT_THAT(splice(rfd.get(), nullptr, out_fd.get(), nullptr, 3, 0),
              SyscallSucceedsWithValue(3));

  // Reset cursor to zero so that we can check the contents.
  ASSERT_THAT(lseek(out_fd.get(), 0, SEEK_SET), SyscallSucceedsWithValue(0));

  // Contents should be equal.
  std::vector<char> rbuf(buf.size());
  ASSERT_THAT(read(out_fd.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(rbuf.size()));
  EXPECT_EQ(memcmp(rbuf.data(), buf.c_str(), buf.size()), 0);
}

TEST(SpliceTest, FromPipeOffset) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Fill with some random data.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Open the input file.
  const TempPath out_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
  const FileDescriptor out_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(out_file.path(), O_RDWR));

  // Splice to the output file.
  loff_t out_offset = kPageSize / 2;
  EXPECT_THAT(
      splice(rfd.get(), nullptr, out_fd.get(), &out_offset, kPageSize, 0),
      SyscallSucceedsWithValue(kPageSize));

  // Content should reflect the splice. We write to a specific offset in the
  // file, so the internals should now be allocated sparsely.
  std::vector<char> rbuf(kPageSize);
  ASSERT_THAT(read(out_fd.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize));
  std::vector<char> zbuf(kPageSize / 2);
  memset(zbuf.data(), 0, zbuf.size());
  EXPECT_EQ(memcmp(rbuf.data(), zbuf.data(), zbuf.size()), 0);
  EXPECT_EQ(memcmp(rbuf.data() + kPageSize / 2, buf.data(), kPageSize / 2), 0);
}

TEST(SpliceTest, TwoPipes) {
  // Create two new pipes.
  int first[2], second[2];
  ASSERT_THAT(pipe(first), SyscallSucceeds());
  const FileDescriptor rfd1(first[0]);
  const FileDescriptor wfd1(first[1]);
  ASSERT_THAT(pipe(second), SyscallSucceeds());
  const FileDescriptor rfd2(second[0]);
  const FileDescriptor wfd2(second[1]);

  // Fill with some random data.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(wfd1.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Splice to the second pipe, using two operations.
  EXPECT_THAT(
      splice(rfd1.get(), nullptr, wfd2.get(), nullptr, kPageSize / 2, 0),
      SyscallSucceedsWithValue(kPageSize / 2));
  EXPECT_THAT(
      splice(rfd1.get(), nullptr, wfd2.get(), nullptr, kPageSize / 2, 0),
      SyscallSucceedsWithValue(kPageSize / 2));

  // Content should reflect the splice.
  std::vector<char> rbuf(kPageSize);
  ASSERT_THAT(read(rfd2.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize));
  EXPECT_EQ(memcmp(rbuf.data(), buf.data(), kPageSize), 0);
}

TEST(SpliceTest, TwoPipesCircular) {
  // This test deadlocks the sentry on VFS1 because VFS1 splice ordering is
  // based on fs.File.UniqueID, which does not prevent circular ordering between
  // e.g. inode-level locks taken by fs.FileOperations.
  SKIP_IF(IsRunningWithVFS1());

  // Create two pipes.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor first_rfd(fds[0]);
  const FileDescriptor first_wfd(fds[1]);
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor second_rfd(fds[0]);
  const FileDescriptor second_wfd(fds[1]);

  // On Linux, each pipe is normally limited to
  // include/linux/pipe_fs_i.h:PIPE_DEF_BUFFERS buffers worth of data.
  constexpr size_t PIPE_DEF_BUFFERS = 16;

  // Write some data to each pipe. Below we splice 1 byte at a time between
  // pipes, which very quickly causes each byte to be stored in a separate
  // buffer, so we must ensure that the total amount of data in the system is <=
  // PIPE_DEF_BUFFERS bytes.
  std::vector<char> buf(PIPE_DEF_BUFFERS / 2);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(first_wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(buf.size()));
  ASSERT_THAT(write(second_wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(buf.size()));

  // Have another thread splice from the second pipe to the first, while we
  // splice from the first to the second. The test passes if this does not
  // deadlock.
  const int kIterations = 1000;
  DisableSave ds;
  ScopedThread t([&]() {
    for (int i = 0; i < kIterations; i++) {
      ASSERT_THAT(
          splice(second_rfd.get(), nullptr, first_wfd.get(), nullptr, 1, 0),
          SyscallSucceedsWithValue(1));
    }
  });
  for (int i = 0; i < kIterations; i++) {
    ASSERT_THAT(
        splice(first_rfd.get(), nullptr, second_wfd.get(), nullptr, 1, 0),
        SyscallSucceedsWithValue(1));
  }
}

TEST(SpliceTest, Blocking) {
  // Create two new pipes.
  int first[2], second[2];
  ASSERT_THAT(pipe(first), SyscallSucceeds());
  const FileDescriptor rfd1(first[0]);
  const FileDescriptor wfd1(first[1]);
  ASSERT_THAT(pipe(second), SyscallSucceeds());
  const FileDescriptor rfd2(second[0]);
  const FileDescriptor wfd2(second[1]);

  // This thread writes to the main pipe.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ScopedThread t([&]() {
    ASSERT_THAT(write(wfd1.get(), buf.data(), buf.size()),
                SyscallSucceedsWithValue(kPageSize));
  });

  // Attempt a splice immediately; it should block.
  EXPECT_THAT(splice(rfd1.get(), nullptr, wfd2.get(), nullptr, kPageSize, 0),
              SyscallSucceedsWithValue(kPageSize));

  // Thread should be joinable.
  t.Join();

  // Content should reflect the splice.
  std::vector<char> rbuf(kPageSize);
  ASSERT_THAT(read(rfd2.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize));
  EXPECT_EQ(memcmp(rbuf.data(), buf.data(), kPageSize), 0);
}

TEST(TeeTest, Blocking) {
  // Create two new pipes.
  int first[2], second[2];
  ASSERT_THAT(pipe(first), SyscallSucceeds());
  const FileDescriptor rfd1(first[0]);
  const FileDescriptor wfd1(first[1]);
  ASSERT_THAT(pipe(second), SyscallSucceeds());
  const FileDescriptor rfd2(second[0]);
  const FileDescriptor wfd2(second[1]);

  // This thread writes to the main pipe.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ScopedThread t([&]() {
    ASSERT_THAT(write(wfd1.get(), buf.data(), buf.size()),
                SyscallSucceedsWithValue(kPageSize));
  });

  // Attempt a tee immediately; it should block.
  EXPECT_THAT(tee(rfd1.get(), wfd2.get(), kPageSize, 0),
              SyscallSucceedsWithValue(kPageSize));

  // Thread should be joinable.
  t.Join();

  // Content should reflect the splice, in both pipes.
  std::vector<char> rbuf(kPageSize);
  ASSERT_THAT(read(rfd2.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize));
  EXPECT_EQ(memcmp(rbuf.data(), buf.data(), kPageSize), 0);
  ASSERT_THAT(read(rfd1.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize));
  EXPECT_EQ(memcmp(rbuf.data(), buf.data(), kPageSize), 0);
}

TEST(TeeTest, BlockingWrite) {
  // Create two new pipes.
  int first[2], second[2];
  ASSERT_THAT(pipe(first), SyscallSucceeds());
  const FileDescriptor rfd1(first[0]);
  const FileDescriptor wfd1(first[1]);
  ASSERT_THAT(pipe(second), SyscallSucceeds());
  const FileDescriptor rfd2(second[0]);
  const FileDescriptor wfd2(second[1]);

  // Make some data available to be read.
  std::vector<char> buf1(kPageSize);
  RandomizeBuffer(buf1.data(), buf1.size());
  ASSERT_THAT(write(wfd1.get(), buf1.data(), buf1.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Fill up the write pipe's buffer.
  int pipe_size = -1;
  ASSERT_THAT(pipe_size = fcntl(wfd2.get(), F_GETPIPE_SZ), SyscallSucceeds());
  std::vector<char> buf2(pipe_size);
  ASSERT_THAT(write(wfd2.get(), buf2.data(), buf2.size()),
              SyscallSucceedsWithValue(pipe_size));

  ScopedThread t([&]() {
    absl::SleepFor(absl::Milliseconds(100));
    ASSERT_THAT(read(rfd2.get(), buf2.data(), buf2.size()),
                SyscallSucceedsWithValue(pipe_size));
  });

  // Attempt a tee immediately; it should block.
  EXPECT_THAT(tee(rfd1.get(), wfd2.get(), kPageSize, 0),
              SyscallSucceedsWithValue(kPageSize));

  // Thread should be joinable.
  t.Join();

  // Content should reflect the tee.
  std::vector<char> rbuf(kPageSize);
  ASSERT_THAT(read(rfd2.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize));
  EXPECT_EQ(memcmp(rbuf.data(), buf1.data(), kPageSize), 0);
}

TEST(SpliceTest, NonBlocking) {
  // Create two new pipes.
  int first[2], second[2];
  ASSERT_THAT(pipe(first), SyscallSucceeds());
  const FileDescriptor rfd1(first[0]);
  const FileDescriptor wfd1(first[1]);
  ASSERT_THAT(pipe(second), SyscallSucceeds());
  const FileDescriptor rfd2(second[0]);
  const FileDescriptor wfd2(second[1]);

  // Splice with no data to back it.
  EXPECT_THAT(splice(rfd1.get(), nullptr, wfd2.get(), nullptr, kPageSize,
                     SPLICE_F_NONBLOCK),
              SyscallFailsWithErrno(EAGAIN));
}

TEST(TeeTest, NonBlocking) {
  // Create two new pipes.
  int first[2], second[2];
  ASSERT_THAT(pipe(first), SyscallSucceeds());
  const FileDescriptor rfd1(first[0]);
  const FileDescriptor wfd1(first[1]);
  ASSERT_THAT(pipe(second), SyscallSucceeds());
  const FileDescriptor rfd2(second[0]);
  const FileDescriptor wfd2(second[1]);

  // Splice with no data to back it.
  EXPECT_THAT(tee(rfd1.get(), wfd2.get(), kPageSize, SPLICE_F_NONBLOCK),
              SyscallFailsWithErrno(EAGAIN));
}

TEST(TeeTest, MultiPage) {
  // Create two new pipes.
  int first[2], second[2];
  ASSERT_THAT(pipe(first), SyscallSucceeds());
  const FileDescriptor rfd1(first[0]);
  const FileDescriptor wfd1(first[1]);
  ASSERT_THAT(pipe(second), SyscallSucceeds());
  const FileDescriptor rfd2(second[0]);
  const FileDescriptor wfd2(second[1]);

  // Make some data available to be read.
  std::vector<char> wbuf(8 * kPageSize);
  RandomizeBuffer(wbuf.data(), wbuf.size());
  ASSERT_THAT(write(wfd1.get(), wbuf.data(), wbuf.size()),
              SyscallSucceedsWithValue(wbuf.size()));

  // Attempt a tee immediately; it should complete.
  EXPECT_THAT(tee(rfd1.get(), wfd2.get(), wbuf.size(), 0),
              SyscallSucceedsWithValue(wbuf.size()));

  // Content should reflect the tee.
  std::vector<char> rbuf(wbuf.size());
  ASSERT_THAT(read(rfd2.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(rbuf.size()));
  EXPECT_EQ(memcmp(rbuf.data(), wbuf.data(), rbuf.size()), 0);
  ASSERT_THAT(read(rfd1.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(rbuf.size()));
  EXPECT_EQ(memcmp(rbuf.data(), wbuf.data(), rbuf.size()), 0);
}

TEST(SpliceTest, FromPipeMaxFileSize) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  const FileDescriptor wfd(fds[1]);

  // Fill with some random data.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  // Open the input file.
  const TempPath out_file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
  const FileDescriptor out_fd =
      ASSERT_NO_ERRNO_AND_VALUE(Open(out_file.path(), O_RDWR));

  EXPECT_THAT(ftruncate(out_fd.get(), 13 << 20), SyscallSucceeds());
  EXPECT_THAT(lseek(out_fd.get(), 0, SEEK_END),
              SyscallSucceedsWithValue(13 << 20));

  // Set our file size limit.
  sigset_t set;
  sigemptyset(&set);
  sigaddset(&set, SIGXFSZ);
  TEST_PCHECK(sigprocmask(SIG_BLOCK, &set, nullptr) == 0);
  rlimit rlim = {};
  rlim.rlim_cur = rlim.rlim_max = (13 << 20);
  EXPECT_THAT(setrlimit(RLIMIT_FSIZE, &rlim), SyscallSucceeds());

  // Splice to the output file.
  EXPECT_THAT(
      splice(rfd.get(), nullptr, out_fd.get(), nullptr, 3 * kPageSize, 0),
      SyscallFailsWithErrno(EFBIG));

  // Contents should be equal.
  std::vector<char> rbuf(kPageSize);
  ASSERT_THAT(read(rfd.get(), rbuf.data(), rbuf.size()),
              SyscallSucceedsWithValue(kPageSize));
  EXPECT_EQ(memcmp(rbuf.data(), buf.data(), buf.size()), 0);
}

TEST(SpliceTest, FromPipeToDevZero) {
  // Create a new pipe.
  int fds[2];
  ASSERT_THAT(pipe(fds), SyscallSucceeds());
  const FileDescriptor rfd(fds[0]);
  FileDescriptor wfd(fds[1]);

  // Fill with some random data.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  ASSERT_THAT(write(wfd.get(), buf.data(), buf.size()),
              SyscallSucceedsWithValue(kPageSize));

  const FileDescriptor zero =
      ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/zero", O_WRONLY));

  // Close the write end to prevent blocking below.
  wfd.reset();

  // Splice to /dev/zero. The first call should empty the pipe, and the return
  // value should not exceed the number of bytes available for reading.
  EXPECT_THAT(
      splice(rfd.get(), nullptr, zero.get(), nullptr, kPageSize + 123, 0),
      SyscallSucceedsWithValue(kPageSize));
  EXPECT_THAT(splice(rfd.get(), nullptr, zero.get(), nullptr, 1, 0),
              SyscallSucceedsWithValue(0));
}

static volatile int signaled = 0;
void SigUsr1Handler(int sig, siginfo_t* info, void* context) { signaled = 1; }

TEST(SpliceTest, ToPipeWithSmallCapacityDoesNotSpin_NoRandomSave) {
  // Writes to a pipe that are less than PIPE_BUF must be atomic. This test
  // creates a pipe with only 128 bytes of capacity (< PIPE_BUF) and checks that
  // splicing to the pipe does not spin. See b/170743336.

  // Create a file with one page of data.
  std::vector<char> buf(kPageSize);
  RandomizeBuffer(buf.data(), buf.size());
  auto file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFileWith(
      GetAbsoluteTestTmpdir(), absl::string_view(buf.data(), buf.size()),
      TempPath::kDefaultFileMode));
  auto fd = ASSERT_NO_ERRNO_AND_VALUE(Open(file.path(), O_RDONLY));

  // Create a pipe with size 4096, and fill all but 128 bytes of it.
  int p[2];
  ASSERT_THAT(pipe(p), SyscallSucceeds());
  ASSERT_THAT(fcntl(p[1], F_SETPIPE_SZ, kPageSize), SyscallSucceeds());
  const int kWriteSize = kPageSize - 128;
  std::vector<char> writeBuf(kWriteSize);
  RandomizeBuffer(writeBuf.data(), writeBuf.size());
  ASSERT_THAT(write(p[1], writeBuf.data(), writeBuf.size()),
              SyscallSucceedsWithValue(kWriteSize));

  // Set up signal handler.
  struct sigaction sa = {};
  sa.sa_sigaction = SigUsr1Handler;
  sa.sa_flags = SA_SIGINFO;
  const auto cleanup_sigact =
      ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGUSR1, sa));

  // Send SIGUSR1 to this thread in 1 second.
  struct sigevent sev = {};
  sev.sigev_notify = SIGEV_THREAD_ID;
  sev.sigev_signo = SIGUSR1;
  sev.sigev_notify_thread_id = gettid();
  auto timer = ASSERT_NO_ERRNO_AND_VALUE(TimerCreate(CLOCK_MONOTONIC, sev));
  struct itimerspec its = {};
  its.it_value = absl::ToTimespec(absl::Seconds(1));
  DisableSave ds;  // Asserting an EINTR.
  ASSERT_NO_ERRNO(timer.Set(0, its));

  // Now splice the file to the pipe. This should block, but not spin, and
  // should return EINTR because it is interrupted by the signal.
  EXPECT_THAT(splice(fd.get(), nullptr, p[1], nullptr, kPageSize, 0),
              SyscallFailsWithErrno(EINTR));

  // Alarm should have been handled.
  EXPECT_EQ(signaled, 1);
}

}  // namespace

}  // namespace testing
}  // namespace gvisor