1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/ip_icmp.h>
#include <poll.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include "gtest/gtest.h"
#include "test/syscalls/linux/unix_domain_socket_test_util.h"
#include "test/util/capability_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/socket_util.h"
#include "test/util/test_util.h"
// Note: in order to run these tests, /proc/sys/net/ipv4/ping_group_range will
// need to be configured to let the superuser create ping sockets (see icmp(7)).
namespace gvisor {
namespace testing {
namespace {
// Fixture for tests parameterized by protocol.
class RawSocketTest : public ::testing::TestWithParam<std::tuple<int, int>> {
protected:
// Creates a socket to be used in tests.
void SetUp() override;
// Closes the socket created by SetUp().
void TearDown() override;
// Sends buf via s_.
void SendBuf(const char* buf, int buf_len);
// Reads from s_ into recv_buf.
void ReceiveBuf(char* recv_buf, size_t recv_buf_len);
void ReceiveBufFrom(int sock, char* recv_buf, size_t recv_buf_len);
int Protocol() { return std::get<0>(GetParam()); }
int Family() { return std::get<1>(GetParam()); }
socklen_t AddrLen() {
if (Family() == AF_INET) {
return sizeof(sockaddr_in);
}
return sizeof(sockaddr_in6);
}
int HdrLen() {
if (Family() == AF_INET) {
return sizeof(struct iphdr);
}
// IPv6 raw sockets don't include the header.
return 0;
}
uint16_t Port(struct sockaddr* s) {
if (Family() == AF_INET) {
return ntohs(reinterpret_cast<struct sockaddr_in*>(s)->sin_port);
}
return ntohs(reinterpret_cast<struct sockaddr_in6*>(s)->sin6_port);
}
void* Addr(struct sockaddr* s) {
if (Family() == AF_INET) {
return &(reinterpret_cast<struct sockaddr_in*>(s)->sin_addr);
}
return &(reinterpret_cast<struct sockaddr_in6*>(s)->sin6_addr);
}
// The socket used for both reading and writing.
int s_;
// The loopback address.
struct sockaddr_storage addr_;
};
void RawSocketTest::SetUp() {
if (!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability())) {
ASSERT_THAT(socket(Family(), SOCK_RAW, Protocol()),
SyscallFailsWithErrno(EPERM));
GTEST_SKIP();
}
ASSERT_THAT(s_ = socket(Family(), SOCK_RAW, Protocol()), SyscallSucceeds());
addr_ = {};
// We don't set ports because raw sockets don't have a notion of ports.
if (Family() == AF_INET) {
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&addr_);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
} else {
struct sockaddr_in6* sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr_);
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = in6addr_loopback;
}
}
void RawSocketTest::TearDown() {
// TearDown will be run even if we skip the test.
if (ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability())) {
EXPECT_THAT(close(s_), SyscallSucceeds());
}
}
// We should be able to create multiple raw sockets for the same protocol.
// BasicRawSocket::Setup creates the first one, so we only have to create one
// more here.
TEST_P(RawSocketTest, MultipleCreation) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
int s2;
ASSERT_THAT(s2 = socket(Family(), SOCK_RAW, Protocol()), SyscallSucceeds());
ASSERT_THAT(close(s2), SyscallSucceeds());
}
// Test that shutting down an unconnected socket fails.
TEST_P(RawSocketTest, FailShutdownWithoutConnect) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(shutdown(s_, SHUT_WR), SyscallFailsWithErrno(ENOTCONN));
ASSERT_THAT(shutdown(s_, SHUT_RD), SyscallFailsWithErrno(ENOTCONN));
}
// Shutdown is a no-op for raw sockets (and datagram sockets in general).
TEST_P(RawSocketTest, ShutdownWriteNoop) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(shutdown(s_, SHUT_WR), SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "noop";
ASSERT_THAT(RetryEINTR(write)(s_, kBuf, sizeof(kBuf)),
SyscallSucceedsWithValue(sizeof(kBuf)));
}
// Shutdown is a no-op for raw sockets (and datagram sockets in general).
TEST_P(RawSocketTest, ShutdownReadNoop) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(shutdown(s_, SHUT_RD), SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "gdg";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
std::vector<char> c(sizeof(kBuf) + HdrLen());
ASSERT_THAT(read(s_, c.data(), c.size()), SyscallSucceedsWithValue(c.size()));
}
// Test that listen() fails.
TEST_P(RawSocketTest, FailListen) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(listen(s_, 1), SyscallFailsWithErrno(ENOTSUP));
}
// Test that accept() fails.
TEST_P(RawSocketTest, FailAccept) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
struct sockaddr saddr;
socklen_t addrlen;
ASSERT_THAT(accept(s_, &saddr, &addrlen), SyscallFailsWithErrno(ENOTSUP));
}
TEST_P(RawSocketTest, BindThenGetSockName) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
struct sockaddr* addr = reinterpret_cast<struct sockaddr*>(&addr_);
ASSERT_THAT(bind(s_, addr, AddrLen()), SyscallSucceeds());
struct sockaddr_storage saddr_storage;
struct sockaddr* saddr = reinterpret_cast<struct sockaddr*>(&saddr_storage);
socklen_t saddrlen = AddrLen();
ASSERT_THAT(getsockname(s_, saddr, &saddrlen), SyscallSucceeds());
ASSERT_EQ(saddrlen, AddrLen());
// The port is expected to hold the protocol number.
EXPECT_EQ(Port(saddr), Protocol());
char addrbuf[INET6_ADDRSTRLEN], saddrbuf[INET6_ADDRSTRLEN];
const char* addrstr =
inet_ntop(addr->sa_family, Addr(addr), addrbuf, sizeof(addrbuf));
ASSERT_NE(addrstr, nullptr);
const char* saddrstr =
inet_ntop(saddr->sa_family, Addr(saddr), saddrbuf, sizeof(saddrbuf));
ASSERT_NE(saddrstr, nullptr);
EXPECT_STREQ(saddrstr, addrstr);
}
TEST_P(RawSocketTest, ConnectThenGetSockName) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
struct sockaddr* addr = reinterpret_cast<struct sockaddr*>(&addr_);
ASSERT_THAT(connect(s_, addr, AddrLen()), SyscallSucceeds());
struct sockaddr_storage saddr_storage;
struct sockaddr* saddr = reinterpret_cast<struct sockaddr*>(&saddr_storage);
socklen_t saddrlen = AddrLen();
ASSERT_THAT(getsockname(s_, saddr, &saddrlen), SyscallSucceeds());
ASSERT_EQ(saddrlen, AddrLen());
// The port is expected to hold the protocol number.
EXPECT_EQ(Port(saddr), Protocol());
char addrbuf[INET6_ADDRSTRLEN], saddrbuf[INET6_ADDRSTRLEN];
const char* addrstr =
inet_ntop(addr->sa_family, Addr(addr), addrbuf, sizeof(addrbuf));
ASSERT_NE(addrstr, nullptr);
const char* saddrstr =
inet_ntop(saddr->sa_family, Addr(saddr), saddrbuf, sizeof(saddrbuf));
ASSERT_NE(saddrstr, nullptr);
EXPECT_STREQ(saddrstr, addrstr);
}
// Test that getpeername() returns nothing before connect().
TEST_P(RawSocketTest, FailGetPeerNameBeforeConnect) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
struct sockaddr saddr;
socklen_t addrlen = sizeof(saddr);
ASSERT_THAT(getpeername(s_, &saddr, &addrlen),
SyscallFailsWithErrno(ENOTCONN));
}
// Test that getpeername() returns something after connect().
TEST_P(RawSocketTest, GetPeerName) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
struct sockaddr saddr;
socklen_t addrlen = sizeof(saddr);
ASSERT_THAT(getpeername(s_, &saddr, &addrlen),
SyscallFailsWithErrno(ENOTCONN));
ASSERT_GT(addrlen, 0);
}
// Test that the socket is writable immediately.
TEST_P(RawSocketTest, PollWritableImmediately) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
struct pollfd pfd = {};
pfd.fd = s_;
pfd.events = POLLOUT;
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, 10000), SyscallSucceedsWithValue(1));
}
// Test that the socket isn't readable before receiving anything.
TEST_P(RawSocketTest, PollNotReadableInitially) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
// Try to receive data with MSG_DONTWAIT, which returns immediately if there's
// nothing to be read.
char buf[117];
ASSERT_THAT(RetryEINTR(recv)(s_, buf, sizeof(buf), MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
// Test that the socket becomes readable once something is written to it.
TEST_P(RawSocketTest, PollTriggeredOnWrite) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
// Write something so that there's data to be read.
// Arbitrary.
constexpr char kBuf[] = "JP5";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
struct pollfd pfd = {};
pfd.fd = s_;
pfd.events = POLLIN;
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, 10000), SyscallSucceedsWithValue(1));
}
// Test that we can connect() to a valid IP (loopback).
TEST_P(RawSocketTest, ConnectToLoopback) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
}
// Test that calling send() without connect() fails.
TEST_P(RawSocketTest, SendWithoutConnectFails) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
// Arbitrary.
constexpr char kBuf[] = "Endgame was good";
ASSERT_THAT(send(s_, kBuf, sizeof(kBuf), 0),
SyscallFailsWithErrno(EDESTADDRREQ));
}
// Wildcard Bind.
TEST_P(RawSocketTest, BindToWildcard) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
struct sockaddr_storage addr;
addr = {};
// We don't set ports because raw sockets don't have a notion of ports.
if (Family() == AF_INET) {
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(INADDR_ANY);
} else {
struct sockaddr_in6* sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr);
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = in6addr_any;
}
ASSERT_THAT(bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
}
// Bind to localhost.
TEST_P(RawSocketTest, BindToLocalhost) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
}
// Bind to a different address.
TEST_P(RawSocketTest, BindToInvalid) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
struct sockaddr_storage bind_addr = addr_;
if (Family() == AF_INET) {
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&bind_addr);
sin->sin_addr = {1}; // 1.0.0.0 - An address that we can't bind to.
} else {
struct sockaddr_in6* sin6 =
reinterpret_cast<struct sockaddr_in6*>(&bind_addr);
memset(&sin6->sin6_addr.s6_addr, 0, sizeof(sin6->sin6_addr.s6_addr));
sin6->sin6_addr.s6_addr[0] = 1; // 1: - An address that we can't bind to.
}
ASSERT_THAT(
bind(s_, reinterpret_cast<struct sockaddr*>(&bind_addr), AddrLen()),
SyscallFailsWithErrno(EADDRNOTAVAIL));
}
// Send and receive an packet.
TEST_P(RawSocketTest, SendAndReceive) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
// Arbitrary.
constexpr char kBuf[] = "TB12";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), kBuf, sizeof(kBuf)), 0);
}
// We should be able to create multiple raw sockets for the same protocol and
// receive the same packet on both.
TEST_P(RawSocketTest, MultipleSocketReceive) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
int s2;
ASSERT_THAT(s2 = socket(Family(), SOCK_RAW, Protocol()), SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "TB10";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
// Receive it on socket 1.
std::vector<char> recv_buf1(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf1.data(), recv_buf1.size()));
// Receive it on socket 2.
std::vector<char> recv_buf2(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(
ReceiveBufFrom(s2, recv_buf2.data(), recv_buf2.size()));
EXPECT_EQ(memcmp(recv_buf1.data() + HdrLen(), recv_buf2.data() + HdrLen(),
sizeof(kBuf)),
0);
ASSERT_THAT(close(s2), SyscallSucceeds());
}
// Test that connect sends packets to the right place.
TEST_P(RawSocketTest, SendAndReceiveViaConnect) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "JH4";
ASSERT_THAT(send(s_, kBuf, sizeof(kBuf), 0),
SyscallSucceedsWithValue(sizeof(kBuf)));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), kBuf, sizeof(kBuf)), 0);
}
// Bind to localhost, then send and receive packets.
TEST_P(RawSocketTest, BindSendAndReceive) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "DR16";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), kBuf, sizeof(kBuf)), 0);
}
// Bind and connect to localhost and send/receive packets.
TEST_P(RawSocketTest, BindConnectSendAndReceive) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "DG88";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), kBuf, sizeof(kBuf)), 0);
}
// Check that setting SO_RCVBUF below min is clamped to the minimum
// receive buffer size.
TEST_P(RawSocketTest, SetSocketRecvBufBelowMin) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
// Discover minimum receive buf size by trying to set it to zero.
// See:
// https://github.com/torvalds/linux/blob/a5dc8300df75e8b8384b4c82225f1e4a0b4d9b55/net/core/sock.c#L820
constexpr int kRcvBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
int min = 0;
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
// Linux doubles the value so let's use a value that when doubled will still
// be smaller than min.
int below_min = min / 2 - 1;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &below_min, sizeof(below_min)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &val, &val_len),
SyscallSucceeds());
ASSERT_EQ(min, val);
}
// Check that setting SO_RCVBUF above max is clamped to the maximum
// receive buffer size.
TEST_P(RawSocketTest, SetSocketRecvBufAboveMax) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
// Discover max buf size by trying to set the largest possible buffer size.
constexpr int kRcvBufSz = 0xffffffff;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
int max = 0;
socklen_t max_len = sizeof(max);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &max, &max_len),
SyscallSucceeds());
int above_max = max + 1;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &above_max, sizeof(above_max)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &val, &val_len),
SyscallSucceeds());
ASSERT_EQ(max, val);
}
// Check that setting SO_RCVBUF min <= kRcvBufSz <= max is honored.
TEST_P(RawSocketTest, SetSocketRecvBuf) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
int max = 0;
int min = 0;
{
// Discover max buf size by trying to set a really large buffer size.
constexpr int kRcvBufSz = 0xffffffff;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
max = 0;
socklen_t max_len = sizeof(max);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &max, &max_len),
SyscallSucceeds());
}
{
// Discover minimum buffer size by trying to set a zero size receive buffer
// size.
// See:
// https://github.com/torvalds/linux/blob/a5dc8300df75e8b8384b4c82225f1e4a0b4d9b55/net/core/sock.c#L820
constexpr int kRcvBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
}
int quarter_sz = min + (max - min) / 4;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &quarter_sz, sizeof(quarter_sz)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &val, &val_len),
SyscallSucceeds());
// Linux doubles the value set by SO_SNDBUF/SO_RCVBUF.
quarter_sz *= 2;
ASSERT_EQ(quarter_sz, val);
}
// Check that setting SO_SNDBUF below min is clamped to the minimum
// receive buffer size.
TEST_P(RawSocketTest, SetSocketSendBufBelowMin) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
// Discover minimum buffer size by trying to set it to zero.
constexpr int kSndBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &kSndBufSz, sizeof(kSndBufSz)),
SyscallSucceeds());
int min = 0;
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &min, &min_len),
SyscallSucceeds());
// Linux doubles the value so let's use a value that when doubled will still
// be smaller than min.
int below_min = min / 2 - 1;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &below_min, sizeof(below_min)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &val, &val_len),
SyscallSucceeds());
ASSERT_EQ(min, val);
}
// Check that setting SO_SNDBUF above max is clamped to the maximum
// send buffer size.
TEST_P(RawSocketTest, SetSocketSendBufAboveMax) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
// Discover maximum buffer size by trying to set it to a large value.
constexpr int kSndBufSz = 0xffffffff;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &kSndBufSz, sizeof(kSndBufSz)),
SyscallSucceeds());
int max = 0;
socklen_t max_len = sizeof(max);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &max, &max_len),
SyscallSucceeds());
int above_max = max + 1;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &above_max, sizeof(above_max)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &val, &val_len),
SyscallSucceeds());
ASSERT_EQ(max, val);
}
// Check that setting SO_SNDBUF min <= kSndBufSz <= max is honored.
TEST_P(RawSocketTest, SetSocketSendBuf) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
int max = 0;
int min = 0;
{
// Discover maximum buffer size by trying to set it to a large value.
constexpr int kSndBufSz = 0xffffffff;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &kSndBufSz, sizeof(kSndBufSz)),
SyscallSucceeds());
max = 0;
socklen_t max_len = sizeof(max);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &max, &max_len),
SyscallSucceeds());
}
{
// Discover minimum buffer size by trying to set it to zero.
constexpr int kSndBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &kSndBufSz, sizeof(kSndBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &min, &min_len),
SyscallSucceeds());
}
int quarter_sz = min + (max - min) / 4;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &quarter_sz, sizeof(quarter_sz)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &val, &val_len),
SyscallSucceeds());
quarter_sz *= 2;
ASSERT_EQ(quarter_sz, val);
}
// Test that receive buffer limits are not enforced when the recv buffer is
// empty.
TEST_P(RawSocketTest, RecvBufLimitsEmptyRecvBuffer) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
int min = 0;
{
// Discover minimum buffer size by trying to set it to zero.
constexpr int kRcvBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
}
{
// Send data of size min and verify that it's received.
std::vector<char> buf(min);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(buf.size() + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), buf.data(), buf.size()), 0);
}
{
// Send data of size min + 1 and verify that its received. Both linux and
// Netstack accept a dgram that exceeds rcvBuf limits if the receive buffer
// is currently empty.
std::vector<char> buf(min + 1);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(buf.size() + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), buf.data(), buf.size()), 0);
}
}
TEST_P(RawSocketTest, RecvBufLimits) {
// TCP stack generates RSTs for unknown endpoints and it complicates the test
// as we have to deal with the RST packets as well. For testing the raw socket
// endpoints buffer limit enforcement we can just test for UDP.
//
// We don't use SKIP_IF here because root_test_runner explicitly fails if a
// test is skipped.
if (Protocol() == IPPROTO_TCP) {
return;
}
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
ASSERT_THAT(bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
int min = 0;
{
// Discover minimum buffer size by trying to set it to zero.
constexpr int kRcvBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
}
// Now set the limit to min * 2.
int new_rcv_buf_sz = min * 2;
ASSERT_THAT(setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &new_rcv_buf_sz,
sizeof(new_rcv_buf_sz)),
SyscallSucceeds());
int rcv_buf_sz = 0;
{
socklen_t rcv_buf_len = sizeof(rcv_buf_sz);
ASSERT_THAT(
getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &rcv_buf_sz, &rcv_buf_len),
SyscallSucceeds());
}
// Set a receive timeout so that we don't block forever on reads if the test
// fails.
struct timeval tv {
.tv_sec = 1, .tv_usec = 0,
};
ASSERT_THAT(setsockopt(s_, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)),
SyscallSucceeds());
{
std::vector<char> buf(min);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
int sent = 4;
if (IsRunningOnGvisor()) {
// Linux seems to drop the 4th packet even though technically it should
// fit in the receive buffer.
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
sent++;
}
// Verify that the expected number of packets are available to be read.
for (int i = 0; i < sent - 1; i++) {
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(buf.size() + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), buf.data(), buf.size()), 0);
}
// Assert that the last packet is dropped because the receive buffer should
// be full after the first four packets.
std::vector<char> recv_buf(buf.size() + HdrLen());
struct iovec iov = {};
iov.iov_base = static_cast<void*>(const_cast<char*>(recv_buf.data()));
iov.iov_len = buf.size();
struct msghdr msg = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
ASSERT_THAT(RetryEINTR(recvmsg)(s_, &msg, MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
}
void RawSocketTest::SendBuf(const char* buf, int buf_len) {
// It's safe to use const_cast here because sendmsg won't modify the iovec or
// address.
struct iovec iov = {};
iov.iov_base = static_cast<void*>(const_cast<char*>(buf));
iov.iov_len = static_cast<size_t>(buf_len);
struct msghdr msg = {};
msg.msg_name = static_cast<void*>(&addr_);
msg.msg_namelen = AddrLen();
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
ASSERT_THAT(sendmsg(s_, &msg, 0), SyscallSucceedsWithValue(buf_len));
}
void RawSocketTest::ReceiveBuf(char* recv_buf, size_t recv_buf_len) {
ASSERT_NO_FATAL_FAILURE(ReceiveBufFrom(s_, recv_buf, recv_buf_len));
}
void RawSocketTest::ReceiveBufFrom(int sock, char* recv_buf,
size_t recv_buf_len) {
ASSERT_NO_FATAL_FAILURE(RecvNoCmsg(sock, recv_buf, recv_buf_len));
}
TEST_P(RawSocketTest, SetSocketDetachFilterNoInstalledFilter) {
// TODO(gvisor.dev/2746): Support SO_ATTACH_FILTER/SO_DETACH_FILTER.
if (IsRunningOnGvisor()) {
constexpr int val = 0;
ASSERT_THAT(setsockopt(s_, SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val)),
SyscallSucceeds());
return;
}
constexpr int val = 0;
ASSERT_THAT(setsockopt(s_, SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val)),
SyscallFailsWithErrno(ENOENT));
}
TEST_P(RawSocketTest, GetSocketDetachFilter) {
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_DETACH_FILTER, &val, &val_len),
SyscallFailsWithErrno(ENOPROTOOPT));
}
// AF_INET6+SOCK_RAW+IPPROTO_RAW sockets can be created, but not written to.
TEST(RawSocketTest, IPv6ProtoRaw) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_RAW, IPPROTO_RAW),
SyscallSucceeds());
// Verify that writing yields EINVAL.
char buf[] = "This is such a weird little edge case";
struct sockaddr_in6 sin6 = {};
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = in6addr_loopback;
ASSERT_THAT(sendto(sock, buf, sizeof(buf), 0 /* flags */,
reinterpret_cast<struct sockaddr*>(&sin6), sizeof(sin6)),
SyscallFailsWithErrno(EINVAL));
}
TEST(RawSocketTest, IPv6SendMsg) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_RAW, IPPROTO_TCP),
SyscallSucceeds());
char kBuf[] = "hello";
struct iovec iov = {};
iov.iov_base = static_cast<void*>(const_cast<char*>(kBuf));
iov.iov_len = static_cast<size_t>(sizeof(kBuf));
struct sockaddr_storage addr = {};
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
struct msghdr msg = {};
msg.msg_name = static_cast<void*>(&addr);
msg.msg_namelen = sizeof(sockaddr_in);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
ASSERT_THAT(sendmsg(sock, &msg, 0), SyscallFailsWithErrno(EINVAL));
}
TEST_P(RawSocketTest, ConnectOnIPv6Socket) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_RAW, IPPROTO_TCP),
SyscallSucceeds());
struct sockaddr_storage addr = {};
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(connect(sock, reinterpret_cast<struct sockaddr*>(&addr),
sizeof(sockaddr_in6)),
SyscallFailsWithErrno(EAFNOSUPPORT));
}
INSTANTIATE_TEST_SUITE_P(
AllInetTests, RawSocketTest,
::testing::Combine(::testing::Values(IPPROTO_TCP, IPPROTO_UDP),
::testing::Values(AF_INET, AF_INET6)));
void TestRawSocketMaybeBindReceive(bool do_bind) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveRawIPSocketCapability()));
constexpr char payload[] = "abcdefgh";
const sockaddr_in addr = {
.sin_family = AF_INET,
.sin_addr = {.s_addr = htonl(INADDR_LOOPBACK)},
};
FileDescriptor udp_sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET, SOCK_DGRAM, SOL_UDP));
sockaddr_in udp_sock_bind_addr = addr;
socklen_t udp_sock_bind_addr_len = sizeof(udp_sock_bind_addr);
ASSERT_THAT(bind(udp_sock.get(),
reinterpret_cast<const sockaddr*>(&udp_sock_bind_addr),
sizeof(udp_sock_bind_addr)),
SyscallSucceeds());
ASSERT_THAT(getsockname(udp_sock.get(),
reinterpret_cast<sockaddr*>(&udp_sock_bind_addr),
&udp_sock_bind_addr_len),
SyscallSucceeds());
ASSERT_EQ(udp_sock_bind_addr_len, sizeof(udp_sock_bind_addr));
FileDescriptor raw_sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET, SOCK_RAW, SOL_UDP));
auto test_recv = [&](const char* scope, uint32_t expected_destination) {
SCOPED_TRACE(scope);
constexpr int kInfinitePollTimeout = -1;
pollfd pfd = {
.fd = raw_sock.get(),
.events = POLLIN,
};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, kInfinitePollTimeout),
SyscallSucceedsWithValue(1));
struct ipv4_udp_packet {
iphdr ip;
udphdr udp;
char data[sizeof(payload)];
// Used to make sure only the required space is used.
char unused_space;
} ABSL_ATTRIBUTE_PACKED;
constexpr size_t kExpectedIPPacketSize =
offsetof(ipv4_udp_packet, unused_space);
// Receive the whole IPv4 packet on the raw socket.
ipv4_udp_packet read_raw_packet;
sockaddr_in peer;
socklen_t peerlen = sizeof(peer);
ASSERT_EQ(
recvfrom(raw_sock.get(), reinterpret_cast<char*>(&read_raw_packet),
sizeof(read_raw_packet), 0 /* flags */,
reinterpret_cast<sockaddr*>(&peer), &peerlen),
static_cast<ssize_t>(kExpectedIPPacketSize))
<< strerror(errno);
ASSERT_EQ(peerlen, sizeof(peer));
EXPECT_EQ(read_raw_packet.ip.version, static_cast<unsigned int>(IPVERSION));
// IHL holds the number of header bytes in 4 byte units.
EXPECT_EQ(read_raw_packet.ip.ihl, sizeof(read_raw_packet.ip) / 4);
EXPECT_EQ(ntohs(read_raw_packet.ip.tot_len), kExpectedIPPacketSize);
EXPECT_EQ(ntohs(read_raw_packet.ip.frag_off) & IP_OFFMASK, 0);
EXPECT_EQ(read_raw_packet.ip.protocol, SOL_UDP);
EXPECT_EQ(ntohl(read_raw_packet.ip.saddr), INADDR_LOOPBACK);
EXPECT_EQ(ntohl(read_raw_packet.ip.daddr), expected_destination);
EXPECT_EQ(read_raw_packet.udp.source, udp_sock_bind_addr.sin_port);
EXPECT_EQ(read_raw_packet.udp.dest, udp_sock_bind_addr.sin_port);
EXPECT_EQ(ntohs(read_raw_packet.udp.len),
kExpectedIPPacketSize - sizeof(read_raw_packet.ip));
for (size_t i = 0; i < sizeof(payload); i++) {
EXPECT_EQ(read_raw_packet.data[i], payload[i])
<< "byte mismatch @ idx=" << i;
}
EXPECT_EQ(peer.sin_family, AF_INET);
EXPECT_EQ(peer.sin_port, 0);
EXPECT_EQ(ntohl(peer.sin_addr.s_addr), INADDR_LOOPBACK);
};
if (do_bind) {
ASSERT_THAT(bind(raw_sock.get(), reinterpret_cast<const sockaddr*>(&addr),
sizeof(addr)),
SyscallSucceeds());
}
constexpr int kSendToFlags = 0;
sockaddr_in different_addr = udp_sock_bind_addr;
different_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK + 1);
ASSERT_THAT(sendto(udp_sock.get(), payload, sizeof(payload), kSendToFlags,
reinterpret_cast<const sockaddr*>(&different_addr),
sizeof(different_addr)),
SyscallSucceedsWithValue(sizeof(payload)));
if (!do_bind) {
ASSERT_NO_FATAL_FAILURE(
test_recv("different_addr", ntohl(different_addr.sin_addr.s_addr)));
}
ASSERT_THAT(sendto(udp_sock.get(), payload, sizeof(payload), kSendToFlags,
reinterpret_cast<const sockaddr*>(&udp_sock_bind_addr),
sizeof(udp_sock_bind_addr)),
SyscallSucceedsWithValue(sizeof(payload)));
ASSERT_NO_FATAL_FAILURE(
test_recv("addr", ntohl(udp_sock_bind_addr.sin_addr.s_addr)));
}
TEST(RawSocketTest, UnboundReceive) {
// Test that a raw socket receives packets destined to any address if it is
// not bound to an address.
ASSERT_NO_FATAL_FAILURE(TestRawSocketMaybeBindReceive(false /* do_bind */));
}
TEST(RawSocketTest, BindReceive) {
// Test that a raw socket only receives packets destined to the address it is
// bound to.
ASSERT_NO_FATAL_FAILURE(TestRawSocketMaybeBindReceive(true /* do_bind */));
}
} // namespace
} // namespace testing
} // namespace gvisor
|