1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "test/syscalls/linux/socket_test_util.h"
#include <arpa/inet.h>
#include <poll.h>
#include <sys/socket.h>
#include <memory>
#include "gtest/gtest.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/time/clock.h"
#include "absl/types/optional.h"
#include "test/util/file_descriptor.h"
#include "test/util/posix_error.h"
#include "test/util/temp_path.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
Creator<SocketPair> SyscallSocketPairCreator(int domain, int type,
int protocol) {
return [=]() -> PosixErrorOr<std::unique_ptr<FDSocketPair>> {
int pair[2];
RETURN_ERROR_IF_SYSCALL_FAIL(socketpair(domain, type, protocol, pair));
MaybeSave(); // Save on successful creation.
return absl::make_unique<FDSocketPair>(pair[0], pair[1]);
};
}
Creator<FileDescriptor> SyscallSocketCreator(int domain, int type,
int protocol) {
return [=]() -> PosixErrorOr<std::unique_ptr<FileDescriptor>> {
int fd = 0;
RETURN_ERROR_IF_SYSCALL_FAIL(fd = socket(domain, type, protocol));
MaybeSave(); // Save on successful creation.
return absl::make_unique<FileDescriptor>(fd);
};
}
PosixErrorOr<struct sockaddr_un> UniqueUnixAddr(bool abstract, int domain) {
struct sockaddr_un addr = {};
std::string path = NewTempAbsPathInDir("/tmp");
if (path.size() >= sizeof(addr.sun_path)) {
return PosixError(EINVAL,
"Unable to generate a temp path of appropriate length");
}
if (abstract) {
// Indicate that the path is in the abstract namespace.
path[0] = 0;
}
memcpy(addr.sun_path, path.c_str(), path.length());
addr.sun_family = domain;
return addr;
}
Creator<SocketPair> AcceptBindSocketPairCreator(bool abstract, int domain,
int type, int protocol) {
return [=]() -> PosixErrorOr<std::unique_ptr<AddrFDSocketPair>> {
ASSIGN_OR_RETURN_ERRNO(struct sockaddr_un bind_addr,
UniqueUnixAddr(abstract, domain));
ASSIGN_OR_RETURN_ERRNO(struct sockaddr_un extra_addr,
UniqueUnixAddr(abstract, domain));
int bound;
RETURN_ERROR_IF_SYSCALL_FAIL(bound = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
RETURN_ERROR_IF_SYSCALL_FAIL(
bind(bound, reinterpret_cast<struct sockaddr*>(&bind_addr),
sizeof(bind_addr)));
MaybeSave(); // Successful bind.
RETURN_ERROR_IF_SYSCALL_FAIL(listen(bound, /* backlog = */ 5));
MaybeSave(); // Successful listen.
int connected;
RETURN_ERROR_IF_SYSCALL_FAIL(connected = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
RETURN_ERROR_IF_SYSCALL_FAIL(
connect(connected, reinterpret_cast<struct sockaddr*>(&bind_addr),
sizeof(bind_addr)));
MaybeSave(); // Successful connect.
int accepted;
RETURN_ERROR_IF_SYSCALL_FAIL(
accepted = accept4(bound, nullptr, nullptr,
type & (SOCK_NONBLOCK | SOCK_CLOEXEC)));
MaybeSave(); // Successful connect.
// Cleanup no longer needed resources.
RETURN_ERROR_IF_SYSCALL_FAIL(close(bound));
MaybeSave(); // Dropped original socket.
// Only unlink if path is not in abstract namespace.
if (bind_addr.sun_path[0] != 0) {
RETURN_ERROR_IF_SYSCALL_FAIL(unlink(bind_addr.sun_path));
MaybeSave(); // Unlinked path.
}
// accepted is before connected to destruct connected before accepted.
// Destructors for nonstatic member objects are called in the reverse order
// in which they appear in the class declaration.
return absl::make_unique<AddrFDSocketPair>(accepted, connected, bind_addr,
extra_addr);
};
}
Creator<SocketPair> FilesystemAcceptBindSocketPairCreator(int domain, int type,
int protocol) {
return AcceptBindSocketPairCreator(/* abstract= */ false, domain, type,
protocol);
}
Creator<SocketPair> AbstractAcceptBindSocketPairCreator(int domain, int type,
int protocol) {
return AcceptBindSocketPairCreator(/* abstract= */ true, domain, type,
protocol);
}
Creator<SocketPair> BidirectionalBindSocketPairCreator(bool abstract,
int domain, int type,
int protocol) {
return [=]() -> PosixErrorOr<std::unique_ptr<FDSocketPair>> {
ASSIGN_OR_RETURN_ERRNO(struct sockaddr_un addr1,
UniqueUnixAddr(abstract, domain));
ASSIGN_OR_RETURN_ERRNO(struct sockaddr_un addr2,
UniqueUnixAddr(abstract, domain));
int sock1;
RETURN_ERROR_IF_SYSCALL_FAIL(sock1 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
RETURN_ERROR_IF_SYSCALL_FAIL(
bind(sock1, reinterpret_cast<struct sockaddr*>(&addr1), sizeof(addr1)));
MaybeSave(); // Successful bind.
int sock2;
RETURN_ERROR_IF_SYSCALL_FAIL(sock2 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
RETURN_ERROR_IF_SYSCALL_FAIL(
bind(sock2, reinterpret_cast<struct sockaddr*>(&addr2), sizeof(addr2)));
MaybeSave(); // Successful bind.
RETURN_ERROR_IF_SYSCALL_FAIL(connect(
sock1, reinterpret_cast<struct sockaddr*>(&addr2), sizeof(addr2)));
MaybeSave(); // Successful connect.
RETURN_ERROR_IF_SYSCALL_FAIL(connect(
sock2, reinterpret_cast<struct sockaddr*>(&addr1), sizeof(addr1)));
MaybeSave(); // Successful connect.
// Cleanup no longer needed resources.
// Only unlink if path is not in abstract namespace.
if (addr1.sun_path[0] != 0) {
RETURN_ERROR_IF_SYSCALL_FAIL(unlink(addr1.sun_path));
MaybeSave(); // Successful unlink.
}
// Only unlink if path is not in abstract namespace.
if (addr2.sun_path[0] != 0) {
RETURN_ERROR_IF_SYSCALL_FAIL(unlink(addr2.sun_path));
MaybeSave(); // Successful unlink.
}
return absl::make_unique<FDSocketPair>(sock1, sock2);
};
}
Creator<SocketPair> FilesystemBidirectionalBindSocketPairCreator(int domain,
int type,
int protocol) {
return BidirectionalBindSocketPairCreator(/* abstract= */ false, domain, type,
protocol);
}
Creator<SocketPair> AbstractBidirectionalBindSocketPairCreator(int domain,
int type,
int protocol) {
return BidirectionalBindSocketPairCreator(/* abstract= */ true, domain, type,
protocol);
}
Creator<SocketPair> SocketpairGoferSocketPairCreator(int domain, int type,
int protocol) {
return [=]() -> PosixErrorOr<std::unique_ptr<FDSocketPair>> {
struct sockaddr_un addr = {};
constexpr char kSocketGoferPath[] = "/socket";
memcpy(addr.sun_path, kSocketGoferPath, sizeof(kSocketGoferPath));
addr.sun_family = domain;
int sock1;
RETURN_ERROR_IF_SYSCALL_FAIL(sock1 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
RETURN_ERROR_IF_SYSCALL_FAIL(connect(
sock1, reinterpret_cast<struct sockaddr*>(&addr), sizeof(addr)));
MaybeSave(); // Successful connect.
int sock2;
RETURN_ERROR_IF_SYSCALL_FAIL(sock2 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
RETURN_ERROR_IF_SYSCALL_FAIL(connect(
sock2, reinterpret_cast<struct sockaddr*>(&addr), sizeof(addr)));
MaybeSave(); // Successful connect.
// Make and close another socketpair to ensure that the duped ends of the
// first socketpair get closed.
//
// The problem is that there is no way to atomically send and close an FD.
// The closest that we can do is send and then immediately close the FD,
// which is what we do in the gofer. The gofer won't respond to another
// request until the reply is sent and the FD is closed, so forcing the
// gofer to handle another request will ensure that this has happened.
for (int i = 0; i < 2; i++) {
int sock;
RETURN_ERROR_IF_SYSCALL_FAIL(sock = socket(domain, type, protocol));
RETURN_ERROR_IF_SYSCALL_FAIL(connect(
sock, reinterpret_cast<struct sockaddr*>(&addr), sizeof(addr)));
RETURN_ERROR_IF_SYSCALL_FAIL(close(sock));
}
return absl::make_unique<FDSocketPair>(sock1, sock2);
};
}
Creator<SocketPair> SocketpairGoferFileSocketPairCreator(int flags) {
return [=]() -> PosixErrorOr<std::unique_ptr<FDSocketPair>> {
constexpr char kSocketGoferPath[] = "/socket";
int sock1;
RETURN_ERROR_IF_SYSCALL_FAIL(sock1 =
open(kSocketGoferPath, O_RDWR | flags));
MaybeSave(); // Successful socket creation.
int sock2;
RETURN_ERROR_IF_SYSCALL_FAIL(sock2 =
open(kSocketGoferPath, O_RDWR | flags));
MaybeSave(); // Successful socket creation.
return absl::make_unique<FDSocketPair>(sock1, sock2);
};
}
Creator<SocketPair> UnboundSocketPairCreator(bool abstract, int domain,
int type, int protocol) {
return [=]() -> PosixErrorOr<std::unique_ptr<AddrFDSocketPair>> {
ASSIGN_OR_RETURN_ERRNO(struct sockaddr_un addr1,
UniqueUnixAddr(abstract, domain));
ASSIGN_OR_RETURN_ERRNO(struct sockaddr_un addr2,
UniqueUnixAddr(abstract, domain));
int sock1;
RETURN_ERROR_IF_SYSCALL_FAIL(sock1 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
int sock2;
RETURN_ERROR_IF_SYSCALL_FAIL(sock2 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
return absl::make_unique<AddrFDSocketPair>(sock1, sock2, addr1, addr2);
};
}
Creator<SocketPair> FilesystemUnboundSocketPairCreator(int domain, int type,
int protocol) {
return UnboundSocketPairCreator(/* abstract= */ false, domain, type,
protocol);
}
Creator<SocketPair> AbstractUnboundSocketPairCreator(int domain, int type,
int protocol) {
return UnboundSocketPairCreator(/* abstract= */ true, domain, type, protocol);
}
void LocalhostAddr(struct sockaddr_in* addr, bool dual_stack) {
addr->sin_family = AF_INET;
addr->sin_port = htons(0);
inet_pton(AF_INET, "127.0.0.1",
reinterpret_cast<void*>(&addr->sin_addr.s_addr));
}
void LocalhostAddr(struct sockaddr_in6* addr, bool dual_stack) {
addr->sin6_family = AF_INET6;
addr->sin6_port = htons(0);
if (dual_stack) {
inet_pton(AF_INET6, "::ffff:127.0.0.1",
reinterpret_cast<void*>(&addr->sin6_addr.s6_addr));
} else {
inet_pton(AF_INET6, "::1",
reinterpret_cast<void*>(&addr->sin6_addr.s6_addr));
}
addr->sin6_scope_id = 0;
}
template <typename T>
PosixErrorOr<T> BindIP(int fd, bool dual_stack) {
T addr = {};
LocalhostAddr(&addr, dual_stack);
RETURN_ERROR_IF_SYSCALL_FAIL(
bind(fd, reinterpret_cast<struct sockaddr*>(&addr), sizeof(addr)));
socklen_t addrlen = sizeof(addr);
RETURN_ERROR_IF_SYSCALL_FAIL(
getsockname(fd, reinterpret_cast<struct sockaddr*>(&addr), &addrlen));
return addr;
}
template <typename T>
PosixErrorOr<T> TCPBindAndListen(int fd, bool dual_stack) {
ASSIGN_OR_RETURN_ERRNO(T addr, BindIP<T>(fd, dual_stack));
RETURN_ERROR_IF_SYSCALL_FAIL(listen(fd, /* backlog = */ 5));
return addr;
}
template <typename T>
PosixErrorOr<std::unique_ptr<AddrFDSocketPair>>
CreateTCPConnectAcceptSocketPair(int bound, int connected, int type,
bool dual_stack, T bind_addr) {
int connect_result = 0;
RETURN_ERROR_IF_SYSCALL_FAIL(
(connect_result = RetryEINTR(connect)(
connected, reinterpret_cast<struct sockaddr*>(&bind_addr),
sizeof(bind_addr))) == -1 &&
errno == EINPROGRESS
? 0
: connect_result);
MaybeSave(); // Successful connect.
if (connect_result == -1) {
struct pollfd connect_poll = {connected, POLLOUT | POLLERR | POLLHUP, 0};
RETURN_ERROR_IF_SYSCALL_FAIL(RetryEINTR(poll)(&connect_poll, 1, 0));
int error = 0;
socklen_t errorlen = sizeof(error);
RETURN_ERROR_IF_SYSCALL_FAIL(
getsockopt(connected, SOL_SOCKET, SO_ERROR, &error, &errorlen));
errno = error;
RETURN_ERROR_IF_SYSCALL_FAIL(
/* connect */ error == 0 ? 0 : -1);
}
int accepted = -1;
struct pollfd accept_poll = {bound, POLLIN, 0};
while (accepted == -1) {
RETURN_ERROR_IF_SYSCALL_FAIL(RetryEINTR(poll)(&accept_poll, 1, 0));
RETURN_ERROR_IF_SYSCALL_FAIL(
(accepted = RetryEINTR(accept4)(
bound, nullptr, nullptr, type & (SOCK_NONBLOCK | SOCK_CLOEXEC))) ==
-1 &&
errno == EAGAIN
? 0
: accepted);
}
MaybeSave(); // Successful accept.
T extra_addr = {};
LocalhostAddr(&extra_addr, dual_stack);
return absl::make_unique<AddrFDSocketPair>(connected, accepted, bind_addr,
extra_addr);
}
template <typename T>
PosixErrorOr<std::unique_ptr<AddrFDSocketPair>> CreateTCPAcceptBindSocketPair(
int bound, int connected, int type, bool dual_stack) {
ASSIGN_OR_RETURN_ERRNO(T bind_addr, TCPBindAndListen<T>(bound, dual_stack));
auto result = CreateTCPConnectAcceptSocketPair(bound, connected, type,
dual_stack, bind_addr);
// Cleanup no longer needed resources.
RETURN_ERROR_IF_SYSCALL_FAIL(close(bound));
MaybeSave(); // Successful close.
return result;
}
Creator<SocketPair> TCPAcceptBindSocketPairCreator(int domain, int type,
int protocol,
bool dual_stack) {
return [=]() -> PosixErrorOr<std::unique_ptr<AddrFDSocketPair>> {
int bound;
RETURN_ERROR_IF_SYSCALL_FAIL(bound = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
int connected;
RETURN_ERROR_IF_SYSCALL_FAIL(connected = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
if (domain == AF_INET) {
return CreateTCPAcceptBindSocketPair<sockaddr_in>(bound, connected, type,
dual_stack);
}
return CreateTCPAcceptBindSocketPair<sockaddr_in6>(bound, connected, type,
dual_stack);
};
}
Creator<SocketPair> TCPAcceptBindPersistentListenerSocketPairCreator(
int domain, int type, int protocol, bool dual_stack) {
// These are lazily initialized below, on the first call to the returned
// lambda. These values are private to each returned lambda, but shared across
// invocations of a specific lambda.
//
// The sharing allows pairs created with the same parameters to share a
// listener. This prevents future connects from failing if the connecting
// socket selects a port which had previously been used by a listening socket
// that still has some connections in TIME-WAIT.
//
// The lazy initialization is to avoid creating sockets during parameter
// enumeration. This is important because parameters are enumerated during the
// build process where networking may not be available.
auto listener = std::make_shared<absl::optional<int>>(absl::optional<int>());
auto addr4 = std::make_shared<absl::optional<sockaddr_in>>(
absl::optional<sockaddr_in>());
auto addr6 = std::make_shared<absl::optional<sockaddr_in6>>(
absl::optional<sockaddr_in6>());
return [=]() -> PosixErrorOr<std::unique_ptr<AddrFDSocketPair>> {
int connected;
RETURN_ERROR_IF_SYSCALL_FAIL(connected = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
// Share the listener across invocations.
if (!listener->has_value()) {
int fd = socket(domain, type, protocol);
if (fd < 0) {
return PosixError(errno, absl::StrCat("socket(", domain, ", ", type,
", ", protocol, ")"));
}
listener->emplace(fd);
MaybeSave(); // Successful socket creation.
}
// Bind the listener once, but create a new connect/accept pair each
// time.
if (domain == AF_INET) {
if (!addr4->has_value()) {
addr4->emplace(
TCPBindAndListen<sockaddr_in>(listener->value(), dual_stack)
.ValueOrDie());
}
return CreateTCPConnectAcceptSocketPair(listener->value(), connected,
type, dual_stack, addr4->value());
}
if (!addr6->has_value()) {
addr6->emplace(
TCPBindAndListen<sockaddr_in6>(listener->value(), dual_stack)
.ValueOrDie());
}
return CreateTCPConnectAcceptSocketPair(listener->value(), connected, type,
dual_stack, addr6->value());
};
}
template <typename T>
PosixErrorOr<std::unique_ptr<AddrFDSocketPair>> CreateUDPBoundSocketPair(
int sock1, int sock2, int type, bool dual_stack) {
ASSIGN_OR_RETURN_ERRNO(T addr1, BindIP<T>(sock1, dual_stack));
ASSIGN_OR_RETURN_ERRNO(T addr2, BindIP<T>(sock2, dual_stack));
return absl::make_unique<AddrFDSocketPair>(sock1, sock2, addr1, addr2);
}
template <typename T>
PosixErrorOr<std::unique_ptr<AddrFDSocketPair>>
CreateUDPBidirectionalBindSocketPair(int sock1, int sock2, int type,
bool dual_stack) {
ASSIGN_OR_RETURN_ERRNO(
auto socks, CreateUDPBoundSocketPair<T>(sock1, sock2, type, dual_stack));
// Connect sock1 to sock2.
RETURN_ERROR_IF_SYSCALL_FAIL(connect(socks->first_fd(), socks->second_addr(),
socks->second_addr_size()));
MaybeSave(); // Successful connection.
// Connect sock2 to sock1.
RETURN_ERROR_IF_SYSCALL_FAIL(connect(socks->second_fd(), socks->first_addr(),
socks->first_addr_size()));
MaybeSave(); // Successful connection.
return socks;
}
Creator<SocketPair> UDPBidirectionalBindSocketPairCreator(int domain, int type,
int protocol,
bool dual_stack) {
return [=]() -> PosixErrorOr<std::unique_ptr<AddrFDSocketPair>> {
int sock1;
RETURN_ERROR_IF_SYSCALL_FAIL(sock1 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
int sock2;
RETURN_ERROR_IF_SYSCALL_FAIL(sock2 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
if (domain == AF_INET) {
return CreateUDPBidirectionalBindSocketPair<sockaddr_in>(
sock1, sock2, type, dual_stack);
}
return CreateUDPBidirectionalBindSocketPair<sockaddr_in6>(sock1, sock2,
type, dual_stack);
};
}
Creator<SocketPair> UDPUnboundSocketPairCreator(int domain, int type,
int protocol, bool dual_stack) {
return [=]() -> PosixErrorOr<std::unique_ptr<FDSocketPair>> {
int sock1;
RETURN_ERROR_IF_SYSCALL_FAIL(sock1 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
int sock2;
RETURN_ERROR_IF_SYSCALL_FAIL(sock2 = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
return absl::make_unique<FDSocketPair>(sock1, sock2);
};
}
SocketPairKind Reversed(SocketPairKind const& base) {
auto const& creator = base.creator;
return SocketPairKind{
absl::StrCat("reversed ", base.description), base.domain, base.type,
base.protocol,
[creator]() -> PosixErrorOr<std::unique_ptr<ReversedSocketPair>> {
ASSIGN_OR_RETURN_ERRNO(auto creator_value, creator());
return absl::make_unique<ReversedSocketPair>(std::move(creator_value));
}};
}
Creator<FileDescriptor> UnboundSocketCreator(int domain, int type,
int protocol) {
return [=]() -> PosixErrorOr<std::unique_ptr<FileDescriptor>> {
int sock;
RETURN_ERROR_IF_SYSCALL_FAIL(sock = socket(domain, type, protocol));
MaybeSave(); // Successful socket creation.
return absl::make_unique<FileDescriptor>(sock);
};
}
std::vector<SocketPairKind> IncludeReversals(std::vector<SocketPairKind> vec) {
return ApplyVecToVec<SocketPairKind>(std::vector<Middleware>{NoOp, Reversed},
vec);
}
SocketPairKind NoOp(SocketPairKind const& base) { return base; }
void TransferTest(int fd1, int fd2) {
char buf1[20];
RandomizeBuffer(buf1, sizeof(buf1));
ASSERT_THAT(WriteFd(fd1, buf1, sizeof(buf1)),
SyscallSucceedsWithValue(sizeof(buf1)));
char buf2[20];
ASSERT_THAT(ReadFd(fd2, buf2, sizeof(buf2)),
SyscallSucceedsWithValue(sizeof(buf2)));
EXPECT_EQ(0, memcmp(buf1, buf2, sizeof(buf1)));
RandomizeBuffer(buf1, sizeof(buf1));
ASSERT_THAT(WriteFd(fd2, buf1, sizeof(buf1)),
SyscallSucceedsWithValue(sizeof(buf1)));
ASSERT_THAT(ReadFd(fd1, buf2, sizeof(buf2)),
SyscallSucceedsWithValue(sizeof(buf2)));
EXPECT_EQ(0, memcmp(buf1, buf2, sizeof(buf1)));
}
// Initializes the given buffer with random data.
void RandomizeBuffer(char* ptr, size_t len) {
uint32_t seed = time(nullptr);
for (size_t i = 0; i < len; ++i) {
ptr[i] = static_cast<char>(rand_r(&seed));
}
}
size_t CalculateUnixSockAddrLen(const char* sun_path) {
// Abstract addresses always return the full length.
if (sun_path[0] == 0) {
return sizeof(sockaddr_un);
}
// Filesystem addresses use the address length plus the 2 byte sun_family
// and null terminator.
return strlen(sun_path) + 3;
}
struct sockaddr_storage AddrFDSocketPair::to_storage(const sockaddr_un& addr) {
struct sockaddr_storage addr_storage = {};
memcpy(&addr_storage, &addr, sizeof(addr));
return addr_storage;
}
struct sockaddr_storage AddrFDSocketPair::to_storage(const sockaddr_in& addr) {
struct sockaddr_storage addr_storage = {};
memcpy(&addr_storage, &addr, sizeof(addr));
return addr_storage;
}
struct sockaddr_storage AddrFDSocketPair::to_storage(const sockaddr_in6& addr) {
struct sockaddr_storage addr_storage = {};
memcpy(&addr_storage, &addr, sizeof(addr));
return addr_storage;
}
SocketKind SimpleSocket(int fam, int type, int proto) {
return SocketKind{
absl::StrCat("Family ", fam, ", type ", type, ", proto ", proto), fam,
type, proto, SyscallSocketCreator(fam, type, proto)};
}
ssize_t SendLargeSendMsg(const std::unique_ptr<SocketPair>& sockets,
size_t size, bool reader) {
const int rfd = sockets->second_fd();
ScopedThread t([rfd, size, reader] {
if (!reader) {
return;
}
// Potentially too many syscalls in the loop.
const DisableSave ds;
std::vector<char> buf(size);
size_t total = 0;
while (total < size) {
int ret = read(rfd, buf.data(), buf.size());
if (ret == -1 && errno == EAGAIN) {
continue;
}
if (ret > 0) {
total += ret;
}
// Assert to return on first failure.
ASSERT_THAT(ret, SyscallSucceeds());
}
});
std::vector<char> buf(size);
struct iovec iov = {};
iov.iov_base = buf.data();
iov.iov_len = buf.size();
struct msghdr msg = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
return RetryEINTR(sendmsg)(sockets->first_fd(), &msg, 0);
}
namespace internal {
PosixErrorOr<int> TryPortAvailable(int port, AddressFamily family,
SocketType type, bool reuse_addr) {
if (port < 0) {
return PosixError(EINVAL, "Invalid port");
}
// Both Ipv6 and Dualstack are AF_INET6.
int sock_fam = (family == AddressFamily::kIpv4 ? AF_INET : AF_INET6);
int sock_type = (type == SocketType::kTcp ? SOCK_STREAM : SOCK_DGRAM);
ASSIGN_OR_RETURN_ERRNO(auto fd, Socket(sock_fam, sock_type, 0));
if (reuse_addr) {
int one = 1;
RETURN_ERROR_IF_SYSCALL_FAIL(
setsockopt(fd.get(), SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)));
}
// Try to bind.
sockaddr_storage storage = {};
int storage_size = 0;
if (family == AddressFamily::kIpv4) {
sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(&storage);
storage_size = sizeof(*addr);
addr->sin_family = AF_INET;
addr->sin_port = htons(port);
addr->sin_addr.s_addr = htonl(INADDR_ANY);
} else {
sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(&storage);
storage_size = sizeof(*addr);
addr->sin6_family = AF_INET6;
addr->sin6_port = htons(port);
if (family == AddressFamily::kDualStack) {
inet_pton(AF_INET6, "::ffff:0.0.0.0",
reinterpret_cast<void*>(&addr->sin6_addr.s6_addr));
} else {
addr->sin6_addr = in6addr_any;
}
}
RETURN_ERROR_IF_SYSCALL_FAIL(
bind(fd.get(), reinterpret_cast<sockaddr*>(&storage), storage_size));
// If the user specified 0 as the port, we will return the port that the
// kernel gave us, otherwise we will validate that this socket bound to the
// requested port.
sockaddr_storage bound_storage = {};
socklen_t bound_storage_size = sizeof(bound_storage);
RETURN_ERROR_IF_SYSCALL_FAIL(
getsockname(fd.get(), reinterpret_cast<sockaddr*>(&bound_storage),
&bound_storage_size));
int available_port = -1;
if (bound_storage.ss_family == AF_INET) {
sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(&bound_storage);
available_port = ntohs(addr->sin_port);
} else if (bound_storage.ss_family == AF_INET6) {
sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(&bound_storage);
available_port = ntohs(addr->sin6_port);
} else {
return PosixError(EPROTOTYPE, "Getsockname returned invalid family");
}
// If we requested a specific port make sure our bound port is that port.
if (port != 0 && available_port != port) {
return PosixError(EINVAL,
absl::StrCat("Bound port ", available_port,
" was not equal to requested port ", port));
}
// If we're trying to do a TCP socket, let's also try to listen.
if (type == SocketType::kTcp) {
RETURN_ERROR_IF_SYSCALL_FAIL(listen(fd.get(), 1));
}
return available_port;
}
} // namespace internal
PosixErrorOr<int> SendMsg(int sock, msghdr* msg, char buf[], int buf_size) {
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = buf_size;
msg->msg_iov = &iov;
msg->msg_iovlen = 1;
int ret;
RETURN_ERROR_IF_SYSCALL_FAIL(ret = RetryEINTR(sendmsg)(sock, msg, 0));
return ret;
}
PosixErrorOr<int> RecvTimeout(int sock, char buf[], int buf_size, int timeout) {
fd_set rfd;
struct timeval to = {.tv_sec = timeout, .tv_usec = 0};
FD_ZERO(&rfd);
FD_SET(sock, &rfd);
int ret;
RETURN_ERROR_IF_SYSCALL_FAIL(ret = select(1, &rfd, NULL, NULL, &to));
RETURN_ERROR_IF_SYSCALL_FAIL(
ret = RetryEINTR(recv)(sock, buf, buf_size, MSG_DONTWAIT));
return ret;
}
PosixErrorOr<int> RecvMsgTimeout(int sock, struct msghdr* msg, int timeout) {
fd_set rfd;
struct timeval to = {.tv_sec = timeout, .tv_usec = 0};
FD_ZERO(&rfd);
FD_SET(sock, &rfd);
int ret;
RETURN_ERROR_IF_SYSCALL_FAIL(ret = select(1, &rfd, NULL, NULL, &to));
RETURN_ERROR_IF_SYSCALL_FAIL(
ret = RetryEINTR(recvmsg)(sock, msg, MSG_DONTWAIT));
return ret;
}
void RecvNoData(int sock) {
char data = 0;
struct iovec iov;
iov.iov_base = &data;
iov.iov_len = 1;
struct msghdr msg = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
ASSERT_THAT(RetryEINTR(recvmsg)(sock, &msg, MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
TestAddress V4Any() {
TestAddress t("V4Any");
t.addr.ss_family = AF_INET;
t.addr_len = sizeof(sockaddr_in);
reinterpret_cast<sockaddr_in*>(&t.addr)->sin_addr.s_addr = htonl(INADDR_ANY);
return t;
}
TestAddress V4Loopback() {
TestAddress t("V4Loopback");
t.addr.ss_family = AF_INET;
t.addr_len = sizeof(sockaddr_in);
reinterpret_cast<sockaddr_in*>(&t.addr)->sin_addr.s_addr =
htonl(INADDR_LOOPBACK);
return t;
}
TestAddress V4MappedAny() {
TestAddress t("V4MappedAny");
t.addr.ss_family = AF_INET6;
t.addr_len = sizeof(sockaddr_in6);
inet_pton(AF_INET6, "::ffff:0.0.0.0",
reinterpret_cast<sockaddr_in6*>(&t.addr)->sin6_addr.s6_addr);
return t;
}
TestAddress V4MappedLoopback() {
TestAddress t("V4MappedLoopback");
t.addr.ss_family = AF_INET6;
t.addr_len = sizeof(sockaddr_in6);
inet_pton(AF_INET6, "::ffff:127.0.0.1",
reinterpret_cast<sockaddr_in6*>(&t.addr)->sin6_addr.s6_addr);
return t;
}
TestAddress V4Multicast() {
TestAddress t("V4Multicast");
t.addr.ss_family = AF_INET;
t.addr_len = sizeof(sockaddr_in);
reinterpret_cast<sockaddr_in*>(&t.addr)->sin_addr.s_addr =
inet_addr(kMulticastAddress);
return t;
}
TestAddress V4Broadcast() {
TestAddress t("V4Broadcast");
t.addr.ss_family = AF_INET;
t.addr_len = sizeof(sockaddr_in);
reinterpret_cast<sockaddr_in*>(&t.addr)->sin_addr.s_addr =
htonl(INADDR_BROADCAST);
return t;
}
TestAddress V6Any() {
TestAddress t("V6Any");
t.addr.ss_family = AF_INET6;
t.addr_len = sizeof(sockaddr_in6);
reinterpret_cast<sockaddr_in6*>(&t.addr)->sin6_addr = in6addr_any;
return t;
}
TestAddress V6Loopback() {
TestAddress t("V6Loopback");
t.addr.ss_family = AF_INET6;
t.addr_len = sizeof(sockaddr_in6);
reinterpret_cast<sockaddr_in6*>(&t.addr)->sin6_addr = in6addr_loopback;
return t;
}
TestAddress V6Multicast() {
TestAddress t("V6Multicast");
t.addr.ss_family = AF_INET6;
t.addr_len = sizeof(sockaddr_in6);
EXPECT_EQ(
1,
inet_pton(AF_INET6, "ff05::1234",
reinterpret_cast<sockaddr_in6*>(&t.addr)->sin6_addr.s6_addr));
return t;
}
// Checksum computes the internet checksum of a buffer.
uint16_t Checksum(uint16_t* buf, ssize_t buf_size) {
// Add up the 16-bit values in the buffer.
uint32_t total = 0;
for (unsigned int i = 0; i < buf_size; i += sizeof(*buf)) {
total += *buf;
buf++;
}
// If buf has an odd size, add the remaining byte.
if (buf_size % 2) {
total += *(reinterpret_cast<unsigned char*>(buf) - 1);
}
// This carries any bits past the lower 16 until everything fits in 16 bits.
while (total >> 16) {
uint16_t lower = total & 0xffff;
uint16_t upper = total >> 16;
total = lower + upper;
}
return ~total;
}
uint16_t IPChecksum(struct iphdr ip) {
return Checksum(reinterpret_cast<uint16_t*>(&ip), sizeof(ip));
}
// The pseudo-header defined in RFC 768 for calculating the UDP checksum.
struct udp_pseudo_hdr {
uint32_t srcip;
uint32_t destip;
char zero;
char protocol;
uint16_t udplen;
};
uint16_t UDPChecksum(struct iphdr iphdr, struct udphdr udphdr,
const char* payload, ssize_t payload_len) {
struct udp_pseudo_hdr phdr = {};
phdr.srcip = iphdr.saddr;
phdr.destip = iphdr.daddr;
phdr.zero = 0;
phdr.protocol = IPPROTO_UDP;
phdr.udplen = udphdr.len;
ssize_t buf_size = sizeof(phdr) + sizeof(udphdr) + payload_len;
char* buf = static_cast<char*>(malloc(buf_size));
memcpy(buf, &phdr, sizeof(phdr));
memcpy(buf + sizeof(phdr), &udphdr, sizeof(udphdr));
memcpy(buf + sizeof(phdr) + sizeof(udphdr), payload, payload_len);
uint16_t csum = Checksum(reinterpret_cast<uint16_t*>(buf), buf_size);
free(buf);
return csum;
}
uint16_t ICMPChecksum(struct icmphdr icmphdr, const char* payload,
ssize_t payload_len) {
ssize_t buf_size = sizeof(icmphdr) + payload_len;
char* buf = static_cast<char*>(malloc(buf_size));
memcpy(buf, &icmphdr, sizeof(icmphdr));
memcpy(buf + sizeof(icmphdr), payload, payload_len);
uint16_t csum = Checksum(reinterpret_cast<uint16_t*>(buf), buf_size);
free(buf);
return csum;
}
} // namespace testing
} // namespace gvisor
|