1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <signal.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/types.h>
#include <atomic>
#include <cerrno>
#include <ctime>
#include <set>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/memory/memory.h"
#include "absl/synchronization/mutex.h"
#include "absl/time/clock.h"
#include "test/util/capability_util.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
constexpr int kSemMap = 1024000000;
constexpr int kSemMni = 32000;
constexpr int kSemMns = 1024000000;
constexpr int kSemMnu = 1024000000;
constexpr int kSemMsl = 32000;
constexpr int kSemOpm = 500;
constexpr int kSemUme = 500;
constexpr int kSemUsz = 20;
constexpr int kSemVmx = 32767;
constexpr int kSemAem = 32767;
class AutoSem {
public:
// Creates a new private semaphore.
AutoSem() : id_(semget(IPC_PRIVATE, 1, 0)) {}
explicit AutoSem(int id) : id_(id) {}
~AutoSem() {
if (id_ >= 0) {
EXPECT_THAT(semctl(id_, 0, IPC_RMID), SyscallSucceeds());
}
}
int release() {
int old = id_;
id_ = -1;
return old;
}
int get() { return id_; }
private:
int id_ = -1;
};
bool operator==(struct semid_ds const& a, struct semid_ds const& b) {
return a.sem_perm.__key == b.sem_perm.__key &&
a.sem_perm.uid == b.sem_perm.uid && a.sem_perm.gid == b.sem_perm.gid &&
a.sem_perm.cuid == b.sem_perm.cuid &&
a.sem_perm.cgid == b.sem_perm.cgid &&
a.sem_perm.mode == b.sem_perm.mode && a.sem_otime == b.sem_otime &&
a.sem_ctime == b.sem_ctime && a.sem_nsems == b.sem_nsems;
}
TEST(SemaphoreTest, SemGet) {
// Test creation and lookup.
AutoSem sem(semget(1, 10, IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
EXPECT_THAT(semget(1, 10, IPC_CREAT), SyscallSucceedsWithValue(sem.get()));
EXPECT_THAT(semget(1, 9, IPC_CREAT), SyscallSucceedsWithValue(sem.get()));
// Creation and lookup failure cases.
EXPECT_THAT(semget(1, 11, IPC_CREAT), SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(semget(1, -1, IPC_CREAT), SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(semget(1, 10, IPC_CREAT | IPC_EXCL),
SyscallFailsWithErrno(EEXIST));
EXPECT_THAT(semget(2, 1, 0), SyscallFailsWithErrno(ENOENT));
EXPECT_THAT(semget(2, 0, IPC_CREAT), SyscallFailsWithErrno(EINVAL));
// Private semaphores never conflict.
AutoSem sem2(semget(IPC_PRIVATE, 1, 0));
AutoSem sem3(semget(IPC_PRIVATE, 1, 0));
ASSERT_THAT(sem2.get(), SyscallSucceeds());
EXPECT_NE(sem.get(), sem2.get());
ASSERT_THAT(sem3.get(), SyscallSucceeds());
EXPECT_NE(sem3.get(), sem2.get());
}
// Tests system-wide limits for semget.
TEST(SemaphoreTest, SemGetSystemLimits) {
// Disable save so that we don't trigger save/restore too many times.
const DisableSave ds;
// Exceed number of semaphores per set.
EXPECT_THAT(semget(IPC_PRIVATE, kSemMsl + 1, 0),
SyscallFailsWithErrno(EINVAL));
// Exceed system-wide limit for semaphore sets by 1.
AutoSem sems[kSemMni];
EXPECT_THAT(semget(IPC_PRIVATE, 1, 0), SyscallFailsWithErrno(ENOSPC));
}
// Tests simple operations that shouldn't block in a single-thread.
TEST(SemaphoreTest, SemOpSingleNoBlock) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
struct sembuf buf = {};
buf.sem_op = 1;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallSucceeds());
buf.sem_op = -1;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallSucceeds());
buf.sem_op = 0;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallSucceeds());
// Error cases with invalid values.
ASSERT_THAT(semop(sem.get() + 1, &buf, 1), SyscallFailsWithErrno(EINVAL));
buf.sem_num = 1;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallFailsWithErrno(EFBIG));
ASSERT_THAT(semop(sem.get(), nullptr, 0), SyscallFailsWithErrno(EINVAL));
}
// Tests simple timed operations that shouldn't block in a single-thread.
TEST(SemaphoreTest, SemTimedOpSingleNoBlock) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
struct sembuf buf = {};
buf.sem_op = 1;
struct timespec timeout = {};
// 50 milliseconds.
timeout.tv_nsec = 5e7;
ASSERT_THAT(semtimedop(sem.get(), &buf, 1, &timeout), SyscallSucceeds());
buf.sem_op = -1;
EXPECT_THAT(semtimedop(sem.get(), &buf, 1, &timeout), SyscallSucceeds());
buf.sem_op = 0;
EXPECT_THAT(semtimedop(sem.get(), &buf, 1, &timeout), SyscallSucceeds());
// Error cases with invalid values.
EXPECT_THAT(semtimedop(sem.get() + 1, &buf, 1, &timeout),
SyscallFailsWithErrno(EINVAL));
buf.sem_num = 1;
EXPECT_THAT(semtimedop(sem.get(), &buf, 1, &timeout),
SyscallFailsWithErrno(EFBIG));
buf.sem_num = 0;
EXPECT_THAT(semtimedop(sem.get(), nullptr, 0, &timeout),
SyscallFailsWithErrno(EINVAL));
timeout.tv_nsec = 1e9;
EXPECT_THAT(semtimedop(sem.get(), &buf, 0, &timeout),
SyscallFailsWithErrno(EINVAL));
}
// Tests multiple operations that shouldn't block in a single-thread.
TEST(SemaphoreTest, SemOpMultiNoBlock) {
AutoSem sem(semget(IPC_PRIVATE, 4, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
struct sembuf bufs[5] = {};
bufs[0].sem_num = 0;
bufs[0].sem_op = 10;
bufs[0].sem_flg = 0;
bufs[1].sem_num = 1;
bufs[1].sem_op = 2;
bufs[1].sem_flg = 0;
bufs[2].sem_num = 2;
bufs[2].sem_op = 3;
bufs[2].sem_flg = 0;
bufs[3].sem_num = 0;
bufs[3].sem_op = -5;
bufs[3].sem_flg = 0;
bufs[4].sem_num = 2;
bufs[4].sem_op = 2;
bufs[4].sem_flg = 0;
ASSERT_THAT(semop(sem.get(), bufs, ABSL_ARRAYSIZE(bufs)), SyscallSucceeds());
ASSERT_THAT(semctl(sem.get(), 0, GETVAL), SyscallSucceedsWithValue(5));
ASSERT_THAT(semctl(sem.get(), 1, GETVAL), SyscallSucceedsWithValue(2));
ASSERT_THAT(semctl(sem.get(), 2, GETVAL), SyscallSucceedsWithValue(5));
ASSERT_THAT(semctl(sem.get(), 3, GETVAL), SyscallSucceedsWithValue(0));
for (auto& b : bufs) {
b.sem_op = -b.sem_op;
}
// 0 and 3 order must be reversed, otherwise it will block.
std::swap(bufs[0].sem_op, bufs[3].sem_op);
ASSERT_THAT(RetryEINTR(semop)(sem.get(), bufs, ABSL_ARRAYSIZE(bufs)),
SyscallSucceeds());
// All semaphores should be back to 0 now.
for (size_t i = 0; i < 4; ++i) {
ASSERT_THAT(semctl(sem.get(), i, GETVAL), SyscallSucceedsWithValue(0));
}
}
// Makes a best effort attempt to ensure that operation would block.
TEST(SemaphoreTest, SemOpBlock) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
std::atomic<int> blocked = ATOMIC_VAR_INIT(1);
ScopedThread th([&sem, &blocked] {
absl::SleepFor(absl::Milliseconds(100));
ASSERT_EQ(blocked.load(), 1);
struct sembuf buf = {};
buf.sem_op = 1;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallSucceeds());
});
struct sembuf buf = {};
buf.sem_op = -1;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallSucceeds());
blocked.store(0);
}
// Makes a best effort attempt to ensure that operation would be timeout when
// being blocked.
TEST(SemaphoreTest, SemTimedOpBlock) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
struct sembuf buf = {};
buf.sem_op = -1;
struct timespec timeout = {};
timeout.tv_nsec = 5e7;
// semtimedop reaches the time limit, it fails with errno EAGAIN.
ASSERT_THAT(RetryEINTR(semtimedop)(sem.get(), &buf, 1, &timeout),
SyscallFailsWithErrno(EAGAIN));
}
// Tests that IPC_NOWAIT returns with no wait.
TEST(SemaphoreTest, SemOpNoBlock) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
struct sembuf buf = {};
buf.sem_flg = IPC_NOWAIT;
buf.sem_op = -1;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallFailsWithErrno(EAGAIN));
buf.sem_op = 1;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallSucceeds());
buf.sem_op = 0;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallFailsWithErrno(EAGAIN));
}
// Test runs 2 threads, one signals the other waits the same number of times.
TEST(SemaphoreTest, SemOpSimple) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
constexpr size_t kLoops = 100;
ScopedThread th([&sem] {
struct sembuf buf = {};
buf.sem_op = 1;
for (size_t i = 0; i < kLoops; i++) {
// Sleep to prevent making all increments in one shot without letting
// the waiter wait.
absl::SleepFor(absl::Milliseconds(1));
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallSucceeds());
}
});
struct sembuf buf = {};
buf.sem_op = -1;
for (size_t i = 0; i < kLoops; i++) {
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallSucceeds());
}
}
// Tests that semaphore can be removed while there are waiters.
// NoRandomSave: Test relies on timing that random save throws off.
TEST(SemaphoreTest, SemOpRemoveWithWaiter) {
AutoSem sem(semget(IPC_PRIVATE, 2, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
ScopedThread th([&sem] {
absl::SleepFor(absl::Milliseconds(250));
ASSERT_THAT(semctl(sem.release(), 0, IPC_RMID), SyscallSucceeds());
});
// This must happen before IPC_RMID runs above. Otherwise it fails with EINVAL
// instead because the semaphore has already been removed.
struct sembuf buf = {};
buf.sem_op = -1;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1),
SyscallFailsWithErrno(EIDRM));
}
// Semaphore isn't fair. It will execute any waiter that can satisfy the
// request even if it gets in front of other waiters.
TEST(SemaphoreTest, SemOpBestFitExecution) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
ScopedThread th([&sem] {
struct sembuf buf = {};
buf.sem_op = -2;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallFails());
// Ensure that wait will only unblock when the semaphore is removed. On
// EINTR retry it may race with deletion and return EINVAL.
ASSERT_TRUE(errno == EIDRM || errno == EINVAL) << "errno=" << errno;
});
// Ensures that '-1' below will unblock even though '-10' above is waiting
// for the same semaphore.
for (size_t i = 0; i < 10; ++i) {
struct sembuf buf = {};
buf.sem_op = 1;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallSucceeds());
absl::SleepFor(absl::Milliseconds(10));
buf.sem_op = -1;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallSucceeds());
}
ASSERT_THAT(semctl(sem.release(), 0, IPC_RMID), SyscallSucceeds());
}
// Executes random operations in multiple threads and verify correctness.
TEST(SemaphoreTest, SemOpRandom) {
// Don't do cooperative S/R tests because there are too many syscalls in
// this test,
const DisableSave ds;
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
// Protects the seed below.
absl::Mutex mutex;
uint32_t seed = time(nullptr);
int count = 0; // Tracks semaphore value.
bool done = false; // Tells waiters to stop after signal threads are done.
// These threads will wait in a loop.
std::unique_ptr<ScopedThread> decs[5];
for (auto& dec : decs) {
dec = absl::make_unique<ScopedThread>([&sem, &mutex, &count, &seed, &done] {
for (size_t i = 0; i < 500; ++i) {
int16_t val;
{
absl::MutexLock l(&mutex);
if (done) {
return;
}
val = (rand_r(&seed) % 10 + 1); // Rand between 1 and 10.
count -= val;
}
struct sembuf buf = {};
buf.sem_op = -val;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallSucceeds());
absl::SleepFor(absl::Milliseconds(val * 2));
}
});
}
// These threads will wait for zero in a loop.
std::unique_ptr<ScopedThread> zeros[5];
for (auto& zero : zeros) {
zero = absl::make_unique<ScopedThread>([&sem, &mutex, &done] {
for (size_t i = 0; i < 500; ++i) {
{
absl::MutexLock l(&mutex);
if (done) {
return;
}
}
struct sembuf buf = {};
buf.sem_op = 0;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallSucceeds());
absl::SleepFor(absl::Milliseconds(10));
}
});
}
// These threads will signal in a loop.
std::unique_ptr<ScopedThread> incs[5];
for (auto& inc : incs) {
inc = absl::make_unique<ScopedThread>([&sem, &mutex, &count, &seed] {
for (size_t i = 0; i < 500; ++i) {
int16_t val;
{
absl::MutexLock l(&mutex);
val = (rand_r(&seed) % 10 + 1); // Rand between 1 and 10.
count += val;
}
struct sembuf buf = {};
buf.sem_op = val;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallSucceeds());
absl::SleepFor(absl::Milliseconds(val * 2));
}
});
}
// First wait for signal threads to be done.
for (auto& inc : incs) {
inc->Join();
}
// Now there could be waiters blocked (remember operations are random).
// Notify waiters that we're done and signal semaphore just the right amount.
{
absl::MutexLock l(&mutex);
done = true;
struct sembuf buf = {};
buf.sem_op = -count;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallSucceeds());
}
// Now all waiters should unblock and exit.
for (auto& dec : decs) {
dec->Join();
}
for (auto& zero : zeros) {
zero->Join();
}
}
TEST(SemaphoreTest, SemOpNamespace) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_SYS_ADMIN)));
AutoSem sem(semget(123, 1, 0600 | IPC_CREAT | IPC_EXCL));
ASSERT_THAT(sem.get(), SyscallSucceeds());
ScopedThread([]() {
EXPECT_THAT(unshare(CLONE_NEWIPC), SyscallSucceeds());
AutoSem sem(semget(123, 1, 0600 | IPC_CREAT | IPC_EXCL));
ASSERT_THAT(sem.get(), SyscallSucceeds());
});
}
TEST(SemaphoreTest, SemCtlVal) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
// Semaphore must start with 0.
EXPECT_THAT(semctl(sem.get(), 0, GETVAL), SyscallSucceedsWithValue(0));
// Increase value and ensure waiters are woken up.
ScopedThread th([&sem] {
struct sembuf buf = {};
buf.sem_op = -10;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallSucceeds());
});
ASSERT_THAT(semctl(sem.get(), 0, SETVAL, 9), SyscallSucceeds());
EXPECT_THAT(semctl(sem.get(), 0, GETVAL), SyscallSucceedsWithValue(9));
ASSERT_THAT(semctl(sem.get(), 0, SETVAL, 20), SyscallSucceeds());
const int value = semctl(sem.get(), 0, GETVAL);
// 10 or 20 because it could have raced with waiter above.
EXPECT_TRUE(value == 10 || value == 20) << "value=" << value;
th.Join();
// Set it back to 0 and ensure that waiters are woken up.
ScopedThread thZero([&sem] {
struct sembuf buf = {};
buf.sem_op = 0;
ASSERT_THAT(RetryEINTR(semop)(sem.get(), &buf, 1), SyscallSucceeds());
});
ASSERT_THAT(semctl(sem.get(), 0, SETVAL, 0), SyscallSucceeds());
EXPECT_THAT(semctl(sem.get(), 0, GETVAL), SyscallSucceedsWithValue(0));
thZero.Join();
}
TEST(SemaphoreTest, SemCtlValAll) {
AutoSem sem(semget(IPC_PRIVATE, 3, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
// Semaphores must start with 0.
uint16_t get[3] = {10, 10, 10};
EXPECT_THAT(semctl(sem.get(), 1, GETALL, get), SyscallSucceedsWithValue(0));
for (auto v : get) {
EXPECT_EQ(v, 0);
}
// SetAll and check that they were set.
uint16_t vals[3] = {0, 10, 20};
EXPECT_THAT(semctl(sem.get(), 1, SETALL, vals), SyscallSucceedsWithValue(0));
EXPECT_THAT(semctl(sem.get(), 1, GETALL, get), SyscallSucceedsWithValue(0));
for (size_t i = 0; i < ABSL_ARRAYSIZE(vals); ++i) {
EXPECT_EQ(get[i], vals[i]);
}
EXPECT_THAT(semctl(sem.get(), 1, SETALL, nullptr),
SyscallFailsWithErrno(EFAULT));
}
TEST(SemaphoreTest, SemCtlGetPid) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
ASSERT_THAT(semctl(sem.get(), 0, SETVAL, 1), SyscallSucceeds());
EXPECT_THAT(semctl(sem.get(), 0, GETPID), SyscallSucceedsWithValue(getpid()));
}
TEST(SemaphoreTest, SemCtlGetPidFork) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
const pid_t child_pid = fork();
if (child_pid == 0) {
TEST_PCHECK(semctl(sem.get(), 0, SETVAL, 1) == 0);
TEST_PCHECK(semctl(sem.get(), 0, GETPID) == getpid());
_exit(0);
}
ASSERT_THAT(child_pid, SyscallSucceeds());
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0)
<< " status " << status;
}
TEST(SemaphoreTest, SemIpcSet) {
// Drop CAP_IPC_OWNER which allows us to bypass semaphore permissions.
AutoCapability cap(CAP_IPC_OWNER, false);
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
struct semid_ds semid = {};
semid.sem_perm.uid = getuid();
semid.sem_perm.gid = getgid();
// Make semaphore readonly and check that signal fails.
semid.sem_perm.mode = 0400;
EXPECT_THAT(semctl(sem.get(), 0, IPC_SET, &semid), SyscallSucceeds());
struct sembuf buf = {};
buf.sem_op = 1;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallFailsWithErrno(EACCES));
// Make semaphore writeonly and check that wait for zero fails.
semid.sem_perm.mode = 0200;
EXPECT_THAT(semctl(sem.get(), 0, IPC_SET, &semid), SyscallSucceeds());
buf.sem_op = 0;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallFailsWithErrno(EACCES));
}
TEST(SemaphoreTest, SemCtlIpcStat) {
// Drop CAP_IPC_OWNER which allows us to bypass semaphore permissions.
AutoCapability cap(CAP_IPC_OWNER, false);
const uid_t kUid = getuid();
const gid_t kGid = getgid();
time_t start_time = time(nullptr);
AutoSem sem(semget(IPC_PRIVATE, 10, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
struct semid_ds ds;
EXPECT_THAT(semctl(sem.get(), 0, IPC_STAT, &ds), SyscallSucceeds());
EXPECT_EQ(ds.sem_perm.__key, IPC_PRIVATE);
EXPECT_EQ(ds.sem_perm.uid, kUid);
EXPECT_EQ(ds.sem_perm.gid, kGid);
EXPECT_EQ(ds.sem_perm.cuid, kUid);
EXPECT_EQ(ds.sem_perm.cgid, kGid);
EXPECT_EQ(ds.sem_perm.mode, 0600);
// Last semop time is not set on creation.
EXPECT_EQ(ds.sem_otime, 0);
EXPECT_GE(ds.sem_ctime, start_time);
EXPECT_EQ(ds.sem_nsems, 10);
// The timestamps only have a resolution of seconds; slow down so we actually
// see the timestamps change.
absl::SleepFor(absl::Seconds(1));
// Set semid_ds structure of the set.
auto last_ctime = ds.sem_ctime;
start_time = time(nullptr);
struct semid_ds semid_to_set = {};
semid_to_set.sem_perm.uid = kUid;
semid_to_set.sem_perm.gid = kGid;
semid_to_set.sem_perm.mode = 0666;
ASSERT_THAT(semctl(sem.get(), 0, IPC_SET, &semid_to_set), SyscallSucceeds());
struct sembuf buf = {};
buf.sem_op = 1;
ASSERT_THAT(semop(sem.get(), &buf, 1), SyscallSucceeds());
EXPECT_THAT(semctl(sem.get(), 0, IPC_STAT, &ds), SyscallSucceeds());
EXPECT_EQ(ds.sem_perm.mode, 0666);
EXPECT_GE(ds.sem_otime, start_time);
EXPECT_GT(ds.sem_ctime, last_ctime);
// An invalid semid fails the syscall with errno EINVAL.
EXPECT_THAT(semctl(sem.get() + 1, 0, IPC_STAT, &ds),
SyscallFailsWithErrno(EINVAL));
// Make semaphore not readable and check the signal fails.
semid_to_set.sem_perm.mode = 0200;
ASSERT_THAT(semctl(sem.get(), 0, IPC_SET, &semid_to_set), SyscallSucceeds());
EXPECT_THAT(semctl(sem.get(), 0, IPC_STAT, &ds),
SyscallFailsWithErrno(EACCES));
}
// Calls semctl(semid, 0, cmd) until the returned value is >= target, an
// internal timeout expires, or semctl returns an error.
PosixErrorOr<int> WaitSemctl(int semid, int target, int cmd) {
constexpr absl::Duration timeout = absl::Seconds(10);
const auto deadline = absl::Now() + timeout;
int semcnt = 0;
while (absl::Now() < deadline) {
semcnt = semctl(semid, 0, cmd);
if (semcnt < 0) {
return PosixError(errno, "semctl(GETZCNT) failed");
}
if (semcnt >= target) {
break;
}
absl::SleepFor(absl::Milliseconds(10));
}
return semcnt;
}
TEST(SemaphoreTest, SemopGetzcnt) {
// Drop CAP_IPC_OWNER which allows us to bypass semaphore permissions.
AutoCapability cap(CAP_IPC_OWNER, false);
// Create a write only semaphore set.
AutoSem sem(semget(IPC_PRIVATE, 1, 0200 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
// No read permission to retrieve semzcnt.
EXPECT_THAT(semctl(sem.get(), 0, GETZCNT), SyscallFailsWithErrno(EACCES));
// Remove the calling thread's read permission.
struct semid_ds ds = {};
ds.sem_perm.uid = getuid();
ds.sem_perm.gid = getgid();
ds.sem_perm.mode = 0600;
ASSERT_THAT(semctl(sem.get(), 0, IPC_SET, &ds), SyscallSucceeds());
std::vector<pid_t> children;
ASSERT_THAT(semctl(sem.get(), 0, SETVAL, 1), SyscallSucceeds());
struct sembuf buf = {};
buf.sem_num = 0;
buf.sem_op = 0;
constexpr size_t kLoops = 10;
for (size_t i = 0; i < kLoops; i++) {
auto child_pid = fork();
if (child_pid == 0) {
TEST_PCHECK(RetryEINTR(semop)(sem.get(), &buf, 1) == 0);
_exit(0);
}
children.push_back(child_pid);
}
EXPECT_THAT(WaitSemctl(sem.get(), kLoops, GETZCNT),
IsPosixErrorOkAndHolds(kLoops));
// Set semval to 0, which wakes up children that sleep on the semop.
ASSERT_THAT(semctl(sem.get(), 0, SETVAL, 0), SyscallSucceeds());
for (const auto& child_pid : children) {
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
}
EXPECT_EQ(semctl(sem.get(), 0, GETZCNT), 0);
}
TEST(SemaphoreTest, SemopGetzcntOnSetRemoval) {
auto semid = semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT);
ASSERT_THAT(semid, SyscallSucceeds());
ASSERT_THAT(semctl(semid, 0, SETVAL, 1), SyscallSucceeds());
ASSERT_EQ(semctl(semid, 0, GETZCNT), 0);
auto child_pid = fork();
if (child_pid == 0) {
struct sembuf buf = {};
buf.sem_num = 0;
buf.sem_op = 0;
// Ensure that wait will only unblock when the semaphore is removed. On
// EINTR retry it may race with deletion and return EINVAL.
TEST_PCHECK(RetryEINTR(semop)(semid, &buf, 1) < 0 &&
(errno == EIDRM || errno == EINVAL));
_exit(0);
}
EXPECT_THAT(WaitSemctl(semid, 1, GETZCNT), IsPosixErrorOkAndHolds(1));
// Remove the semaphore set, which fails the sleep semop.
ASSERT_THAT(semctl(semid, 0, IPC_RMID), SyscallSucceeds());
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
EXPECT_THAT(semctl(semid, 0, GETZCNT), SyscallFailsWithErrno(EINVAL));
}
TEST(SemaphoreTest, SemopGetzcntOnSignal) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
ASSERT_THAT(semctl(sem.get(), 0, SETVAL, 1), SyscallSucceeds());
ASSERT_EQ(semctl(sem.get(), 0, GETZCNT), 0);
// Saving will cause semop() to be spuriously interrupted.
DisableSave ds;
auto child_pid = fork();
if (child_pid == 0) {
TEST_PCHECK(signal(SIGHUP, [](int sig) -> void {}) != SIG_ERR);
struct sembuf buf = {};
buf.sem_num = 0;
buf.sem_op = 0;
TEST_PCHECK(semop(sem.get(), &buf, 1) < 0 && errno == EINTR);
_exit(0);
}
EXPECT_THAT(WaitSemctl(sem.get(), 1, GETZCNT), IsPosixErrorOkAndHolds(1));
// Send a signal to the child, which fails the sleep semop.
ASSERT_EQ(kill(child_pid, SIGHUP), 0);
ds.reset();
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
EXPECT_EQ(semctl(sem.get(), 0, GETZCNT), 0);
}
TEST(SemaphoreTest, SemopGetncnt) {
// Drop CAP_IPC_OWNER which allows us to bypass semaphore permissions.
AutoCapability cap(CAP_IPC_OWNER, false);
// Create a write only semaphore set.
AutoSem sem(semget(IPC_PRIVATE, 1, 0200 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
// No read permission to retrieve semzcnt.
EXPECT_THAT(semctl(sem.get(), 0, GETNCNT), SyscallFailsWithErrno(EACCES));
// Remove the calling thread's read permission.
struct semid_ds ds = {};
ds.sem_perm.uid = getuid();
ds.sem_perm.gid = getgid();
ds.sem_perm.mode = 0600;
ASSERT_THAT(semctl(sem.get(), 0, IPC_SET, &ds), SyscallSucceeds());
std::vector<pid_t> children;
struct sembuf buf = {};
buf.sem_num = 0;
buf.sem_op = -1;
constexpr size_t kLoops = 10;
for (size_t i = 0; i < kLoops; i++) {
auto child_pid = fork();
if (child_pid == 0) {
TEST_PCHECK(RetryEINTR(semop)(sem.get(), &buf, 1) == 0);
_exit(0);
}
children.push_back(child_pid);
}
EXPECT_THAT(WaitSemctl(sem.get(), kLoops, GETNCNT),
IsPosixErrorOkAndHolds(kLoops));
// Set semval to 1, which wakes up children that sleep on the semop.
ASSERT_THAT(semctl(sem.get(), 0, SETVAL, kLoops), SyscallSucceeds());
for (const auto& child_pid : children) {
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
}
EXPECT_EQ(semctl(sem.get(), 0, GETNCNT), 0);
}
TEST(SemaphoreTest, SemopGetncntOnSetRemoval) {
auto semid = semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT);
ASSERT_THAT(semid, SyscallSucceeds());
ASSERT_EQ(semctl(semid, 0, GETNCNT), 0);
auto child_pid = fork();
if (child_pid == 0) {
struct sembuf buf = {};
buf.sem_num = 0;
buf.sem_op = -1;
// Ensure that wait will only unblock when the semaphore is removed. On
// EINTR retry it may race with deletion and return EINVAL
TEST_PCHECK(RetryEINTR(semop)(semid, &buf, 1) < 0 &&
(errno == EIDRM || errno == EINVAL));
_exit(0);
}
EXPECT_THAT(WaitSemctl(semid, 1, GETNCNT), IsPosixErrorOkAndHolds(1));
// Remove the semaphore set, which fails the sleep semop.
ASSERT_THAT(semctl(semid, 0, IPC_RMID), SyscallSucceeds());
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
EXPECT_THAT(semctl(semid, 0, GETNCNT), SyscallFailsWithErrno(EINVAL));
}
TEST(SemaphoreTest, SemopGetncntOnSignal) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
ASSERT_EQ(semctl(sem.get(), 0, GETNCNT), 0);
// Saving will cause semop() to be spuriously interrupted.
DisableSave ds;
auto child_pid = fork();
if (child_pid == 0) {
TEST_PCHECK(signal(SIGHUP, [](int sig) -> void {}) != SIG_ERR);
struct sembuf buf = {};
buf.sem_num = 0;
buf.sem_op = -1;
TEST_PCHECK(semop(sem.get(), &buf, 1) < 0 && errno == EINTR);
_exit(0);
}
EXPECT_THAT(WaitSemctl(sem.get(), 1, GETNCNT), IsPosixErrorOkAndHolds(1));
// Send a signal to the child, which fails the sleep semop.
ASSERT_EQ(kill(child_pid, SIGHUP), 0);
ds.reset();
int status;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0),
SyscallSucceedsWithValue(child_pid));
EXPECT_TRUE(WIFEXITED(status) && WEXITSTATUS(status) == 0);
EXPECT_EQ(semctl(sem.get(), 0, GETNCNT), 0);
}
#ifndef SEM_STAT_ANY
#define SEM_STAT_ANY 20
#endif // SEM_STAT_ANY
TEST(SemaphoreTest, IpcInfo) {
constexpr int kLoops = 5;
std::set<int> sem_ids;
struct seminfo info;
// Drop CAP_IPC_OWNER which allows us to bypass semaphore permissions.
AutoCapability cap(CAP_IPC_OWNER, false);
for (int i = 0; i < kLoops; i++) {
AutoSem sem(semget(IPC_PRIVATE, 1, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
sem_ids.insert(sem.release());
}
ASSERT_EQ(sem_ids.size(), kLoops);
int max_used_index = 0;
EXPECT_THAT(max_used_index = semctl(0, 0, IPC_INFO, &info),
SyscallSucceeds());
std::set<int> sem_ids_before_max_index;
for (int i = 0; i <= max_used_index; i++) {
struct semid_ds ds = {};
int sem_id = semctl(i, 0, SEM_STAT, &ds);
// Only if index i is used within the registry.
if (sem_ids.find(sem_id) != sem_ids.end()) {
struct semid_ds ipc_stat_ds;
ASSERT_THAT(semctl(sem_id, 0, IPC_STAT, &ipc_stat_ds), SyscallSucceeds());
EXPECT_TRUE(ds == ipc_stat_ds);
// Remove the semaphore set's read permission.
struct semid_ds ipc_set_ds;
ipc_set_ds.sem_perm.uid = getuid();
ipc_set_ds.sem_perm.gid = getgid();
// Keep the semaphore set's write permission so that it could be removed.
ipc_set_ds.sem_perm.mode = 0200;
// IPC_SET command here updates sem_ctime member of the sem.
ASSERT_THAT(semctl(sem_id, 0, IPC_SET, &ipc_set_ds), SyscallSucceeds());
ASSERT_THAT(semctl(i, 0, SEM_STAT, &ds), SyscallFailsWithErrno(EACCES));
int val = semctl(i, 0, SEM_STAT_ANY, &ds);
if (val == -1) {
// Only if the kernel doesn't support the command SEM_STAT_ANY.
EXPECT_TRUE(errno == EINVAL || errno == EFAULT);
} else {
EXPECT_EQ(sem_id, val);
EXPECT_LE(ipc_stat_ds.sem_ctime, ds.sem_ctime);
ipc_stat_ds.sem_ctime = 0;
ipc_stat_ds.sem_perm.mode = 0200;
ds.sem_ctime = 0;
EXPECT_TRUE(ipc_stat_ds == ds);
}
sem_ids_before_max_index.insert(sem_id);
}
}
EXPECT_EQ(sem_ids_before_max_index.size(), kLoops);
for (const int sem_id : sem_ids) {
ASSERT_THAT(semctl(sem_id, 0, IPC_RMID), SyscallSucceeds());
}
ASSERT_THAT(semctl(0, 0, IPC_INFO, &info), SyscallSucceeds());
EXPECT_EQ(info.semmap, kSemMap);
EXPECT_EQ(info.semmni, kSemMni);
EXPECT_EQ(info.semmns, kSemMns);
EXPECT_EQ(info.semmnu, kSemMnu);
EXPECT_EQ(info.semmsl, kSemMsl);
EXPECT_EQ(info.semopm, kSemOpm);
EXPECT_EQ(info.semume, kSemUme);
EXPECT_EQ(info.semusz, kSemUsz);
EXPECT_EQ(info.semvmx, kSemVmx);
EXPECT_EQ(info.semaem, kSemAem);
}
TEST(SemaphoreTest, SemInfo) {
constexpr int kLoops = 5;
constexpr int kSemSetSize = 3;
std::set<int> sem_ids;
struct seminfo info;
// Drop CAP_IPC_OWNER which allows us to bypass semaphore permissions.
AutoCapability cap(CAP_IPC_OWNER, false);
for (int i = 0; i < kLoops; i++) {
AutoSem sem(semget(IPC_PRIVATE, kSemSetSize, 0600 | IPC_CREAT));
ASSERT_THAT(sem.get(), SyscallSucceeds());
sem_ids.insert(sem.release());
}
ASSERT_EQ(sem_ids.size(), kLoops);
int max_used_index = 0;
EXPECT_THAT(max_used_index = semctl(0, 0, SEM_INFO, &info),
SyscallSucceeds());
EXPECT_EQ(info.semmap, kSemMap);
EXPECT_EQ(info.semmni, kSemMni);
EXPECT_EQ(info.semmns, kSemMns);
EXPECT_EQ(info.semmnu, kSemMnu);
EXPECT_EQ(info.semmsl, kSemMsl);
EXPECT_EQ(info.semopm, kSemOpm);
EXPECT_EQ(info.semume, kSemUme);
// There could be semaphores existing in the system during the test, which
// prevents the test from getting a exact number, but the test could expect at
// least the number of sempahroes it creates in the begining of the test.
EXPECT_GE(info.semusz, sem_ids.size());
EXPECT_EQ(info.semvmx, kSemVmx);
EXPECT_GE(info.semaem, sem_ids.size() * kSemSetSize);
std::set<int> sem_ids_before_max_index;
for (int i = 0; i <= max_used_index; i++) {
struct semid_ds ds = {};
int sem_id = semctl(i, 0, SEM_STAT, &ds);
// Only if index i is used within the registry.
if (sem_ids.find(sem_id) != sem_ids.end()) {
struct semid_ds ipc_stat_ds;
ASSERT_THAT(semctl(sem_id, 0, IPC_STAT, &ipc_stat_ds), SyscallSucceeds());
EXPECT_TRUE(ds == ipc_stat_ds);
// Remove the semaphore set's read permission.
struct semid_ds ipc_set_ds;
ipc_set_ds.sem_perm.uid = getuid();
ipc_set_ds.sem_perm.gid = getgid();
// Keep the semaphore set's write permission so that it could be removed.
ipc_set_ds.sem_perm.mode = 0200;
// IPC_SET command here updates sem_ctime member of the sem.
ASSERT_THAT(semctl(sem_id, 0, IPC_SET, &ipc_set_ds), SyscallSucceeds());
ASSERT_THAT(semctl(i, 0, SEM_STAT, &ds), SyscallFailsWithErrno(EACCES));
int val = semctl(i, 0, SEM_STAT_ANY, &ds);
if (val == -1) {
// Only if the kernel doesn't support the command SEM_STAT_ANY.
EXPECT_TRUE(errno == EINVAL || errno == EFAULT);
} else {
EXPECT_EQ(val, sem_id);
EXPECT_LE(ipc_stat_ds.sem_ctime, ds.sem_ctime);
ipc_stat_ds.sem_ctime = 0;
ipc_stat_ds.sem_perm.mode = 0200;
ds.sem_ctime = 0;
EXPECT_TRUE(ipc_stat_ds == ds);
}
sem_ids_before_max_index.insert(sem_id);
}
}
EXPECT_EQ(sem_ids_before_max_index.size(), kLoops);
for (const int sem_id : sem_ids) {
ASSERT_THAT(semctl(sem_id, 0, IPC_RMID), SyscallSucceeds());
}
ASSERT_THAT(semctl(0, 0, SEM_INFO, &info), SyscallSucceeds());
EXPECT_EQ(info.semmap, kSemMap);
EXPECT_EQ(info.semmni, kSemMni);
EXPECT_EQ(info.semmns, kSemMns);
EXPECT_EQ(info.semmnu, kSemMnu);
EXPECT_EQ(info.semmsl, kSemMsl);
EXPECT_EQ(info.semopm, kSemOpm);
EXPECT_EQ(info.semume, kSemUme);
// Apart from semapahores that are not created by the test, we can't determine
// the exact number of semaphore sets and semaphores, as a result, semusz and
// semaem range from 0 to a random number. Since the numbers are always
// non-negative, the test will not check the reslts of semusz and semaem.
EXPECT_EQ(info.semvmx, kSemVmx);
}
} // namespace
} // namespace testing
} // namespace gvisor
|